










(a) ResNet (A → W ) (b) A2Net(A → W ) (c) ResNet (D → A) (d) A2Net(D → A)
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(e) ResNet (W → A)
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(f) A2Net(W → A)

Figure 3. Resulst of Feature Visualization and Confusion Matrix. (a)-(d) show high-level source (red) and target (blue) features generated
by source-only model (Resnet-50) and our A2Net. Note that we only exploit source data to draw the t-SNE without any use of it during
adaptation stage. (e) and (f) are the confusion matrices, comparing the ground-truth and the category prediction from ResNet and our
model, respectively.

(a) Parameter Analysis. (b) Ablation Study.
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(c) Training Stability.
Figure 4. (a) Parameter Analysis records the object recognition accuracy with the varying η. (b) Ablation Study shows the influence of
removing each constraint on the performance of our model. (c) Training Stability reports the object recognition ability of target classifier
as the increasing number of epoch.

performance of the frozen source classifier. Similarly, re-
moving the contrastive category matching also results in the
performance degradation since this module mainly exploits
the existed knowledge of source model to explore the rela-
tion of any two target samples and controls the compactness
of each target class subspace by using contrastive loss over
all positive pairs. In terms of the rotation design, it actually
makes a small contribution to the improvement of perfor-
mance by learning additional semantics from target images
in self-supervised manner. However, we still promote the
adaptation ability of model via the adjustment of parameter
η balancing the rotation constraint and others. For instance,
Fig. 4 (a) reports the relation between the varying η and tar-
get classification accuracy. These two tasks of Office-Home
both achieve the highest performance with η = 0.3. Finally,
considering the adversarial game between feature generator
and dual-classifier , we show the change of object recogni-
tion accuracy as the increasing of epoch in Fig. 4 (c). With
the adversarial training manner, the target classifier gradu-
ally improves its classification ability in a stable rhythm.

5. Conclusions
Unsupervised Domain Adaptation (UDA) assumes the

well-annotated source domain and unlabeled target images
are both available for the model training. However, many
practical applications only access the well-trained source
model instead of source data during adaptation stage, which
is defined as source-free domain adaptation. To overcome
the novel scenario, this paper proposes Adaptive Adversar-
ial Network (A2Net) including three operations. First,
A2Net develops a soft-adversarial mechanism to learn a
flexible target classifier promoting the recognition of sam-
ples which the frozen source classifier difficultly identifies.
Second, it explores the contrastive loss over all positive
paired target samples to intensify the compactness of each
category subspace. Finally, the self-supervised rotation is
adopted to learn additional semantics from target images
to learn more discriminative features. Moreover, experi-
ments of three popular benchmarks illustrate our method
effectively achieves domain adaptation without source data.

9017



References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 4, 5

[2] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin
Wang. Transferability vs. discriminability: Batch spectral
penalization for adversarial domain adaptation. In Interna-
tional conference on machine learning, pages 1081–1090.
PMLR, 2019. 1

[3] Yiming Chen, Shiji Song, Shuang Li, and Cheng Wu.
A graph embedding framework for maximum mean
discrepancy-based domain adaptation algorithms. IEEE
Transactions on Image Processing, 29:199–213, 2019. 1

[4] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards discriminability and
diversity: Batch nuclear-norm maximization under label in-
sufficient situations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3941–3950, 2020. 6, 7

[5] Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi
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