This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

A Backdoor Attack against 3D Point Cloud Classifiers

Zhen Xiang!, David J. Miller!, Siheng Chen?, Xi Li!, and George Kesidis'*

!Pennsylvania State University

Abstract

Vulnerability of 3D point cloud (PC) classifiers has be-
come a grave concern due to the popularity of 3D sensors
in safety-critical applications. Existing adversarial attacks
against 3D PC classifiers are all test-time evasion (TTE)
attacks that aim to induce test-time misclassifications using
knowledge of the classifier. But since the victim classifier is
usually not accessible to the attacker; the threat is largely di-
minished in practice, as PC TTEs typically have poor trans-
ferability. Here, we propose the first backdoor attack (BA)
against PC classifiers. Originally proposed for images, BAs
poison the victim classifier’s training set so that the classi-
fier learns to decide to the attacker’s target class whenever
the attacker’s backdoor pattern is present in a given input
sample. Significantly, BAs do not require knowledge of the
victim classifier. Different from image BAs, we propose to
insert a cluster of points into a PC as a robust backdoor pat-
tern customized for 3D PCs. Such clusters are also consis-
tent with a physical attack (i.e., with a captured object in a
scene). We optimize the cluster’s location using an indepen-
dently trained surrogate classifier and choose the cluster’s
local geometry to evade possible PC preprocessing and PC
anomaly detectors (ADs). Experimentally, our BA achieves
a uniformly high success rate (> 87%) and shows evasive-
ness against state-of-the-art PC ADs. Code is available at
https://github.com/zhenxianglance/PCBA.

1. Introduction

Tools for 3D point cloud (PC) classification have been
developing rapidly due to the increasing popularity of 3D
applications in industry such as autonomous driving, in-
dustrial robotics, and augmented reality [6, 13]. Recently,
deep neural network (DNN) models, e.g. PointNet [4],
have demonstrated tremendous performance in 3D PC clas-
sification; hence they are widely used as the backbone of
many 3D PC processing modules. However, these models
are vulnerable to adversarial attacks, which typically aim
to induce misclassifications during the classifier’s operation
[28, 57]. In safety-sensitive domains such as autonomous
driving, such misclassifications, e.g. incorrectly recogniz-
ing a pedestrian as a car (Fig. 1), can be catastrophic.

*Supported in part by an AFOSR DDDAS grant.

2Shanghai Jiao Tong University

"vision of classifier not attacked backdoor »37. a

pattern 33,3 ball

!

“Vision of classifier being attacked

Figure 1: Illustration of a BA during the operation of a 3D
PC classifier as part of an autonomous car. Top: If the clas-
sifier is not attacked, it functions normally. Bottom: The
attacker embeds a backdoor pattern to a PC associated with
a pedestrian (e.g. by having the pedestrian carry a ball).
The backdoor-attacked classifier incorrectly recognizes the
pedestrian as a car, which may be catastrophic.

Existing adversarial attacks against 3D PC classifiers are
all test-time evasion (TTE) attacks [49]. These attacks aim
to “fool” a classifier (i.e. inducing misclassifications) dur-
ing testing/operation by introducing a customized modifi-
cation of each test sample — this may involve adding points
[49, 43], perturbing points [49, 47, 22], and/or deleting
points [64]. These sample-specific modifications are opti-
mized using full knowledge (the architecture and parame-
ters) of the victim classifier to be “fooled”. However, in
many practical cases the victim classifier is not accessible
to the attacker. Moreover, the transferability of existing PC
TTEs is poor — adversarial test samples created using a sur-
rogate classifier independently trained by the attacker do not
reliably fool the victim classifier [49, 22]. Thus, the threat
of PC TTE attacks in practice is largely diminished.

In this paper, we expose the vulnerability of 3D PC clas-
sifiers to a different attack by proposing the first PC back-
door attack (BA). Similar to the BAs proposed against im-
age classifiers, our BA aims to have a 3D PC classifier learn
to classify to the attacker’s target class during its operation,
whenever a test sample from a source class (of the attack)
contains a backdoor pattern [12, 7, 65] (see illustration in

7507

Fig. 1). To achieve this goal, the attacker poisons the train-
ing set of the victim classifier with a small set of backdoor
training samples. These samples are originally from the
source class, are embedded with the same backdoor pattern
that will be embedded in test samples to “fool” the victim
classifier, and are labeled to the target class [12]. Similar to
traditional data poisoning (DP) attacks [2, 18, 56, 32, 1] and
image BAs, our PC BA is based on the assumption that the
attacker is able to poison the training set of the victim clas-
sifier [12, 7]. Such poisoning capability is facilitated by the
need in practice to obtain “big data” suitable for accurately
training a DNN classifier for a given domain — to do so, one
may need to seek data from as many sources as possible
(some of which could be attackers) [62].

Although BAs and their defenses have been extensively
studied for images, devising a BA against 3D PC classi-
fiers is challenging in several respects. Challenge 1: Exist-
ing backdoor patterns for image BAs are either a human-
imperceptible, additive perturbation [7, 42, 65, 45, 53], or
a pixel patch replacement representing an object physically
inserted in a scene [12, 7, 44, 51]. But none of these patterns
are applicable to 3D PCs, for which “pixels” are undefined.
Challenge 2: Designing a backdoor pattern learnable by 3D
PC classifiers is difficult since they extract different features
than image classifiers, especially convolutional neural net-
works like [20, 17]. Challenge 3: The backdoor pattern
should be robust to test-time preprocessing of 3D PCs like
random sampling, should be evasive of anomaly detectors
(ADs), and should be scene-plausible.

In this paper, we propose to insert a small cluster of
points as the backdoor pattern (for Challenge 1), dubbed
“backdoor points”, which can be implemented either digi-
tally (to mimic, e.g., spurious points caused by vehicle ex-
haust), or physically using an object (e.g. a ball) captured
along with the scene by the 3D sensor. The spatial location
of the backdoor cluster is optimized by making use of a sur-
rogate classifier that is independently trained by the attacker,
using its own (separate) data set (for Challenge 2). Such
optimization is necessary to ensure that the victim classifier
learns the backdoor pattern during its training. The local ge-
ometry of the actual backdoor points embedded in each PC
sample is also optimized, such that these points have similar
local density as the original points in the PC (for Challenge
3). Our contributions are summarized as follows:

* We propose the first BA against 3D PC classifiers. Unlike
PC TTE attacks, we do not use any knowledge of the vic-
tim classifier or of the clean data possessed by the trainer.

* We propose “backdoor points” customized for 3D PCs,
along with approaches for optimizing their spatial loca-
tion and local geometry.

¢ We show the effectiveness of our BA for four different

types of backdoor point local geometries, three different
architectures for the victim classifier, and on two datasets.

* We show through experiments that the effectiveness of
our BA mostly depends on the spatial location of the
backdoor points, while careful design of their local ge-
ometry helps the BA evade the state-of-the-art PC ADs.

2. Related Work
2.1. 3D Point Cloud Classification

A 3D point cloud (PC) is a set of 3D points commonly
captured by 3D sensors including radio detection and rang-
ing (RADAR) [38], light detection and ranging (LiDAR)
[61], and ultrasonic sensors [19]. Techniques for 3D PC
classification have rapidly developed due to the increas-
ing popularity of 3D sensors in many applications like au-
tonomous driving [6]. Early approaches include 3D con-
volutional neural networks, e.g. VoxNet [26], which rep-
resents 3D PCs using a series of voxels for classifica-
tion. Multi-view based methods combine features associ-
ated with different views of an object into a global descrip-
tor [39, 40]. PointNet [4] is the pioneering method directly
taking a 3D PC as input and achieving permutation invari-
ance of points by using a symmetric function — max pool-
ing. Due to the simplicity and strong representation capa-
bility of PointNet, it is used as the backbone of many 3D
learning modules [6], and is also the basis for many subse-
quent methods, e.g. [37, 46, 63, 60]. Like existing PC TTE
attacks, we focus on PointNet and its variants in this paper.

2.2. Adversarial Attacks against 3D PC Classifiers

Typical adversarial attacks against classifiers include
test-time evasion (TTE) attacks, general data poisoning
(DP) attacks [2, 18], and BAs, which are the focus of this
paper. Existing adversarial attacks against 3D PC classi-
fiers are all TTE attacks, which were originally proposed
against image classifiers. Image TTE attacks aim to “fool”
a victim classifier (i.e. have it classify incorrectly) by in-
troducing a human-imperceptible perturbation to a test im-
age [41, 11, 35, 33, 25, 3, 24]. Such perturbations can be
learned using knowledge of the victim classifier, including
its architecture and parametersl, or transferred from an in-
dependently trained surrogate classifier, i.e. learned using
knowledge of the surrogate classifier [34, 36]. Existing PC
TTE attacks “fool” a victim classifier by adding points to a
test PC, perturbing its points, or removing some of its points
[49, 47,22, 43] — these operations are the analogue, for PCs,
of TTE perturbations applied to 2D images. However, PC
TTE attacks do not transfer nearly as well as image TTE at-
tacks. Even for two classifiers trained on the same dataset,
with the same architecture but different parameter initial-
izations, test PCs generated using one classifier do not re-
liably “fool” the other [49, 22]. Such poor transferability

'TTE perturbations can also be created by querying the victim classifier
[33], though this method has not been extended to PCs yet. Also, frequent
queries may be denied due to the security protocol of the victim classifier.

7598

may be due to the larger discrepancy of the decision bound-
aries between two PC classifiers. Especially for PointNet
and its variants, the “critical points” selected from a PC by
max pooling may be very different for two classifiers; thus
perturbing a critical point selected by classifier A cannot
“fool” classifier B if it is “dropped out” (i.e. not selected
by max pooling) by classifier B. Hamdi et al. [15] improve
the transferability of PC TTE attacks; but the success rate to
“fool” the victim classifier using their transferred attack is
still less than 65%, even with the victim classifier’s training
set exploited by the attacker. In summary, the effectiveness
of existing PC TTE attacks largely relies on knowledge of
the victim classifier, which is usually not available in prac-
tice. By contrast, our backdoor attack does not require such
knowledge, nor does it need access to the clean training set.

2.3. Backdoor Attacks against Image Classifiers

A backdoor attack (BA) is a type of adversarial attack
initially proposed against DNN image classifiers [7, 12, 21].
A source class, a target class, and a backdoor pattern (a.k.a.
a backdoor trigger) are the three elements of a BA, which
are all specified by the attacker. An image BA aims to: 1)
have the victim classifier learn to classify to the target class,
whenever any test image from the source class is embed-
ded with the backdoor pattern; 2) not degrade the accuracy
of the victim classifier on clean, backdoor-free test images.
An image BA can be launched by poisoning the training set
of the victim classifier with a small set of backdoor training
images that are originally from the source class, embedded
with the same backdoor pattern, and labeled to the target
class. For image BAs, existing backdoor patterns include a
human-imperceptible, additive perturbation [7, 65, 45, 53],
and a pixel patch replacement representing an object phys-
ically inserted in a scene [12, 7, 44, 51]. However, none of
these backdoor patterns or embedding mechanisms are ap-
plicable to 3D PCs. Designing a suitable backdoor pattern
for 3D PCs is thus the main challenge for devising a PC BA.

3. Backdoor Attacks against 3D PC Classifiers:
Scenario, Goals and Assumptions

We consider a common practical scenario, wherein a
training authority learns a 3D PC classifier using a dataset
collected from the public. Unfortunately, among the data
donors, there is an attacker who aims to embed a backdoor
mapping in the classifier. Thus, the training set of the vic-
tim classifier is Diyain = Delean U B, where Dejean con-
tains clean, labeled training samples and B denotes the set
of backdoor training samples contributed by the attacker.
Unaware of the attack, the trainer performs regular learning
on Dyyain, usually by solving:

minimize E
(S]

(X,y) E€D¢rain

L(f+(X;0),y) (D

surrogate classifier backdoor backdoor
’ 2 points training sample

spatial location Lo
& e
local geometry v e 3

backdoor attack

H'::@E ¢ G
L. Y % car
training

victim classifier

small dataset

pedestrian with

backdoor points pedestrian

testing

training set

prediction: car prediction: pedestrian

Figure 2: Outline of our BA. The attacker collects a small
dataset to train a surrogate classifier (I)). The backdoor
points is generated using the surrogate classifier with opti-
mized spatial location (Sec. 4.2) and local geometry (Sec.
4.1) (@). The backdoor points is embedded in clean PCs
from a source class, e.g. “pedestrian” (), to generate
backdoor training samples labeled to a target class, e.g.
“car”’. These samples are used to poison the training set
possessed by the trainer (@), on which the victim classi-
fier is trained (). During testing, the victim classifier is
supposed to classify source class PCs embedded with the
backdoor points to the target class (Eq. (2)), while correctly
classifying backdoor free test PCs (Eq. (3)).

e.g. via stochastic (mini-batch) gradient descent (SGD)
[10]. Here, X = {x; € R3|i = 1,---,n} € X denotes
a PC, where x; is a point with (x, y, z) coordinates®. X’ and
Y denote the 3D PC space and the label space, respectively.
The loss function L(-,-) :) x Y — R, the architecture of
the victim classifier f,(-;0) : X — Y (with O the classi-
fier’s parameters), and other training settings are all speci-
fied by the trainer independent of the presence of the BA.

The attacker’s goals are two-fold. a) Having the classifier
learn the “backdoor mapping”. l.e., for any test PC from a
prescribed source class s €), the trained classifier should
classify to the attacker’s target class t €) (¢ # s) whenever
the test PC is embedded with the attacker’s backdoor pattern
V. Formally, the attacker aims to maximize:

Ex~p, [1(fy(m(X;V); ©) =)], 2

where P; is the distribution of PCs from class s, 1(-) is a
logical indicator function. m(-; V) : X — X is the embed-
ding function associated with the backdoor pattern V — its
design requires a surrogate classifier independently trained
by the attacker on a small dataset (details in Sec. 4). b) Not
degrading the accuracy of the trained classifier on clean test
PCs. Formally, the attacker aims to maximize:

Ex~p, [L(f+(X;0) =y)], Vyel, 3)

where P, is the sample distribution for class y. This is dif-
ferent from the goal of traditional DP attacks, which aim to

2General PCs may involve higher-dimensional point representations
with additional features beyond 3D coordinates for each point [63].

7500

degrade the accuracy of the classifier. The motivation for
b) is so that validation set accuracy degradation, e.g. [30],
cannot be reliably used to detect BAs.

To achieve these two goals, similar to image BAs, a set of
backdoor training samples B = {(m/(X; V), t)|X ~ Ps} is
used to poison the training set. Then, (2) and (3) are jointly
and automatically maximized when the trainer solves (1),
where the loss function is a differentiable surrogate of the
indicator function in (2) and (3). The outline of our BA is
shown in Fig. 2. The scenario for our BA is as follows:

1) The attacker has no access to the training process, in-
cluding knowledge of the victim classifier’s architecture,
the loss function, and other training configurations.

2) The attacker has no access to Dciean, the clean training
data collected by the trainer from other (benign) sources.
3) The attacker is able to collect data independently (to train
a surrogate classifier and create backdoor training samples).
This collected data is assumed i.i.d. with Dgjean.

4) The attacker has the capability to contribute its data to
the training set of the victim classifier.

The first two assumptions are consistent with the role of a
backdoor attacker, who is merely one of the data donors.
These two assumptions make our BA more practical than
existing PC TTE attacks, which rely on knowledge of the
victim classifier. The third and the fourth assumptions are
the basis of image BAs and traditional DP attacks — the
classifier can be more adequately trained by collecting data
from as many sources as possible, among which there may
be an attacker. Note that these assumptions are strictly fol-
lowed during experimental evaluation of our BA.

4. Backdoor Points

The key to our PC BA is the design of the backdoor pat-
tern and the associated embedding function. Due to the
irregularity of 3D PCs, and inspired by PC TTE attacks
[49, 64], candidate backdoor embedding mechanisms in-
clude adding points, dropping points, and perturbing points.
Here, we choose to add/insert a small cluster of points as the
backdoor pattern, for two reasons. First, in practice, a set of
inserted points can potentially be implemented physically
by placing an object, e.g. a ball, in the scene, captured by
a 3D sensor; or, these points can be digitally inserted into a
PC to mimic an object or a cluster of spurious points (which
are usually caused by vehicle exhaust in the context of au-
tonomous driving). Second, an ideal backdoor pattern is a
common pattern; but point dropping and point perturbations
are a function of the original points — it is thus difficult to
create a common backdoor pattern using these mechanisms.
Formally, the backdoor embedding function is defined as:

m(X;V) =X UV,)

where the backdoor pattern V, dubbed “backdoor points”,
is defined as:

(a) prior-processing (b) random sampling (c) outlier removal

Figure 3: Preprocessing and anomaly detection of test PCs.
(a) A PC with randomly inserted points (in red). (b) PC un-
dergoes random sampling (with half the points removed).
(c) PC undergoes the point AD in [66] which removes out-
lier points — most of the inserted points are removed.

V={uit+cly;, cR%ceR®i=1,---,0/}. (5

Note that V is jointly determined by its local geometry U =
{w; € R®i = 1,---,n'} and its spatial location ¢ — how
to specify these two elements is discussed next.

4.1. Local Geometry of Backdoor Points

Ideally, the embedded backdoor points should have the
same local geometry for all backdoor training/test PCs.
However, this is not feasible for BAs physically imple-
mented using even the same object — the actual points asso-
ciated with the object captured by a 3D sensor are likely dif-
ferent from PC to PC. Fortunately, local geometry of back-
door points is less critical than its spatial location for the
victim classifier to learn the backdoor mapping (Eq. (2)), as
will be empirically shown by our substantial experiments in
Sec. 5.4. Here, we allow backdoor points embedded in each
PC to have slightly different local geometry.

For practical consideration, the design of backdoor
points’ local geometry mainly addresses its robustness to
possible PC preprocessing, e.g. point sub-sampling, and
PC anomaly detectors (ADs) deployed during testing. As
shown in Fig. 3, point sub-sampling keeps a subset of points
for classification; thus, part of the inserted backdoor points
will be inevitably removed. A PC AD, e.g. [66], removes
outlier points with abnormal local density. Accordingly, the
backdoor points should: a) contain a sufficient number of
points; b) have a similar local point density as the PC into
which they are embedded. For BAs implemented physically
using an object, criterion a) can be achieved if the object is
sufficiently large. Criteria b) is automatically achieved due
to the usually stable scanning frequency of 3D sensors.

For digitally implemented BAs, backdoor points’ local
geometry U can be specified by the attacker by defining
a suitable stochastic point generator. For example, in one
of our experiments, to mimic a physically implemented BA
using a ball, we generate backdoor points randomly located
on a sphere with some radius 7 using the random generator:

g(r,0,¢) = [rsin 0 cos ¢, r sin O sin ¢, r cos 9]T7 (6)

where 6 and ¢ are random variables uniformly distributed
in [0, 7] and [0, 27] respectively and 7 is a parameter to be
specified. Regardless of the generator’s form, criterion a)
can be achieved by generating a sufficient number of points.

7600

class t sample in Dsmal

class s sample in Dsmai

backdoor training sample . decision boundary

(a) surrogate classifier

class t sample in Dciean

class s sample in Dclean

: decision boundary

(b) victim classifier (no attack)

class t sample in Dciean
H i class s sample in D

: decision boundary P cloan

: backdoor training sample

(c) victim classifier (attacked)

Figure 4: An intuitive illustration of class ¢ posterior prob-
ability for: (a) The surrogate classifier trained on Dgpali-
Clean samples from class s are “pushed” towards class ¢
with backdoor points embedding, and are labeled to class
t. (b) The victim classifier without backdoor poisoning
(trained on D jean). (¢) The victim classifier trained on the
backdoor poisoned training set Dy, — the backdoor train-
ing samples influence the learned decision boundary.

For criterion b), we propose to optimize (over the parame-
ters of the generator) the distribution of the local density
of all points in U by a novel approach based on median
absolute deviation (MAD), a robust measure of variability
([16]). Inspired by [66], we measure the local density of a
point using its kNN distance. Then, the median £NN dis-
tance of a PC X € X for backdoor point embedding is:

1
Dian(X) = median 2 3
X eS(x; .k)

i —xjll2, ()

where S(x;, k) contains k nearest neighbors of x;. For the
same example of generating random points on a sphere with
radius 7, for each PC X for embedding, we find the optimal
radius r by solving:

r>0
uj; Gs(ui vk)

s.t. w=g(r,0,¢), Vie{l,---,n'},

®)
We practically solve (8) via a grid search. Note that for
other geometries e.g. a cube, a cluster of points mimicking
spurious points, etc., a different generator function would be

chosen, possibly with different parameters to be optimized.

4.2. Spatial Location of Backdoor Points

Given the local geometry U fixed, the spatial location ¢
should be specified following two criteria. C1: The back-
door mapping (Eq. (2)) should be well learned by the vic-
tim classifier. C2: The backdoor points should be spatially
close to the PC into which they are embedded, so that, in

. . 1
min Bop| median [Din(X) = 1 7 [~ ula]

practice, the inserted backdoor object can be captured along
with the object associated with the PC (i.e., in the same
bounding box) by a 3D sensor.

Empirically, a BA with randomly located backdoor
points is not guaranteed to be successful, as will be shown
in Sec. 5.5. Thus, our attacker optimizes the spatial lo-
cation c using a surrogate classifier f(-;®) : X —) in-
dependently trained on a small dataset Dgp,a11, with ® the
classifier’s parameters. If there is no BA, the landscape of
the posterior probability function associated with the tar-
get class will likely be similar between the victim classifier
(trained on Dgjeay only) and the surrogate classifier. This
is due to the fact that D¢jean and Dgpan are generated i.i.d.
according to the same distribution. In other words, for both
classifiers, the target class posterior probability will likely
be large for a typical target class PC, and be small for a typ-
ical source class PC. However, there is no guarantee for the
two classifiers to have the same (or a very similar) decision
boundary between the source class and the target class. This
intuition is jointly illustrated in Fig. 4a and Fig. 4b.

The purpose of backdoor poisoning is to have the victim
classifier learn to classify backdoor training samples to the
target class (i.e. C1) — target class posterior probability for
these PCs should also be large after the victim classifier’s
training on the poisoned training set. Thus, we optimize
the spatial location c such that the embedding of backdoor
points “pushes” the backdoor training PCs toward typical
target class PCs. A simple illustration of the expected land-
scape of the target class posterior probability function (and
the learned decision boundary) for the victim classifier be-
ing attacked is shown in Fig. 4c. For this classifier, a typical
source class test PC embedded with similar backdoor points
will also have a large target class posterior probability.

Formally, we denote the surrogate classifier’s posterior
probability function for the target class ¢ as p(t|-,) :
X — [0, 1], with & the classifier’s parameters. For a non-
target class PC, p(t|-, ®) is supposed to increase when it is
“pushed” towards the target class ¢. Thus, considering also
C2, we find the minimum average distance from c to the
source class PCs, such that any point? inserted at spatial lo-
cation c induces these source class PCs to have at least a
certain level of average posterior probability for class t, i.e.:

min — > d(e,X)

c€R3 |'DS‘ (X.9)ED,
. ©)
Lo Z p(tlm(X; V), ®) > € + ¢,
Il (X,y)€Ds
where Dy C Dgmal s the subset of samples from class s

possessed by the attacker. d(c,X) measures the distance
from point ¢ to PC X € X. In our experiments, we use

30One can append V with arbitrary local geometry or even a single point
at ¢ to X when solving (9).

7601

d(e,X) = mingex ||c — x||2 for its simplicity and piece-
wise differentiability in c. ¢y = ﬁ > x e, P(HX, P)
is the initial “soft” class confusion from class s to class t,
which is usually close to zero due to the inevitable over-
fitting on Dgyan during the surrogate classifier’s training.
Finally, € is a small positive number describing how close
the source class PCs should be “pushed” toward class ¢ by
inserting a point at c. Unlike the image domain, where a
small, common perturbation can induce a group of images
from one class to be misclassified to another class [29], the
feasible set of (9) for even a moderately large ¢ may con-
tain only spatial locations far apart from the original PCs in
D;, which violates C2. Thus, in practice, € is chosen to en-
sure that there is at least one solution with sufficiently small
objective value for (9) (e.g. € = 0.02 in our experiments).
We solve (9) using Alg. 1, where

J(c,\) = ! > [Ad(e,X)-
Ds| x e, (10)

log p(t|m(X; {c}), @)]

is the Lagrangian of (9), with the logarithm used for better
smoothness. A is updated automatically (using a scaling
factor o > 1) to constrain the optimization variables in the
feasible set (as an alternative to projection which is hard to
realize here). NV (0, 1) is a standard normal distribution used
to initialize ¢ — the PCs are usually aligned to the origin
for classification [4]. To avoid poor local optima, one can
perform Alg. 1 multiple times, with different initialization,
and pick the best solution to (9).

5. Experiments
5.1. Datasets

Like existing PC TTE attacks [49, 15, 22], we use the
aligned benchmark dataset ModelNet40 [48] for our exper-
iment. ModelNet40 contains 12311 CAD models (2048
points for each PC) from 40 common object categories.
Following the original train-test split of ModelNet40, 2468
PCs are used for testing. From the remaining 9843 PCs, we
randomly choose 1000 PCs as the “small dataset” (Dgpan)
possessed by the attacker. The remaining 8843 PCs are pos-
sessed by the trainer (Dgjean) and are not accessible to the
attacker. Additionally, we consider a practical street view
LiDAR dataset KITTI [27]. From each scene, we extract
PCs corresponding to labeled objects inside their bound-
ing boxes provided with the dataset and align them. Due
to high class imbalance of the original KITTI dataset, we
construct two (super) classes: a “vehicle” class consists of
“car”, “van”, and “truck” from the original dataset; a “hu-
man” class consists of “pedestrian” and “cyclist” from the
original dataset. We consider PCs with no less than 256
points and randomly keep 256 points for each PC. Also, we
keep a subset of PCs for the “vehicle” class such that the

Algorithm 1 Optimal spatial location for backdoor points.
1: Inputs: source class s, target class ¢, data subset D;,
surrogate classifier f(-; ®), € and €q, step size J, maxi-
mum iteration count 7y,,y, scaling factor a.
2: Tnitialization: c(*) ~ A/(0,T), \(9) set to a small pos-
itive number (e.g. 107°), ¢* = oo, p(®» = 0.
for 7 =0: Tpax — 1:
c(T+1) — (1) 5VCJ(C(T),)\(T))
P = S e, (MK (DY), ®)
if p7 D) > ¢g 4 €
AT — (1) L
if 3 % yyep, [T, X) —d(c*, X)] <0:
c* = C(‘r+1)

D T A

10: else:
11: AT = X(7) /g

12: Outputs: c*

two classes have equal number of samples. Consequently,
we obtain 2662 PCs evenly distributed in the two classes —
200 are possessed by the attacker, 1800 are possessed by the
trainer, and 662 are used for testing.

5.2. Attack Implementation

We implemented 36 attacks involving 9 (source, target)
class pairs in total for the two datasets — for each class pair,
we create 4 attacks with different types of local geometry
for the embedded backdoor points.

Specify source and target classes: For ModelNet40, we
arbitrarily chose 7 (source, target) class pairs, which are:
(chair, toilet), (vase, curtain), (laptop, chair), (nigh stand,
table), (sofa, monitor), (cone, lamp), (airplane, wardrobe).
For KITTI, we consider the only two ordered class pairs:
(human, vehicle) and (vehicle, human). We name these 9
class pairs as P, Po, ..., Pg respectively for brevity.

Train a surrogate classifier: For each dataset, we
trained a PointNet with the same architecture in [4] on the
PCs possessed by the attacker. Training was performed for
250 epochs with batch size 32 and learning rate 10~3 (with
0.5 decay per 20 epochs). 2048 points and 256 points per
PC are used for ModelNet40 and KITTI, respectively.

Specify the spatial location of backdoor points: For
the four attacks associated with each (source, target) class
pair, we specified one common spatial location for back-
door point embedding using Alg. 1 and the surrogate clas-
sifier trained on its associated dataset. The parameters for
the attacker’s optimization were set to ¢ = 0.02, § = 0.01,
Tmax = 3000, @ = 1.5. In particular, although € is numeri-
cally small, there is already a moderate distance between the
optimal spatial location (solution to (9)) and the PCs used
for backdoor embedding, as shown in Apdx. A. Larger €
may cause the embedded backdoor points to be too far from
the PC to be captured in the same bounding box by a 3D

7602

> > x: > >
(a) GS (b) RS (c)RP (d) HS

Figure 5: Illustration of the four types of local geometry.
GS is a non-optimized geometry; while RS, RP, and HS are
optimized geometries with stochastic generators.

sensor. The choices of the other three parameters are not
critical to the performance of our BA.

Specifying the local geometry of backdoor points: For
each class pair, we created four attacks with the following
four different types of local geometry respectively. We set
k = 4 in Eq. (7) and (8) for local geometry optimization.
Examples of these local geometries are shown in Fig. 5.

1) GS: 32 points uniformly spaced on a sphere, generated
by Eq. (6) with deterministic 6 € {%ﬂ', %ﬂ', %ﬂ', %ﬂ'}, and
¢ € {%ﬂ', %77, cee %w}. Radius is manually set to r =
0.04 for scene-plausibility, but without optimizing (8).

2) RS: 32 points randomly distributed on a sphere generated
by Eq. (6), with 6 and ¢ uniformly sampled from [0, 7] and
[0, 27| respectively. Radius r is obtained by solving (8).

3) RP: 32 points randomly distributed in a ball generated in
the same way as RS, except that is now a random variable
uniformly distributed in [0, 7pax], Where 7.y is optimized
instead of r in (8).

4) HS: Points randomly distributed on a half sphere with
random orientation (to mimic a surface of a ball facing a
3D scanner) — generated from RS by keeping points having
positive inner product with a random vector.

Create backdoor training samples: For each attack,
with the specified spatial location and local geometry, we
generated backdoor training samples using a subset of clean
PCs possessed by the attacker from the source class, follow-
ing Eq. (5) and (4). Example backdoor training samples are
shown in Apdx. A. For ModelNet40 and KITTI, 15 and 30
backdoor training samples are generated for poisoning the
training set, respectively.

5.3. Training

Learning the victim classifier is performed by the trainer,
on the poisoned training set Dy,,in. Based on the assump-
tions in Sec. 3, the entire training process is not accessi-
ble to the attacker. Like PC TTE attacks ([49, 47]), we
consider three DNN architectures for the victim classifier
— PointNet [4], PointNet++ [37], and DGCNN [46]. We use
the same DNN architecture and training protocol for these
models as described in their original papers. Notably, for
ModelNet40, each PC is preprocessed by randomly sam-
pling 1024 points before feeding to the classifier (both dur-
ing training and test). Similarly, 128 points are randomly
chosen to remain for each PC for KITTI. As a benchmark,
without poisoning, the test accuracy of the trained PointNet,
PointNet++, and DGCNN are 88.5%, 91.5%, and 91.4% for

ModeNet40 KITTI
ASR ASR ACC ACC ASR ASR ACC ACC

(avg) (min) (avg) (min) (avg) | (min) (avg) (min)
. GS [940 | 919 | 88.7 | 88.2 | 92.8 | 89.1 | 99.3 | 99.2
Point- | RS | 96.0 | 93.0 | 88.7 | 88.2 | 93.4 | 87.3 | 99.4 | 99.4

N
146][RP | 949 | 90.0 | 88.6 | 87.8 | 94.0 | 90.9 | 99.4 | 99.1

HS | 96.0 | 93.0 | 88.6 | 88.2 | 91.2 | 91.2 | 99.5 | 99.5
GS | 94.6 | 89.5 | 91.4 | 91.0 | 959 | 92.7 | 99.5 | 99.5
;‘;j‘; RS | 969 | 920 | 91.0 | 90.2 | 93.1 | 87.6 | 99.4 | 99.4
371 | RP[96.9 | 950 | 91.0 | 902 | 93.5 | 89.7 | 99.7 | 99.5
HS | 93.7 | 88.0 | 91.4 | 91.1 | 88.6 | 87.6 | 99.5 | 99.5
GS [9327 90.0 | 929 [90.8 | 96.7 | 955 | 99.5 | 99.5
&C; RS | 93.9 | 87.0 | 91.1 | 90.7 | 95.0 | 91.5 | 99.8 | 99.7
6] | RP [96.1 | 90.0 | 91.0 | 90.6 | 964 | 93.1 | 99.6 | 99.4

HS | 937 | 87.0 | 91.0 | 90.8 | 92.8 | 90.6 | 99.5 | 99.4

Table 1: Average and minimum ASR and ACC (in %), re-
spectively, over the 9 attacks (for class pairs P1, P2, ..,
P9), for the 4 local geometries (GS, RS, RP, and HS),
the 2 datasets (ModelNet40 and KITTI), and the three
victim classifier architectures (PointNet, PointNet++, and
DGCNN). All attacks are successful with ASR > 87%.

ModeNet40; 99.5%, 99.7%, and 99.7% for KITTL

5.4. Performance Evaluation (Main Results)

The performance of our BA is evaluated using the test set
and the following two metrics for each attack we created:
1) Attack success rate (ASR): For each test PC from the
source class, we embed backdoor points with the same type
of local geometry and spatial location as used to create the
backdoor training samples. ASR is defined as the percent-
age of misclassifications to the target class.

2) Clean test accuracy (ACC): The accuracy of victim clas-
sifier on the clean test PCs from all classes.

Based on the attacker’s goals in Sec. 3, a successful BA
should have a high ASR and negligible degradation in ACC
compared with the clean benchmarks in Sec. 5.3. Thus, all
36 attacks are successful (with all ASRs > 87%) regard-
less of the victim classifier’s architecture, as shown in Tab.
1 (ASR and ACC for each attack are shown in Apdx. B).
Apart from that, we observe that for each class pair, with
the same optimal spatial location, the choice of the local
geometry does not significantly affect the learning of the
backdoor mapping. Especially for attacks with geometry
RP, the backdoor points inserted to each PC have high ran-
domness; but the ASR for these attacks are still uniformly
high. For physically implemented BAs, this property allows
more freedom in choosing the geometry of the inserted ob-
ject to achieve scene-plausibility. Also, since high ASRs are
achieved when each test PC is sub-sampled to 1024 points
— nearly half of the points are removed — our BA is ro-
bust to test-time sub-sampling. Moreover, in Fig. 6, we
show ASR curves for the three attacks with local geometry
RP for class pairs P1, P2, and P3, over a range of number
of backdoor training samples used for poisoning the victim
classifier’s training set. Our BA is effective, with only a
few backdoor training samples inserted in the training set
containing 8843 clean PCs; thus it is also very stealthy.

Additionally, we compare our BA with PC TTE attacks

7603

100 1]

x//jfiii:/’/"“*f//’*\\,’/‘\\\'—-—4

60 1

ASR (%)

—e— attack with RP for P1
20 attack with RP for P2
—a— attack with RP for P3

’) ° #ofﬁbackdégr trai;i2n0 sanl;:zles * * °
Figure 6: ASR versus number of backdoor training samples
for attacks with local geometry RP associated with class
pairs P1, P2, and P3 (for example). With merely 8 backdoor
training samples, all three attacks achieve ASR > 80%.

P1 P2 P3 P4 P5 P6 P7 P8 P9

PointNet 114 320 105 250 447 455 394 182 285
PointNet++ 0 450 O 167 1.1 182 0 1.3 0
DGCNN 124 405 389 208 72 273 116 0 0.3

Table 2: Success rate of targeted PC TTE attacks (for class
pairs P1-P9) transferred from the surrogate classifier, for
victim classifier architectures PointNet, PointNet++, and
DGCNN - PC TTE attacks transfer poorly.

implemented by point addition in the same scenario de-
scribed in Sec. 3. Following [49], for each of the 9 class
pairs, we created adversarial PCs by inserting 32 points to
test PCs from the source class. The locations for the inserted
points are optimized using the surrogate classifier such that
the adversarial PCs are classified to the target class by the
surrogate classifier. As shown in Tab. 2, these adversar-
ial PCs cannot reliably “fool” the victim classifier trained
on clean PCs possessed by the trainer — PC TTEs transfer
poorly; thus, they are less threatening than our BA in cases
where the victim classifier is not accessible to the attacker.

5.5. Backdoor Points with Random Spatial Location

Here, we show the necessity of spatial location opti-
mization for our BA. For class pair P1 and local geometry
GS, we created 50 attacks in the same way as described in
Sec. 5.2, but without spatial location optimization. In par-
ticular, for each attack, we pick a random spatial location
¢ ~ N(0,1I) and scale it such that the average distance
from the scaled c to the source class PCs (i.e. objective
of (9)) is the same as for the optimized spatial location ob-
tained for the attack associated with P1 and GS. As shown
in Fig. 7, all 50 attacks (with maximum ASR 91.0%) have
smaller ASR than the attack with the optimized spatial lo-
cation (with ASR 94.0%, shown in Tab. 4 Apdx. B). More-
over, some of the 50 attacks are not reliable, with low ASR.

5.6. BA against PC Anomaly Detectors (ADs)

Existing state-of-the-art detectors for image BAs, e.g.
[44, 14], highly depend on the format of the backdoor pat-
tern; hence they are not applicable to our PC BA (more de-
tails are in Apdx. D). Still, we consider the state-of-the-art

|1 --- optimized spatial location (reference)
mmm unoptimized spatial location

Figure 7: Histogram of ASR for 50 attacks created with-
out spatial location optimization — most of them are clearly
outperformed by our BA with optimized spatial location.

GS RS RP HS
Pl 49.0(94.0) 90.0(93.0) 88.0(94.0) 81.0(93.0)

P2 9.0(93.0) 97.0(98.0) 96.0(96.0) 87.0(97.0)
P3 51.0(95.0) 100(100) 100 (100) 90.0 (100)
P4 8.1(91.9) 94.0(95.0) 953(96.5 81.4(95.3)
P5 2.0(95.0) 90.0(95.0) 87.0(90.0) 84.0(93.0)

P6 35.0(95.0) 90.0(95.0) 90.0(90.0) 95.0(100)
P7 63.0(94.0) 94.0(96.0) 98.0(98.0) 88.0(94.0)
P8 97.0(96.4) 99.7(99.4) 98.8(97.0) 92.4(91.2)
P9 87.9(89.1) 852(87.3) 90.9(90.9) 90.6(91.2)

Table 3: Attack success rate (ASR) (in %) for the 36 attacks
for victim classifier architecture PointNet, when the PC AD
in [66] is deployed during test. ASRs (in %) without AD
deployed are shown in parenthesis for reference.

defense against PC TTE attacks —a PC AD in [66], which
aims to remove points inserted/perturbed by a TTE attacker.
It measures the kNN distance (with k£ = 2) for each point in
a PC and removes points with abnormally high or low kNN
distance (falling outside of 1.1 standard deviation interval
around the average). In Tab. 3, we show ASR of the 36 at-
tacks for victim classifier being a PointNet, when the above
PC AD is deployed during testing. For brevity, results asso-
ciated with PointNet++ and DGCNN are deferred to Apdx.
C. For the non-optimized geometry GS, most attacks are
no longer reliable because the backdoor points embedded
in many test PCs are entirely removed. For the three opti-
mized geometries (RS, RP, and HS), the PC AD only causes
limited degradation in ASR compared with the no detector
case. There is still a 81.0% minimum ASR for the 27 at-
tacks for these three local geometries.

6. Conclusions

We propose the first BA against 3D PC classifiers. Our
BA is devised by inserting a small cluster of points with
optimized spatial location and local geometry. Spatial loca-
tion optimization helps the backdoor mapping to be learned;
while local geometry optimization makes the inserted points
robust to possible point preprocessing and helps our BA
evade possible defenses like a PC AD. One future research
direction is to extend sample-specific BAs ([31, 59]) to PCs.

7604

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
(11]

[12]

(13]

(14]

[15]

(16]

A. Shafahi and W. R. Huang and M. Najibi and O. Suciu and
C. Studer and T. Dumitras and T. Goldstein. Poison frogs!
targeted clean-label poisoning attacks on neural networks. In
Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 6106-6116,
2018.

B. Biggio and F. Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recognition,
84:317-331, 2018.

N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 39-57, May 2017.

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 77-85, 2017.

B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Ed-
wards, T. Lee, I. Molloy, and B. Srivastava. Detecting back-
door attacks on deep neural networks by activation cluster-
ing. http://arxiv.org/abs/1811.03728, Nov 2018.

S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, and C.
Wellington. 3d point cloud processing and learning for au-
tonomous driving: Impacting map creation, localization, and
perception. IEEE Signal Processing Magazine, 38(1):68-86,
2021.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted back-
door attacks on deep learning systems using data poisoning.
https://arxiv.org/abs/1712.05526v1, 2017.

E. Chou, E Tramer, G. Pellegrino, and D. Boneh. Sen-
tinet: Detecting physical attacks against deep learning sys-
tems, 2018.

Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and
S. Nepal. STRIP: A defence against trojan attacks on deep
neural networks. In Proc. ACSAC, 2019.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In Proc. ICLR, 2015.

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg. Badnets: Eval-
uating backdooring attacks on deep neural networks. IEEE
Access, 7:47230-47244, 2019.

J. Guo, P. V. K. Borges, C. Park, and A. Gawel. Local
descriptor for robust place recognition using LiDAR inten-
sity. IEEE Robotics and Automation Letters, 4(2):1470—
1477, 2019.

W. Guo, L. Wang, X. Xing, M. Du, and D. Song. TABOR: A
highly accurate approach to inspecting and restoring Trojan
backdoors in Al systems. https://arxiv.org/abs/1908.01763,
2019.

A. Hamdi, S. Rojas, A. Thabet, and B. Ghanem. AdvPC:
Transferable Adversarial Perturbations on 3D Point Clouds™.
In ECCV 2020, pages 241-257, 2020.

F. R. Hampel. The influence curve and its role in robust
estimation. Journal of the American Statistical Association,
69, 1974.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

7605

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proc. CVPR, 2016.

L. Huang, A.D. Joseph, B. Nelson, B.L.P. Rubinstein, and
J.D. Tygar. Adversarial machine learning. In Proc. 4th ACM
Workshop on Artificial Intelligence and Security (AlSec),
2011.

G. Korres and M. Eid. Haptogram: Ultrasonic point-cloud
tactile stimulation. /IEEE Access, 4:7758-7769, 2016.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEFE, 86(11):2278-2324, 1998.

Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia. Backdoor learn-
ing: A survey, 2020.

D. Liu, R. Yu, and H. Su. Extending adversarial attacks and
defenses to deep 3d point cloud classifiers. In 2019 IEEE
International Conference on Image Processing (ICIP), pages
2279-2283, 2019.

K. Liu, B. Doan-Gavitt, and S. Garg. Fine-pruning: Defend-
ing against backdoor attacks on deep neural networks. In
Proc. RAID, 2018.

S.-M. M.-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: a
simple and accurate method to fool deep neural networks. In
Proc. CVPR, 2016.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A.
Vladu. Towards deep learning models resistant to adversarial
attacks. In Proc. ICLR, 2018.

D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 922-928, 2015.

M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

D. J. Miller, Z. Xiang, and G. Kesidis. Adversarial learn-
ing in statistical classification: A comprehensive review of
defenses against attacks. Proceedings of the IEEE, 108:402—
433, March 2020.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Univer-
sal adversarial perturbations. In Proc. CVPR, 2017.

B. Nelson and B. Barreno et al. Misleading learners: Co-
opting your spam filter. In Machine Learning in Cyber Trust:
Security, Privacy, and Reliability, 2009.

A. Nguyen and A. Tran. Input-aware dynamic backdoor at-
tack. In Proc. NIPS, 2020.

P. Liang P. Koh. Understanding black-box predictions via
influence functions. In ICML, 2017.

P.-Y. Chen and H. Zhang and Y. Sharma and J. Yi and C.-J.
Hsieh, C.-J. Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training substi-
tute models. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, page 15-26, 2017.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, B. Z. Celik,
and A. Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, page
506-519, 2017.

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik,
and A. Swami. The limitations of deep learning in adversar-
ial settings. In Proc. 1st IEEE European Symp. on Security
and Privacy, 2016.

N. Papernot, P. D. McDaniel, and I. J. Goodfellow. Transfer-
ability in machine learning: from phenomena to black-box
attacks using adversarial samples. 2016.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
In Advances in Neural Information Processing Systems, vol-
ume 30, pages 5099-5108, 2017.

O. Schumann, M. Hahn, J. Dickmann, and C. Wohler. Se-
mantic segmentation on radar point clouds. In 2018 21st
International Conference on Information Fusion (FUSION),
pages 2179-2186, 2018.

H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.
Multi-view convolutional neural networks for 3d shape
recognition. In Proc. ICCV, 2015.

J.-C. Su, M. Gadelha, R. Wang, and S. Maji. A deeper look
at 3d shape classifiers. In Laura Leal-Taixé and Stefan Roth,
editors, Computer Vision — ECCV 2018 Workshops, 2019.
C. Szegedy, W. Zaremba, I Sutskever, J. Bruna, D. Erhan, I.
Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In Proc. ICLR, 2014.

B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor
attacks. In Proc. NIPS, 2018.

J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du,
F. Cheng, and R. Urtasun. Physically realizable adversar-
ial examples for lidar object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B.Y. Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In Proc. IEEE Sympo-
sium on Security and Privacy, 2019.

R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M.
Wang. Practical detection of trojan neural networks: Data-
limited and data-free cases. In Proc. ECCV, 2020.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph CNN for learning on point
clouds. ACM Trans. Graph., 38(5), 2019.

Y. Wen, J. Lin, K. Chen, C. L. P. Chen, and K. Jia. Geometry-
aware generation of adversarial point clouds. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pages
1-1, 2020.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

C. Xiang, C. R. Qi, and B. Li. Generating 3d adversarial
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

Z. Xiang, D.J. Miller, and G. Kesidis. A benchmark study of
backdoor data poisoning defenses for deep neural network
classifiers and a novel defense. In Proc. IEEE MLSP, Pitts-
burgh, 2019.

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

(62]

[63]

[64]

7606

Z. Xiang, D.J. Miller, Hang Wang, and G. Kesidis. Reveal-
ing Perceptible Backdoors in DNNs, Without the Training
Set, via the Maximum Achievable Misclassification Fraction
Statistic. In Proc. IEEE MLSP, Oct. 2020.

Z. Xiang, D. J. Miller, and G. Kesidis. Detection of back-
doors in trained classifiers without access to the training set.
IEEE Transactions on Neural Networks and Learning Sys-
tems, pages 1-15, 2020.

Z. Xiang, D. J. Miller, and G. Kesidis. Revealing Backdoors,
Post-Training, in DNN Classifiers via Novel Inference on
Optimized Perturbations Inducing Group Misclassification.
In Proc. IEEE ICASSP, pages 3827-3831, 2020.

Z. Xiang, D. J. Miller, and G. Kesidis. L-red: Efficient post-
training detection of imperceptible backdoor attacks without
access to the training set. In ICASSP 2021 - 2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3745-3749, 2021.

Z. Xiang, D. J. Miller, and G. Kesidis. Reverse engineering
imperceptible backdoor attacks on deep neural networks for
detection and training set cleansing. Computers and Secu-
rity, 106:102280, 2021.

H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F.
Roli. Support vector machines under adversarial label con-
tamination. Neurocomputing, 160(C):53-62, July 2015.

H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and
A. K. Jain. Adversarial attacks and defenses in images,
graphs and text: A review. International Journal of Automa-
tion and Computing, 17:151-178, 2020.

X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and
B. Li. Detecting Al trojans using meta neural analysis.
https://arxiv.org/abs/1910.03137, 2019.

B.WuL.LiR.He S. Lyu Y. Li, Y. Li. Backdoor Attack with
Sample-Specific Triggers. https://arxiv.org/abs/2012.03816,
2020.

J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian.
Modeling point clouds with self-attention and gumbel sub-
set sampling. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3318-3327,
2019.

X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L.
Sangiovanni-Vincentelli. A LiDAR Point Cloud Generator:
From a Virtual World to Autonomous Driving. In Proceed-
ings of the 2018 ACM on International Conference on Mul-
timedia Retrieval, ICMR ’18, page 458-464, 2018.

D. Zhang. Big data security and privacy protection. In Pro-
ceedings of the 8th International Conference on Manage-
ment and Computer Science (ICMCS 2018), pages 275-278,
2018/10.

H. Zhao, L. Jiang, C. Fu, and J. Jia. Pointweb: Enhancing
local neighborhood features for point cloud processing. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019.

T. Zheng, C. Chen, J. Yuan, B. Li, and K. Ren. Point-
cloud saliency maps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), October
2019.

[65]

[66]

H. Zhong, H. Zhong, A. Squicciarini, S. Zhu, and D.J. Miller.
Backdoor embedding in convolutional neural network mod-
els via invisible perturbation. In Proc. CODASPY, March
2020

H. Zhou, K. Chen, W. Zhang, H. Fang, W. Zhou, and N.
Yu. DUP-Net: Denoiser and Upsampler Network for 3D
Adversarial Point Clouds Defense. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1961-1970, 2019

7607

