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Abstract

Most existing image de-raining networks could only
learn fixed mapping rules between paired rainy/clean im-
ages on single synthetic dataset and then stay static for
lifetime. However, since single synthetic dataset merely
provides a partial view for the distribution of rain streaks,
deep models well trained on an individual synthetic dataset
tend to overfit on this biased distribution. This leads to
the inability of these methods to well generalize to com-
plex and changeable real-world rainy scenes, thus lim-
iting their practical applications. In this paper, we try
for the first time to accumulate the de-raining knowledge
from multiple synthetic datasets on a single network pa-
rameter set to improve the de-raining generalization of
deep networks. To achieve this goal, we explore Neu-
ral Reorganization (NR) to allow the de-raining network
to keep a subtle stability-plasticity trade-off rather than
naive stabilization after training phase. Specifically, we
design our NR algorithm by borrowing the synaptic con-
solidation mechanism in the biological brain and knowl-
edge distillation. Equipped with our NR algorithm, the
deep model can be trained on a list of synthetic rainy
datasets by overcoming catastrophic forgetting, making it
a general-version de-raining network. Extensive experi-
mental validation shows that due to the successful accumu-
lation of de-raining knowledge, our proposed method can
not only process multiple synthetic datasets consistently, but
also achieve state-of-the-art results when dealing with real-
world rainy images.

1. Introduction

In recent years, deep learning models have achieved sig-
nificant progress on single image de-raining task [32, 6, 4,
34, 43, 13, 50, 41, 28, 5, 42, 39, 33, 18]. This task aims
to recover the clean image from its rain-polluted version,
benefiting subsequent downstream computer vision tasks
[16, 2, 19, 15, 31, 46, 26, 49, 25], e.g., object detection,
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image classification, person identification, etc.

Figure 1: Visual comparison between the state-of-the-art
PreNet and our Neural Reorganization on real-world rainy
scene with heavy and light rain. The red check mark indi-
cates that the network successfully works on it. Specifically,
it is clear that our proposed Neural Reorganization scheme
is capable of dealing with various real-world rainy scenes
(i.e., heavy and light rain). While the original PreNet could
only take effect on specific type of rain streak and fail on
untouched type of training stage.

While existing methods obtain promising results, most
of them only focus on learning specific mapping rules on
the given individual synthetic rainy dataset. They may suf-
fer from severe performance degradation when applying
to real-world scenes, as the learned specific mapping rule
on given individual synthetic rainy dataset is incapable of
describing them. As shown in Figure 1, taking the state-
of-the-art de-raining network PreNet [29] for example, we
first train PreNet on the given light rainy dataset Rain100L
[38] and then test it on the collected real-world rainy sam-
ples from the Real-Internet dataset [35]. It is clear that the
trained PreNet only works well on light rainy scene and
fails to remove rain-streaks on heavy rainy samples (Case
1). Similarly, when trained on the given heavy rainy dataset
Rain100H [38], the trained PreNet suffers from severe ar-
tifacts (Case 2) as shown in red box. Therefore, how to
obtain a general-version image de-raining network (GID),
which can tackle various types of rain streaks with a sin-
gle set of parameters and generalizing well to complex real-
world rainy scenes, has attracted more and more attention.

Inspired by high-level computer vision tasks, e.g., im-
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age classification, a straightforward strategy to solve the
above issue is to train a deep network by mixing multi-
ple types of synthetic rainy datasets. However, this mix-up
strategy is exposed to the following weaknesses: 1. The
gradient from each task pulls the solution towards its op-
timum and the result is an equilibrium between the gra-
dients of different tasks [10]. Since the contribution of
each individual dataset to the total loss varies greatly, the
optimization algorithm inclines to overlook the disadvan-
taged member of the mixed datasets. The biased alloca-
tion leads to undesirable performance when facing complex
real-world scenes. 2. This mixing strategy leads to low
computational efficiency in practice. Specifically, when a
new dataset is introduced, the approach requires to remix
all these datasets and retrain network from scratch. On
the other hand, training the network on a chronological se-
quence of synthetic datasets rather than mixed datasets also
acts as a possible approach to achieve GID. The main is-
sue of the de-raining model regarding sequentially learning
is that it is prone to catastrophic forgetting or catastrophic
interference [27], i.e., training a model with new informa-
tion interferes with previously learned knowledge. Alter-
natively, some researchers [21, 24, 20, 36, 43] focus on
domain adaption between synthetic and real-world scenes.
However, these methods could only learn specific one-to-
one cross-domain mapping rules between individual syn-
thetic dataset and real-world rainy images. When applying
to multiple synthetic rainy datasets, these methods are inca-
pable of learning the many-to-many mapping rules between
all the synthetic domains and real-world one in a single net-
work. Besides, all of them require the collection of a large
number of real-world samples during the training phase.

Although individual synthetic dataset only provides a
partial view, combining multiple local views is conducive to
inferring the panorama. If the de-raining model can make
reasonable use of these multi-view datasets, it may gain re-
markable promotion on generalization ability. However, ex-
isting methods [45, 40, 34, 29, 22, 17, 47, 38, 8] mainly
fucus on designing more effective architecture of network
to achieve better performance on single synthetic dataset.
The de-raining networks obtained by the above methods
resembles a static entity of de-raining knowledge. If the
de-raining knowledge is directly extended without targeting
the original dataset, it will lead to the catastrophic forget-
ting problem [3]. To address the above issues, in this paper,
we propose a novel Neural Reorganization (NR), a brain-
inspired scheme to endow the de-raining network with a dy-
namic stability-plasticity trade-off rather than naively pure
stability after training phase. Specifically, we borrow the
synaptic consolidation mechanism in the biological brain
and knowledge distillation to design our NR algorithm. In
this way, our NR algorithm enables the deep network to
be trained on a list of synthetic rainy datasets by over-

coming catastrophic forgetting. Therefore, the final trained
network could aggregate de-raining knowledge from mul-
tiple datasets. In addition to improving the generalization
ability on real-world rainy images, the trained network can
also maintain considerable performance on all the synthetic
datasets. Our main contributions are as follows:

1) To our best knowledge, it is the first attempt to in-
troduce brain-inspired mechanism to improve the im-
age de-raining generalization issue. Compared with
mainstream transfer learning methods, our proposed
method only requires synthetic rainy datasets that are
easily accessible.

2) Inspired by learning and memory mechanism in the
biological brain, we first propose Neural Reorganiza-
tion. Our proposed algorithm facilitates a de-raining
network to effectively accumulate de-raining knowl-
edge from a continuous stream of correlated data by
overcoming catastrophic forgetting.

3) Since our proposed NR algorithm is orthogonal to the
mainstream de-raining methods focusing on the net-
work architectures, it can be directly applied to these
methods to improve the generalization ability.

4) Extensive experiments demonstrate that a single net-
work trained with our proposed scheme can process
multiple synthetic datasets consistently and achieve
state-of-the-art results over real-world rainy scenes. In
addition, we believe that our NR can provide a new
perspective for other related low-level vision tasks in
terms of improving generalization ability.

2. Related Work
Image de-raining network. Image de-raining aims to re-
cover the clear images from its rainy counterparts. Re-
cent remarkable progress has been achieved over the im-
age de-raining field due to the exploitation of deep learn-
ing technology. Fu et al. [8, 7] propose a customized neu-
ral network for image rain removal, which outperforms
handcrafted image de-raining methods by a large margin.
The rainy images are decomposed into high- and low-
frequency parts, and then fed them into the network for
rain removal and enhancement, respectively. Yang et al.
[38] introduce a novel de-raining pipeline by recursively
taking full use of stage-wise de-rained results for remov-
ing different levels of rain streaks. To further improve the
de-raining performance, researchers design an enormous
number of advanced deep network architectures, includ-
ing non-local module equipped encoder-decoder network
[17], multi-stage de-raining neural network [47], condi-
tional generative adversarial network [48], recurrent neu-
ral network [22, 29] and so on. However, the above deep
learning-based methods lack of sufficient explanation due to
roughly stacking black-box neural layers in an end-to-end
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Figure 2: The detailed flowchart of our proposed Neural Reorganization scheme. It allows network to incrementally accumu-
late various de-raining knowledge from a sequence of synthetic datasets by overcoming catastrophic forgetting. Specifically,
Neural Reorganization mainly consists of Synaptic Consolidation Module and Knowledge Distillation Module. Synaptic
Consolidation Module aims to maintain a mask (MoS in figure), which is utilized to shield any changes to parameters impor-
tant to previous datasets. Knowledge Distillation Module is responsible for instructing the model to learn new knowledge on
the new dataset by knowledge distillation ONLY on the new dataset while maintaining the memories of previous tasks.

fashion, which hinders their further improvement. To this
end, some researchers turn their attention on designing in-
terpretable de-raining networks. In the representative work
[34], Wang et al. first analyze the prior terms of both image
and rain streaks, and then integrate them into a convolu-
tional sparse coding inspired networks to implement image
de-raining. The signal flow of the de-raining network keeps
consistent with the optimization procedure. While exist-
ing deep learning-based methods [32, 6, 4, 34, 43, 13, 5]
have obtained promising performance, most of them could
only learn fixed mapping rules between paired rainy/clean
images on a single type of rainy dataset. When dealing
with multiple datasets, these methods cannot directly use a
single parameter set to cover all the datasets due to catas-
trophic forgetting. To solve this problem, we explore a
brain-inspired neural reorganization to endow the network
with stability-plasticity trade-off, flexibly adapting to vari-
ous rainy scenarios.
Image de-raining generalization. The other topic rele-
vant to our work is how to improve the de-raining gener-
alization ability. Jin et al. [14] employ an unsupervised de-
raining generative adversarial network to tackle the general-
ization problem by introducing self-supervised constraints
from the intrinsic statistics of unpaired rainy and clean im-
ages. Wei et al. [36] develop a semi-supervised transfer

learning method, which also extract and exploit statistical
prior to align the synthetic rainy domains and the real-world
domain. Rajeev et al. [43] propose a Gaussian Process-
based semi-supervised learning framework, which enables
the network in learning to de-rain using synthetic datasets
while generalizing better using unlabeled real-world im-
ages. Lin et al. [24] propose a two-stage weakly-supervised
data distillation approach, which aligns unpaired rainy and
clean images to generate supervision in a coarse-to-fine
manner. Different from the above methods, our approach
possesses two distinguishing characteristics: 1) our method
acts as an effective training strategy and can be easily ex-
tended to existing de-raining networks; 2) our method only
requires synthetic datasets during the training stage, which
is more friendly for practical application. The reason is that
the synthetic datasets are easier to obtain while collecting
high quality real-world samples is difficult and laborious.

3. Neural Reorganization
Recent years have witnessed promising advance in single

image de-raining task. However, due to various challenges
in obtaining real-world labeled image de-raining datasets,
existing methods are trained only on fixed synthetically gen-
erated dataset, which only provides a limited perspective
for the distribution of rain streaks. This results in a huge
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obstacle for de-raining network trained on single synthetic
dataset to generalize to real-world rain scenes. Inspired by
learning and memory mechanisms in the biological brain
[37, 9], we propose Neural Reorganization to endow the
de-raining network with dynamic stability-plasticity trade-
off after traditional training phase so that de-raining model
with a single parameter set could be competent across var-
ious types of rain streaks provided by multiple synthetic
datasets, which points out a novel way to improve gener-
alization ONLY with synthetic datasets.

3.1. Synaptic Consolidation

One prominent characteristic of the mammalian brain
is its capacity to integrate new information throughout life
while stably maintaining memories. These two seemingly
mutually exclusive properties of the brain are coincident
with plasticity-stability trade-off of synaptic connections
[37]. Not only are synaptic connections capable of un-
dergoing rapid changes in response to new experience but
also can serve as substrates for long-term information stor-
age. Researches [37, 9] have revealed that novel experi-
ence could lead to the formation of synaptic connections,
which provide a structural basis for learning, but most of
these connections are eliminated by a protracted process.
Then, these surviving connections, together with most con-
nections formed early during development and surviving
experience-dependent elimination, are preserved and pro-
vide a structural basis for memory retention throughout the
entire life of an animal. Inspired by these findings, we de-
sign Synaptic Consolidation mechanism to shield changes
to important synapses when learning on the new task.

Clearly, the proposed Synaptic Consolidation should be
composed of two parts, with one concentrating on figuring
out importance of synapses, and the other aiming to de-
termine the ratio of synapses that should be consolidated.
Since what really matters in this work is the ranking of
synaptic importance, which reminds us about the most in-
fluential portion of synapses for the current task and fa-
cilitates subsequent consolidation of these synapses, we
ONLY need a reasonable way to calculate the importance
of synapses. In this paper, we accumulate the gradients over
the given data points to obtain importance weight Ω:

Ω = E
x∼Pn

[∣∣∣∣∂L(f(x; θ), y)∂θ

∣∣∣∣] , (1)

where f(·) and L(·, ·) refer to the de-raining model and
the objective loss function respectively, |·| denotes element-
wise absolute operator and P denotes distribution of rainy
images. The detailed description of Eq. (1) can be found in
supplemental file.

Inspired by decreasing tendency of synaptic plasticity
according to age in biological brain and the exponential
model proposed in [37, 9] to describe changes in total spine

1 number as a function of age, we design a Dual-Exponent
module to decide the proportion of synapses which are re-
markably contributive to the performance of current task
and need to be consolidated to overcome catastrophic for-
getting during follow-up learning. The Dual-Exponent
module is of the mathematical form:

P (n) = αse
− n

τs + αle
− n

τl , τl ≫ τs > 0, n = 0, 1, 2 . . . ,
(2)

where P denotes the calculated proportion of synapses to
be consolidated, n denotes dataset id, τl and τs refer to
time constants used to depict the rate of decline of synaptic
plasticity. The first exponential component with relatively
smaller time constant τs and larger coefficient αs indicates
a quite proportion of parameters of network are free to up-
date, imitating the great plasticity of the biological brain in
the early stages of development. The second component of
Eq. (2) corresponds to slower and relatively minute decline
of plasticity, which is inspired by stability of synaptic con-
nection in adulthood. Besides, due to de-raining network
with fixed capacity, P (n) should satisfy the normalization
condition:

∞∑
n=0

P (n) = 1. (3)

From mathematical form of P (n) expressed in Eq. (2) and
sum law of limits, Eq. (3) is converted to:

∞∑
n=0

αse
− n

τs +

∞∑
n=0

αle
− n

τl = 1, τl ≫ τs > 0, (4)

which is composed of two terms of infinite geometric series.
We take the closed form of the geometric series, so Eq. (4)
is transformed:

αs

1− e−
1
τs

+
αl

1− e
− 1

τl

= 1. (5)

From Eq. (5), αs, αl, τs, τl are not independent hyper-
parameters and should meet the constraint:

αs = (1− αl

1− e
− 1

τl

)(1− e−
1
τs ). (6)

Hence, we can freely determine the values of αl, τl, and
τs, then αs is automatically determined by the Eq. (6).
Equipped with Eq. (1) and (2), it is qualified to decide
whether individual synaptic connection should be consol-
idated for current task. Specifically, for each parameter
tensor θij , Synaptic Consolidation produces a boolean ten-
sor mask with the same dimension, of which the element
“True” means the corresponding parameter is important for
current task and should be protected from updating. Figure
3b presents the details of Synaptic Consolidation.

1A spine (or dendritic spine) is a small membranous protrusion from
a neuron’s dendrite that typically receives input from a single axon at the
synapse.

4990



(a) The main frame of Neural Reorganization

(b) Procedure for Synaptic Consolidation

(c) Procedure for Knowledge Distillation

Figure 3: Procedure of our Neural Reorganization.

3.2. Knowledge Distillation

Except for synaptic consolidation, the biological brain
also has profound mechanisms to remodel synapses when
learning new knowledge so as to reconcile learning and
memory. Inspired by [23], we exploit knowledge distilla-
tion [11] to imitate the “cautious” learning style in biolog-
ical brains. Using only examples for the new dataset, we
optimize both for performance on the new dataset and for
preservation of responses on the previous tasks. Specifi-
cally, when model is trained on dataset n (n > 0), the total
loss Lt should be of the form:

Lt(x
n, yn; θ, θn−1) = L(f(xn; θ), yn)

+ λL(f(xn; θ), f(xn; θn−1)),
(7)

where L denotes conventional loss to train the network,
θn−1 denotes the optimized parameter set after training on
dataset n−1, xn and yn refer to rainy input and correspond-
ing label from dataset n, θ represents the parameter set to
be optimized. It is noteworthy that knowledge distillation
works in online manner as only data from dataset n is re-
quired in Eq. (7). Figure 3c shows the detailed procedure
of Knowledge Distillation and the intact illustration of our
proposed Neural Reorganization is in Figure 3.

4. Experiment
In this section, to validate the effectiveness of our pro-

posed Neural Organization scheme, we first conduct ex-
tensive experiments by integrating it with the state-of-the-
art de-raining network PreNet [29] for performance eval-
uation and model visualization. Then, we conduct the
ablation to verify the function of proposed modules and
support our idea that multi-view synthetic data is benefi-
cial to model generalization. Finally, we present perfor-
mance comparison with the representative transfer learning
method: Syn2Real [43].

4.1. Dataset and Performance Metric

Synthetic data. We conduct model training ONLY on four
widely-used synthetic datasets, including Rain100H [38],
Rain100L [38], Rain800 [48] and Rain14000 [8] in this
work. Both Rain100L and Rain100H are first proposed
in [38] and composed of the rainy images with only one
type and five types of rain streaks, respectively. Rain800
[48] consists of 700 training images and 100 testing images,
which are chosen from UCID dataset [30] and BSD-500
dataset [1]. Rain14000 [8] includes 12,600 rainy images
for training and 1,400 rainy images for testing, which are
synthesized from 1,000 clean images with 14 kinds of dif-
ferent rain-streak orientations and magnitudes.
Real-world data. To measure the generalization abil-
ity of de-raining model in real-world scenarios, we con-
duct model evaluation on the recent public real-world rainy
data set SPA-Data [35], which contains nearly 0.64 million
rainy/clean image pairs for training and 1000 pairs for test-
ing. In this work, we utilize the testing set, which includes
1000 real-world rainy images with their labeled clean im-
ages, of SPA-Data [35] to test the generalization ability
of de-raining model. It should be noted that we never
train de-raining network on the training set of SPA-Data
[35]. Besides, we also perform qualitative comparisons be-
tween our Neural Reorganation equipped network and their
baseline counterparts on Real-Internet [35], which includes
146 real-world rainy images collected from Internet without
ground truth.
Performance metric. In this paper, we employ the most
common peak-signal-to-noise ratio (PSNR) [12] and struc-
ture similarity (SSIM) [44] as quantitative metrics of the
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Training Strategy Rain100H Rain800 Rain14000 Rain100L SPA-Data
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SI 18.01 0.611 23.70 0.760 28.48 0.865 37.44 0.978 34.91 0.951
Mix 26.74 0.861 23.74 0.843 30.98 0.927 31.53 0.948 34.85 0.955

our NR 25.93 0.851 24.53 0.816 30.42 0.907 36.34 0.973 35.60 0.959

Table 1: Comparison of quantitative results in terms of PSNR and SSIM. All the models are only trained on synthetic dataset
Rain100H, Rain100L, Rain1400 and Rain800 without real-world SPA-Data. The corresponding experiment setting can be
referred as section 4.3.

Training set
Test set Rain100H Rain100L Rain14000 Rain800 SPA-Data

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rain100H 29.37 0.897 34.71 0.969 28.39 0.878 22.45 0.810 34.50 0.952
Rain100L 17.83 0.611 37.16 0.977 27.60 0.851 23.58 0.755 34.99 0.953
Rain1400 15.16 0.430 28.90 0.897 31.78 0.924 23.03 0.807 33.70 0.952
Rain800 15.78 0.475 29.33 0.905 36.34 0.973 25.86 0.871 33.71 0.957
our NR 25.93 0.851 36.34 0.973 30.42 0.907 24.53 0.816 35.60 0.959

Table 2: Comparison of quantitative results in terms of PSNR and SSIM. In the middle four lines, the model is trained on
individual synthetic dataset Rain100H, Rain100L, Rain1400 and Rain800 respectively and tested on all the aforementioned
datasets as well as real-world rainy dataset SPA-Data. Our NR performs the best generalization over real-world scene.

model performance. Furthermore, we also provide quali-
tative comparisons about visual effect of image de-raining
results between our Neural Reorganization and baselines.

4.2. Training Details

For fair comparison, all the parameters setting and
training techniques keep consistent as reported in orig-
inal paper. We train the model on the dataset
sequence: Rain100H→Rain800→Rain14000→Rain100L.
Inspired by biological advances [37], we set the value of
the hyper-parameter αl to 0.8%, which is the approximate
proportion of surviving spines in the brain of adult mice
when learning new skills. Besides, τs, τl is set to 1 and 10
respectively, satisfying the condition τl ≫ τs. By Equation
6, the value of αs is 0.5789. The coefficient λ of balancing
the knowledge distillation loss and original training loss is
set to 0.8. Further, all the experiments are implemented on
NVIDIA GTX 1080Ti GPUs.

4.3. Results on Benchmark Datasets

To verify that our Neural Reorganization is able to pro-
mote generalization ability of de-raining network, we con-
duct both qualitative and quantitative experiments on the
above datasets and performance metrics.
Baseline setup. One of the baselines is organized
as sequentially and independently feeding multiple rainy
datasets into the network for training (denoted by SI). In this
setting, due to the catastrophic forgetting, the weights well-
trained on the previous datasets are inevitably covered and
updated by feeding the new rainy dataset, resulting in the

rapid performance degradation on previous datasets. Be-
sides, we also compare our method with the other base-
line that the network is trained on mixed data of multiple
datasets (Rain100H + Rain800 + Rain14000 + Rain100L).
For convenience, we refer this strategy simply as Mix.
Quantitative comparison. Table 1 reports the comparisons
between Neural Reorganization equipped networks and the
corresponding baselines. Obviously, the SI baseline suf-
fers from abrupt performance degradation on Rain100H,
Rain800 and Rain14000 after completing training of the
dataset sequence, which is attributed to catastrophic for-
getting so that it produces worst de-raining results when
countered with real-world rain images from SPA-Data. It
is worth noting that none of images from SPA-Data
(training set or testing set) participates in the network
training. Due to the light rainy images contributing rel-
atively smaller to total loss compared to medium and
heavy rainy images, simply mixing the four datasets will
cause the optimization algorithm to ignore light rain streaks
(Rain100L) and put over-emphasis on medium and heavy
rain streaks. Besides, since individual synthetic dataset
provides an approximation about local distribution of real-
world rain streaks, either such under-fitting or over-fitting
on single synthetic dataset hinders generalization of de-
raining model. The unbalanced allocation, which is deter-
mined by the capacity and rain streak properties of indi-
vidual dataset, results in undesirable performance on real-
world SPA-Data. As shown in Table 1, the de-raining model
equipped our Neural Reorganization scheme achieves rela-
tively homogeneous performance across multiple synthetic
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datasets consistently and gain the state-of-the-art general-
ization ability over real-world dataset SPA-Data.
Qualitative comparison. Figure 4 presents visual com-
parisons of de-raining results on SPA-Data [35] over
PreNet trained by 7 different strategies, which consist
of three aforementioned ones and four individual dataset
training approaches. Since Rain100L and Rain14000 do
not contain heavy rain streaks, PreNet trained on in-
dividual Rain100L or Rain14000 fails to remove rain
streaks clearly (the first and fourth rows in Figure 4).
Similarly, PreNet trained on Rain100H or Rain800 is
able to remove heavy rain-streaks while blurring the im-
ages (the second and third rows in Figure 4). Fur-
thermore, due to the catastrophic forgetting, PreNet
trained on Rain100H→Rain800→Rain14000→Rain100L
sequence and Mix strategy can not remove heavy streaks
(the first and fourth rows in Figure 4), or maintain detailed
background information (the second and third rows in Fig-
ure 4). For PreNet trained with our NR (the last second
row), it can be seen clearly that our NR obtain the most vi-
sually pleasing results. The same effect of our NR can also
be found in Figure 5, which shows de-raining results on the
real-world Real-Internet dataset [35].

4.4. Ablation Studies

De-raining on single synthetic dataset. Taking the
promising PreNet, we perform extensive experiments to re-
veal the fatal shortcomings of existing image de-raining
methods, which mainly focus on design sophisticated net-
work architectures to obtain the-state-of-art image de-
raining performance on single synthetic dataset. Table 2
gives a full description about the performance of PreNet
trained on single synthetic dataset. With the fact that the
highest value of PSNR and SSIM happened on the diagonal
of the Table 2, we conclude that PreNet trained on single
synthetic dataset tends to overfit on the biased distribution
provided by this dataset, rather than acquire more general
image de-raining knowledge. In contrast, PreNet equipped
with our Neural Reorganization scheme can be competent
across multiple synthetic datasets and then achieve state-of-
the-art results on SPA-Data dataset [35].
Effect of each module. The Synaptic Consolidation (SC)
module imitates the synaptic consolidation mechanism in
the biological brains, and the synapses consolidated can
preserve representative rain pattern. The Knowledge Dis-
tillation (KD) module emulates “cautious” learning style in
biological brains, which enables synapses consolidated dur-
ing different training phases to cooperate well. Therefore,
both SC and KD can promote the generalization ability. Be-
low we show the ablation experiments of PreNet with dif-
ferent modules to validate their functions. It is clear that
promotion can be gained with either module and our NR
achieves best performance.

Setting Without Both Without SC Without KD our NR
PSNR 34.91 35.20 35.14 35.60
SSIM 0.951 0.957 0.957 0.959

Table 3: Generalization of PreNet with different setups.

Promoting generalization progressively. We also conduct
experiments to demonstrate that PreNet can promote
its generalization progressively during the training on
sequence Rain100H→Rain800→Rain14000→Rain100L.
Specifically, after one training phase, we evaluate the
model on SPA-Data and the result is reported in Table 4.
Obviously, through sequentially training with NR, model
generalization is promoted progressively.

Training phase Rain100H Rain800 Rain14000 Rain100L
PSNR 34.50 34.75 35.21 35.60
SSIM 0.952 0.957 0.957 0.959

Table 4: Generalization of different training phases.

4.5. Comparison with Transfer Learning Method

In this section, we conduct experimental comparison be-
tween the representative transfer learning method Syn2Real
[43] and our proposed Neural Reorganization. The differ-
ence between the them is whether real-world images are uti-
lized in the training stage. In particular, it should be empha-
sized that one of key advantages of our proposed scheme is
not requiring the expensively and laboriously collected real-
world samples in the training stage. For fairness, we fol-
low the same setting as reported in the original paper [43],
except replacing the labeled synthetic data of Syn2Real
with Rain100H+Rain100L+Rain14000+Rain800 mixed
datasets. And, we train the network with the same data
sequence: Rain100H-Rain100L-Rain14000-Rain800. The
corresponding results are shown in Table 5 on evaluation
over real-world rainy dataset SPA-Data. As can be seen
clearly, our NR can obtain better generalization perfor-
mance than Syn2Real. It further testifies the effectiveness
of our raised scheme.

Method SPA-Data
PSNR SSIM

Syn2Real 32.87 0.954
our NR 32.97 0.956

Table 5: Comparison of quantitative results between our NR
and Syn2Real [43] in terms of PSNR and SSIM.

5. Conclusion
We present a brain-inspired Neural Reorganization

scheme to endow the network with a subtle stability-
plasticity trade-off for improving de-raining generalization.

4993



Figure 4: Visual quality comparisons of rain-streaks removal on rainy images from SPA-Data using de-raining model
PreNet. (a) Input: rainy images from testing set of SPA-Data. (b-e): de-raining results based on PreNet trained on
corresponding individual synthetic dataset. (f) SI: de-raining results using Prenet sequentially and independently trained
on dataset sequence Rain100H-Rain100L-Rain14000-Rain800. (g) Mix: de-raining results using PreNet trained on
Rain100H+Rain100L+Rain14000+Rain800 mixed dataset. (h) Our NR: de-raining results using PreNet trained on the
same sequence as (f) with our Neural Reorganization. (i) GT: the clean image of (a).

Figure 5: Visual quality comparisons of rain-streaks removal on collected real-world rainy images from Internet for de-raining
model PreNet equipped with different strategies.

We only use multiple synthetic datasets during training,
while the performance on real-wolrd rainy images can be
significantly improved. Since our method is orthogonal to
existing de-raining methods, it can be easily inserted into
them to improve their generalization abilities. Through
extensive experiments, we demonstrate that the proposed
method is able to process multiple synthetic datasets con-
sistently and achieve state-of-the-art results over real-world
scene.
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