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Abstract

We present DetCo, a simple yet effective self-supervised
approach for object detection. Unsupervised pre-training
methods have been recently designed for object detection,
but they are usually deficient in image classification, or the
opposite. Unlike them, DetCo transfers well on downstream
instance-level dense prediction tasks, while maintaining
competitive image-level classification accuracy. The advan-
tages are derived from (1) multi-level supervision to inter-
mediate representations, (2) contrastive learning between
global image and local patches. These two designs facil-
itate discriminative and consistent global and local repre-
sentation at each level of feature pyramid, improving detec-
tion and classification, simultaneously.

Extensive experiments on VOC, COCO, Cityscapes, and
ImageNet demonstrate that DetCo not only outperforms re-
cent methods on a series of 2D and 3D instance-level de-
tection tasks, but also competitive on image classification.
For example, on ImageNet classification, DetCo is 6.9%
and 5.0% top-1 accuracy better than InsLoc and DenseCL,
which are two contemporary works designed for object de-
tection. Moreover, on COCO detection, DetCo is 6.9 AP
better than SwAV with Mask R-CNN C4. Notably, DetCo
largely boosts up Sparse R-CNN, a recent strong detector,
from 45.0 AP to 46.5 AP (+1.5 AP), establishing a new
SOTA on COCO.

1. Introduction

Self-supervised learning of visual representation is an es-
sential problem in computer vision, facilitating many down-
stream tasks such as image classification, object detection,
and semantic segmentation [23, 35, 43]. It aims to provide
models pre-trained on large-scale unlabeled data for down-
stream tasks. Previous methods focus on designing different
pretext tasks. One of the most promising directions among
them is contrastive learning [32], which transforms one im-
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Figure 1. Transfer accuracy on Classification and Detection.
DetCo achieves the best performance trade-off on both classifi-
cation and detection. For example, DetCo outperforms its strong
baseline, MoCo v2 [5], by 0.9 AP on COCO detection. Moreover,
DetCo is significant better than recent work e.g. DenseCL [39],
InsLoc [41], PatchReID [8] on ImageNet classification while also
has advantages on object detection. Note that these three meth-
ods are concurrent work and specially designed for object detec-
tion (mark with green). The yellow asterisk indicates that a de-
sired method should have both high performance in detection and
classification.

age into multiple views, minimizes the distance between
views from the same image, and maximizes the distance
between views from different images in a feature map.

In the past two years, some methods based on contrastive
learning and online clustering, e.g. MoCo v1/v2 [19, 5],
BYOL [18], and SwAV [3], have achieved great progress
to bridge the performance gap between unsupervised and
fully-supervised methods for image classification. How-
ever, their transferring ability on object detection is not sat-
isfactory. Concurrent to our work, recently DenseCL [39],
InsLoc [41] and PatchReID [8] also adopt contrastive learn-
ing to design detection-friendly pretext tasks. Nonetheless,
these methods only transfer well on object detection but sac-
rifice image classification performance, as shown in Fig-
ure 1 and Table 1. So, it is challenging to design a pretext
task that can reconcile instance-level detection and image
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Method Place ImageNet Cls. COCO Det. Cityscapes Seg.
Top-1 Top-5 mAP mIoU

MoCo v1[19] CVPR’20 60.6 - 38.5 75.3
MoCo v2[5] Arxiv 67.5 - 38.9 75.7
InstLoc[41] CVPR’21 61.7 - 39.8 -
DenseCL[39] CVPR’21 63.6 85.8 39.3 75.7
PatchReID[8] Arxiv 63.8 85.6 39.6 76.6
DetCo - 68.6 88.5 39.8 76.5

Table 1. Classification and Detection trade-off for recent
detection-friendly self-supervised methods. Compared with
concurrent InstLoc[41], DenseCL[39] and PatchReID[8], DetCo
is significantly better by 6.9%, 5.0% and 4.8% on ImageNet clas-
sification. Moreover, DetCo is also on par with these methods on
dense prediction tasks, achieving best trade-off.

classification.
We hypothesize that there is no unbridgeable gap be-

tween image-level classification and instance-level detec-
tion. Intuitively, image classification recognizes global in-
stance from a single high-level feature map, while object
detection recognizes local instance from multi-level feature
pyramids. From this perspective, it is desirable to build in-
stance representation that are (1) discriminative at each level
of feature pyramid (2) consistent for both global image and
local patch (a.k.a sliding windows). However, existing un-
supervised methods overlook these two aspects. Therefore,
detection and classification cannot mutually improve.

In this work, we present DetCo, which is a contrastive
learning framework beneficial for instance-level detection
tasks while maintaining competitive image classification
transfer accuracy. DetCo contains (1) multi-level supervi-
sion on features from different stages of the backbone net-
work. (2) contrastive learning between global image and
local patches. Specifically, the multi-level supervision di-
rectly optimizes the features from each stage of backbone
network, ensuring strong discrimination in each level of
pyramid features. This supervision leads to better perfor-
mance for dense object detectors by multi-scale prediction.
The global and local contrastive learning guides the network
to learn consistent representation on both image-level and
patch-level, which can not only keep each local patch highly
discriminative but also promote the whole image represen-
tation, benefiting both object detection and image classifi-
cation.

DetCo achieves state-of-the-art transfer performance on
various 2D and 3D instance-level detection tasks e.g. VOC
and COCO object detection, semantic segmentation and
DensePose. Moreover, the performance of DetCo on Im-
ageNet classification and VOC SVM classification is still
very competitive. For example, as shown in Figure 1 and
Table 1, DetCo improves MoCo v2 on both classification
and dense prediction tasks. DetCo is significant better than
DenseCL [39], InsLoc [41] and PatchReID [8] on ImageNet
classification by 6.9%, 5.0% and 4.8% and slightly bet-
ter on object detection and semantic segmentation. Please

note DenseCL, InsLoc and PatchReID are three concur-
rent works which are designed for object detection but sac-
rifice classification. Moreover, DetCo boosts up Sparse
R-CNN [37], which is a recent end-to-end object detec-
tor without q, from a very high baseline 45.0 AP to 46.5
AP (+1.5 AP) on COCO dataset with ResNet-50 backbone,
establishing a new state-of-the-art detection result. In the
3D task, DetCo outperforms ImageNet supervised methods
and MoCo v2 in all metrics on COCO DensePose, espe-
cially +1.4 on AP50.

Overall, the main contributions of this work are three-
fold:

• We introduce a simple yet effective self-supervised
pretext task, named DetCo, which is beneficial for
instance-level detection tasks. DetCo can utilize large-
scale unlabeled data and provide a strong pre-trained
model for various downstream tasks.

• Benefiting from the design of multi-level supervision
and contrastive learning between global images and
local patches, DetCo successfully improves the trans-
ferring ability on object detection without sacrificing
image classification, compared to contemporary self-
supervised counterparts.

• Extensive experiments on PASCAL VOC [15], COCO
[28] and Cityscapes [6] show that DetCo outperforms
previous state-of-the-art methods when transferred to a
series of 2D and 3D instance-level detection tasks, e.g.
object detection, instance segmentation, human pose
estimation, DensePose, as well as semantic segmenta-
tion.

2. Related Work
Existing unsupervised methods for representation learn-

ing can be roughly divided into two classes, generative and
discriminative. Generative methods [11, 14, 12, 2] typically
rely on auto-encoding of images [38, 24, 36] or adversarial
learning [17], and operate directly in pixel space. There-
fore, most of them are computationally expensive, and the
pixel-level details required for image generation may not be
necessary for learning high-level representations.

Among discriminative methods [9, 5], self-supervised
contrastive learning [5, 19, 5, 3, 18] currently achieved
state-of-the-art performance, arousing extensive attention
from researchers. Unlike generative methods, contrastive
learning avoids the computation-consuming generation step
by pulling representations of different views of the same im-
age (i.e., positive pairs) close, and pushing representations
of views from different images (i.e., negative pairs) apart.
Chen et al. [5] developed a simple framework, termed Sim-
CLR, for contrastive learning of visual representations. It
learns features by contrasting images after a composition
of data augmentations. After that, He et al. [19] and Chen
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Figure 2. The overall pipeline of DetCo compared with MoCo [19]. (a) is MoCo’s framework, which only considers the single high-
level feature and learning contrast from a global perspective. (b) is our DetCo, which learns representation with multi-level supervision
and adds two additional local patch sets for input, building contrastive loss cross the global and local views. Note that “T ” means image
transforms. “Queueg/l” means different memory banks [40] for global/local features.

et al. [5] proposed MoCo and MoCo v2, using a moving
average network (momentum encoder) to maintain consis-
tent representations of negative pairs drawn from a mem-
ory bank. Recently, SwAV [3] introduced online clustering
into contrastive learning, without requiring to compute pair-
wise comparisons. BYOL [18] avoided the use of negative
pairs by bootstrapping the outputs of a network iteratively
to serve as targets for an enhanced representation.

Moreover, earlier methods rely on all sorts of pretext
tasks to learn visual representations. Relative patch pre-
diction [9, 10], colorizing gray-scale images [42, 25], im-
age inpainting [33], image jigsaw puzzle [31], image super-
resolution [26], and geometric transformations [13, 16]
have been proved to be useful for representation learning.

Nonetheless, most of the aforementioned methods are
specifically designed for image classification while neglect-
ing object detection. Concurrent to our work, recently
DenseCL [39], InsLoc [41] and PatchReID [8] design pre-
text tasks for object detection. However, their transferring
performance is poor on image classification. Our work fo-
cuses on designing a better pretext task which is not only
beneficial for instance-level detection, but also maintains
strong representation for image classification.

3. Methods

In this section, we first briefly introduce the overall archi-
tecture of the proposed DetCo showed in Figure 2. Then, we
present the design of multi-level supervision that keeps fea-
tures at multiple stages discriminative. Next, we introduce
global and local contrastive learning to enhance global and
local representation. Finally, we provide the implementa-
tion details of DetCo.

3.1. DetCo Framework

DetCo is a simple pipeline designed mainly based on a
strong baseline MoCo v2. It composes of a backbone net-
work, a series of MLP heads and memory banks. The set-
ting of MLP head and memory banks are same as MoCo
v2 for simplicity. The overall architecture of DetCo is illus-
trated in Figure 2.

Specifically, DetCo has two simple and effective designs
which are different from MoCo v2. (1) multi-level supervi-
sion to keep features at multiple stages discriminative. (2)
global and local contrastive learning to enhance both global
and local feature representation.The above two different de-
signs make DetCo not only successfully inherit the advan-
tages of MoCo v2 on image classification but also transfer-
ring much stronger on instance-level detection tasks.

The complete loss function of DetCo can be defined as
follows:

L(Iq, Ik,Pq,Pk) =

4∑
i=1

wi·(Li
g↔g + Li

l↔l + Li
g↔l), (1)

where I represents a global image and P represents the
local patch set. Eqn. 1 is a multi-stage contrastive loss.
In each stage, there are three cross local and global con-
trastive losses. We will describe the multi-level supervision∑4

i=1 wi·Li in Section 3.2, the global and local contrastive
learning Li

g↔g + Li
l↔l + Li

g↔l in Section 3.3.

3.2. Multi-level Supervision

Modern object detectors predict objects in different lev-
els, e.g. RetinaNet and Faster R-CNN FPN. They require
the features at each level to keep strong discrimination. To
meet the above requirement, we make a simple yet effective
modification to the original MoCo baseline.
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Specifically, we feed one image to a standard backbone
ResNet-50, and it outputs features from different stages,
termed Res2, Res3, Res4, Res5. Unlike MoCo
that only uses Res5, we utilize all levels of features to
calculate contrastive losses, ensuring that each stage of the
backbone produces discriminative representations.

Given an image I ∈ RH×W×3, it is first transformed
to two views of the image Iq and Ik with two transfor-
mations randomly drawn from a set of transformations on
global views, termed Tg . We aim at training an encoderq
together with an encoderk with the same architecture,
where encoderk update weights using a momentum up-
date strategy [19]. The encoderq contains a backbone and
four global MLP heads to extract features from four lev-
els. We feed Iq to the backbone bθq(·), with parameters
θ that extracts features {f2, f3, f4, f5} = bθq(Iq), where
fi means the feature from the i-th stage. After obtain-
ing the multi-level features, we append four global MLP
heads {mlp2q(·),mlp3q(·),mlp4q(·),mlp5q(·)} whose weights
are non-shared. As a result, we obtain four global represen-
tations {qg2 , q

g
3 , q

g
4 , q

g
5} = encoderq(Iq). Likewise, we can

easily get {kg2 , k
g
3 , k

g
4 , k

g
5} = encoderk(Ik).

MoCo uses InfoNCE to calculate contrasitive loss, for-
mulated as:

Lg↔g(Iq, Ik) = − log
exp(qg·kg+/τ)∑K
i=0 exp(q

g·kgi /τ)
, (2)

where τ is a temperature hyper-parameter [40]. We extend
it to multi-level contrastive losses for multi-stage features,
formulated as:

Loss =

4∑
i=1

wi·Li
g↔g, (3)

where w is the loss weight, and i indicates the current stage.
Inspired by the loss weight setting in PSPNet [43], we set
the loss weight of shallow layers to be smaller than deep
layers. In addition, we build an individual memory bank
queuei for each layer. In the appendix, we provide the
pseudo-code of intermediate contrastive loss.

3.3. Global and Local Contrastive Learning

Modern object detectors repurpose classifiers on local re-
gions (a.k.a sliding windows) to perform detection. So, it
requires each local region to be discriminative for instance
classification. To meet the above requirement, we develop
global and local contrastive learning to keep consistent in-
stance representation on both patch set and the whole im-
age. This strategy takes advantage of image-level represen-
tation to enhance instance-level representation, vice versa.

In detail, we first transform the input image into 9 local
patches using jigsaw augmentation, the augmentation de-
tails are shown in section 3.4. These patches pass through

the encoder, and then we can get 9 local feature representa-
tion. After that, we combine these features into one feature
representation by a MLP head, and build a cross global-and-
local contrastive learning.

Given an image I ∈ RH×W×3, first it is transformed
into two local patch set Pq and Pk by two transforma-
tions selected from a local transformation set, termed Tl.
There are 9 patches {p1, p2, ..., p9} in each local patch set.
We feed the local patch set to backbone and get 9 features
Fp = {fp1, fp2, ..., fp9} at each stage. Taking a stage as an
example, we build a MLP head for local patch, denoted as
mlplocal(·), which does not share weights with mlpglobal(·)
in section 3.2. Then, Fp is concatenated and fed to the local
patch MLP head to get final representation ql. Likewise, we
can use the same approach to get kl.

The contrastive cross loss has two parts: the
global↔local contrastive loss and the local↔local con-
trastive loss. The global↔local contrastive loss can be writ-
ten as:

Lg↔l(Pq, Ik) = − log
exp(ql·kg+/τ)∑K
i=0 exp(q

l·kgi /τ)
. (4)

Similarly, the local↔local contrastive loss can be formu-
lated as:

Ll↔l(Pq,Pk) = − log
exp(ql·kl+/τ)∑K
i=0 exp(q

l·kli/τ)
. (5)

By learning representations between global image and lo-
cal patches, the instance discrimination of image-level and
instance-level are mutually improved. As a result, both the
detection and classification performance boost up.

3.4. Implementation Details

We use OpenSelfSup 1 as the codebase. We use a batch
size of 256 with 8 Tesla V100 GPUs per experiment. We
follow the most hyper-parameters settings of MoCo v2.
For data augmentation, the global view augmentation is al-
most the same as MoCo v2 [5] with random crop and re-
sized to 224 × 224 with a random horizontal flip, gaussian
blur and color jittering related to brightness, contrast, sat-
uration, hue and grayscale. Rand-Augmentation[7] is also
used on global view. The local patch augmentation follows
PIRL [30]. First, a random region is cropped with at least
60% of the image and resized to 255×255, followed by ran-
dom flip, color jitter and blur, sharing the same parameters
with global augmentation. Then we divide the image into
3×3 grids and randomly shuffle them; each grid is 85×85.
A random crop is applied on each patch to get 64 × 64 to
avoid continuity between patches. Finally, we obtain nine
randomly shuffled patches. For a fair comparison, we use
standard ResNet-50 [23] for all experiments. Unless other

1https://github.com/open-mmlab/OpenSelfSup
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specified, we pre-train 200 epochs on ImageNet for a fair
comparison.

4. Experiments
We evaluate DetCo on a series of 2D and 3D dense predic-
tion tasks, e.g. PASCAL VOC detection, COCO detection,
instance segmentation, 2D pose estimation, DensePose and
Cityscapes instance and semantic segmentation. We see that
DetCo outperforms existing self-supervised and supervised
methods.

4.1. Object Detection

Experimental Setup. We choose three representative de-
tectors: Faster R-CNN [35], Mask R-CNN [22] Reti-
naNet [27], and a recent strong detector: Sparse R-
CNN [37]. Mask R-CNN is two-stage and RetinaNet is
one stage detector. Sparse R-CNN is an end-to-end detector
without NMS, and it is also state-of-the-art with high mAP
on COCO. Our training settings are the same as MoCo [19]
for a fair comparison, including using “SyncBN” [34] in
backbone and FPN.
PASCAL VOC. As shown in Table 9 and Figure 3, MoCo
v2 is a strong baseline, which has already surpassed other
unsupervised learning methods in VOC detection. How-
ever, our DetCo consistently outperforms the MoCo v2 at
200 epochs and 800 epochs. More importantly, with only
100 epoch pre-training, DetCo achieves almost the same
performance as MoCo v2-800ep (800 epoch pre-training).
Finally, DetCo-800ep establishes the new state-of-the-art,
58.2 in mAP and 65.0 in AP75, which brings 4.7 and 6.2 im-
provements in AP and AP75 respectively, compared with su-
pervised counterpart. The improvements on the more strin-
gent AP75 are much larger than the AP, indicating that the
intermediate and patch contrasts are beneficial to the local-
ization.
COCO with 1× and 2× Schedule. Table 3 shows the
Mask RCNN [22] results on 1× schedule, DetCo outper-
forms MoCo v2 baseline by 0.9 and 1.2 AP for R50-C4 and
R50-FPN backbones. It also outperforms the supervised
counterpart by 1.6 and 1.2 AP for R50-C4 and R50-FPN
respectively. The results of 2× schedule is in Appendix.
The column 2-3 of Table 7 shows the results of one stage
detector RetinaNet. DetCo pretrain is 1.0 and 1.2 AP better
than supervised methods and MoCo v2. DetCo is also 1.3
higher than MoCov2 on AP50 with 1× schedule.

COCO with Few Training Iterations. COCO is much
larger than PASCAL VOC in the data scale. Even train-
ing from scratch [20] can get a satisfactory result. To verify
the effectiveness of unsupervised pre-training, we conduct
experiments on extremely stringent conditions: only train
detectors with 12k iterations(≈ 1/7× vs. 90k-1× schedule).
The 12k iterations make detectors heavily under-trained and

50

52

54

55

55.5

56

56.5

57

57.5

58

58.5

0 100 200 300 400 500 600 700 800

m
AP

on
PA
SC
AL

VO
C
07
+1
2(
%
)

Training Epoch

DetCo-100ep

MoCov2-200ep

MoCo-200ep

Supervised-90ep

BYOL-200ep

SimCLR-200ep
SwAV-800ep

DetCo-50ep

MoCov2-100ep

MoCov2-50ep

DetCo-200ep
DetCo-400ep

DetCo-800ep

MoCov2-400ep
MoCov2-800ep

PIRL-200ep

Figure 3. Comparisons of mAP on PASCAL VOC 07+12 object
detection. For different pre-training epoches, we see that DetCo
consistently outperforms MoCo v2[5], which is a strong competi-
tor on VOC compared to other methods. For example, DetCo-
100ep already achieves similar mAP compared to MoCov2-800ep.
Moreover, DetCo-800ep achieves state-of-the-art and outperforms
other counterparts.

far from converge, as shown in Table 2 and Table 7 column
1. Under this setting, for Mask RCNN-C4, DetCo exceeds
MoCo v2 by 3.8 AP in APbb

50 and outperforms supervised
methods in all metrics, which indicates DetCo can signif-
icantly fasten the training convergence. For Mask RCNN-
FPN and RetinaNet, DetCo also has significant advantages
over MoCo v2 and supervised counterpart.

COCO with Semi-Supervised Learning. Transferring to
a small dataset has more practical value. As indicated in
the [21], when only use 1% data of COCO, the train from
scratch’s performance can not catch up in mAP with ones
that have pre-trained initialization. To verify the effective-
ness of self-supervised learning on a small-scale dataset, we
randomly sample 1%, 2%, 5%, 10% data to fine-tune the
RetinaNet. For all the settings, we fine-tune the detectors
with 12k iterations to avoid overfitting. Other settings are
the same as COCO 1× and 2× schedule.

The results for RetinaNet with 1%, 2%, 5%, 10% are
shown in Table 8. We find that in four semi-supervised set-
tings, DetCo significantly surpasses the supervised coun-
terpart and MoCo v2 strong baseline. For instance, DetCo
outperforms the supervised method by 2.3 AP and MoCo
v2 by 1.9 AP when using 10% data. These results show
that the DetCo pre-trained model is also beneficial for semi-
supervised object detection. More results for Mask R-CNN
with 1%, 2%, 5%, and 10% data are in the appendix.

DetCo + Recent Advanced Detector. In table 4, we find
that DetCo can improve Sparse R-CNN[37] with 1.5 mAP
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Method Mask R-CNN R50-C4 COCO 12k Mask R-CNN R50-FPN COCO 12k
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 7.9 16.4 6.9 7.6 14.8 7.2 10.7 20.7 9.9 10.3 19.3 9.6
Supervised 27.1 46.8 27.6 24.7 43.6 25.3 28.4 48.3 29.5 26.4 45.2 25.7
InsDis[40] 25.8(-1.3) 43.2(-3.6) 27.0(-0.6) 23.7(-1.0) 40.4(-3.2) 24.5(-0.8) 24.2(-4.2) 41.5(-6.8) 25.1(-4.4) 22.8(-3.6) 38.9(-6.3) 23.7(-2.0)
PIRL[30] 25.5(-1.6) 42.6(-4.2) 26.8(-0.8) 23.2(-1.5) 39.9(-3.7) 23.9(-1.4) 23.7(-4.7) 40.4(-7.9) 24.4(-5.1) 22.1(-4.3) 37.9(-7.3) 22.7(-3.0)
SwAV[3] 16.5(-10.6) 35.2(-11.6) 13.5(-14.1) 16.1(-8.6) 32.0(-11.6) 14.6(-10.7) 25.5(-2.9) 46.2(-2.1) 25.4(-4.1) 24.8(-1.6) 43.5(-1.7) 25.3(-0.4)
MoCo[19] 26.9(-0.2) 44.5(-2.3) 28.2(+0.6) 24.6(-0.1) 41.8(-1.8) 25.6(+0.3) 25.6(-2.8) 43.4(-4.9) 26.6(-2.9) 23.9(-2.5) 40.8(-4.4) 24.8(-0.9)
MoCov2[5] 27.6(+0.5) 45.3(-1.5) 28.9(+1.3) 25.1(+0.4) 42.6(-1.0) 26.3(+1.0) 26.6(-1.8) 44.9(-3.4) 27.7(-1.8) 24.8(-1.6) 42.1(-3.1) 25.7(0.0)
DetCo 29.8(+2.7) 49.1(+2.3) 31.4(+3.8) 26.9(+2.2) 46.0(+2.4) 27.9(+2.6) 29.6(+1.2) 49.4(+1.1) 31.0(+1.5) 27.6(+1.2) 46.6(+1.4) 28.7(+3.0)

Table 2. Object detection and instance segmentation fine-tuned on COCO. All methods are pretrained 200 epochs on ImageNet.
Green means increase and gray means decrease. DetCo outperforms all supervised and unsupervised counterparts.

Method Mask R-CNN R50-C4 COCO 90k Mask R-CNN R50-FPN COCO 90k
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 26.4 44.0 27.8 29.3 46.9 30.8 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 38.2 58.2 41.2 33.3 54.7 35.2 38.9 59.6 42.7 35.4 56.5 38.1
InsDis[40] 37.7(-0.5) 57.0(-1.2) 40.9(-0.3) 33.0(-0.3) 54.1(-0.6) 35.2(0.0) 37.4(-1.5) 57.6(-2.0) 40.6(-2.1) 34.1(-1.3) 54.6(-1.9) 36.4(-1.7)
PIRL[30] 37.4(-0.8) 56.5(-1.7) 40.2(-1.0) 32.7(-0.6) 53.4(-1.3) 34.7(-0.5) 37.5(-1.4) 57.6(-2.0) 41.0(-1.7) 34.0(-1.4) 54.6(-1.9) 36.2(-1.9)
SwAV[3] 32.9(-5.3) 54.3(-3.9) 34.5(-6.7) 29.5(-3.8) 50.4(-4.3) 30.4(-4.8) 38.5(-0.4) 60.4(+0.8) 41.4(-1.3) 35.4(0.0) 57.0(+0.5) 37.7(-0.4)
MoCo[19] 38.5(+0.3) 58.3(+0.1) 41.6(+0.4) 33.6(+0.3) 54.8(+0.1) 35.6(+0.4) 38.5(-0.4) 58.9(-0.7) 42.0(-0.7) 35.1(-0.3) 55.9(-0.6) 37.7(-0.4)
MoCov2[5] 38.9(+0.7) 58.4(+0.2) 42.0(+0.8) 34.2(+0.9) 55.2(+0.5) 36.5(+1.3) 38.9(0.0) 59.4(-0.2) 42.4(-0.3) 35.5(+0.1) 56.5(0.0) 38.1(0.0)
DetCo 39.8(+1.6) 59.7(+1.5) 43.0(+1.8) 34.7(+1.4) 56.3(+1.6) 36.7(+1.5) 40.1(+1.2) 61.0(+1.4) 43.9(+1.2) 36.4(+1.0) 58.0(+1.5) 38.9(+0.8)

Table 3. Object detection and instance segmentation fine-tuned on COCO. All methods are pretrained 200 epochs on ImageNet.
DetCo outperforms all supervised and unsupervised counterparts.

AP AP50 AP75 APs APm APl

Supervised 45.0 64.1 49.0 27.7 47.5 59.6
DetCo 46.5 65.7 50.8 30.8 49.5 59.7

Table 4. DetCo vs. Supervised pre-train on Sparse R-CNN.
DetCo largely improves 1.5 mAP and 3.1 APs.

Method Epoch APdp APdp
50 APdp

75

Rand Init - 40.8 78.6 37.3
Supervised 90 50.8 86.3 52.6
MoCo [19] 200 49.6(-1.2) 85.9(-0.4) 50.5(-2.1)
MoCo v2 [5] 200 50.9(+0.1) 87.2(+0.9) 52.9(+0.3)
DetCo 200 51.3(+0.5) 87.7(+1.4) 53.3(+0.7)

Table 5. DetCo vs. other methods on Dense Pose task. It also
performs best on monocular 3D human shape prediction.

and 3.1 APs. Sparse R-CNN is a recent strong end-to-
end detector with high performance, and DetCo can further
largely boost up Sparse R-CNN’s performance and achieved
the new state of the arts on COCO with 46.5 AP.

DetCo vs. Concurrent SSL Methods. InsLoc[41],
DenseCL[39] and PatchReID[8] are recent works designed
for object detection. They improved the performance of ob-
ject detection but largely sacrifice the performance of image
classification. As shown in Table 1, DetCo has significant
advantages than InsLoc, DenseCL and PatchReID on Ima-
geNet classification by +6.9%, +5.0% and +4.8%. More-
over, on COCO detection, DetCo is also better than these
methods.

Discussions. We compared the performance when trans-
ferred to object detection at different dataset scales and fine-
tuning iterations. First, DetCo largely boosts up the per-
formance of the supervised method on small datasets (e.g.

Methods Instance Seg. Semantic Seg.
APmk APmk

50 mIOU
Rand Init 25.4 51.1 65.3
supervised 32.9 59.6 74.6
InsDis [40] 33.0 (+0.1) 60.1 (+0.5) 73.3 (-1.3)
PIRL [30] 33.9 (+1.0) 61.7 (+2.1) 74.6 (0.0)
SwAV [3] 33.9 (+1.0) 62.4 (+2.8) 73.0 (-1.6)
MoCo [19] 32.3 (-0.6) 59.3 (-0.3) 75.3 (+0.7)
MoCov2 [5] 33.9 (+1.0) 60.8 (+1.2) 75.7 (+1.1)
DetCo 34.7 (+1.8) 63.2 (+3.6) 76.5 (+1.9)

Table 6. DetCo vs. supervised and other unsupervised methods
on Cityscapes dataset. All methods are pretrained 200 epochs
on ImageNet. We evaluate instance segmentation and semantic
segmentation tasks.

PASCAL VOC). Second, DetCo also has large advantages
with COCO 12k iterations. It indicates that DetCo can
fasten training converge compared with other unsupervised
and supervised methods. Third, even with enough data (e.g.
COCO), Detco still significantly improves the performance
compared to other unsupervised and supervised counter-
parts. Finally, DetCo is friendly for detection tasks while
it does not sacrifice the classification compared with con-
current SSL methods.

4.2. Segmentation and Pose Estimation

Multi-Person Pose Estimation. The last column of Ta-
ble 7 shows the results of COCO keypoint detection results
using Mask RCNN. DetCo also surpasses other methods in
all metrics, e.g. 1.4 APkp and 1.5 APkp

75 higher than super-
vised counterpart.
Segmentation on Cityscapes. Cityscapes is a dataset for
autonomous driving in the urban street. We follow MoCo
to evaluate on instance segmentation with Mask RCNN and
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Method RetinaNet R50 12k RetinaNet R50 90k RetinaNet R50 180k Keypoint RCNN R50 180k
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 APkp APkp

50 APkp
75

Rand Init 4.0 7.9 3.5 24.5 39.0 25.7 32.2 49.4 34.2 65.9 86.5 71.7
Supervised 24.3 40.7 25.1 37.4 56.5 39.7 38.9 58.5 41.5 65.8 86.9 71.9
InsDis[40] 19.0(-5.3) 32.0(-8.7) 19.6(-5.5) 35.5(-1.9) 54.1(-2.4) 38.2(-1.5) 38.0(-0.9) 57.4(-1.1) 40.5(-1.0) 66.5(+0.7) 87.1(+0.2) 72.6(+0.7)
PIRL[30] 19.0(-5.3) 31.7(-9.0) 19.8(-5.3) 35.7(-1.7) 54.2(-2.3) 38.4(-1.3) 38.5(-0.4) 57.6(-0.9) 41.2(-0.3) 66.5(+0.7) 87.5(+0.6) 72.1(+0.2)
SwAV[3] 19.7(-4.6) 34.7(-6.0) 19.5(-5.6) 35.2(-2.2) 54.9(-1.6) 37.5(-2.2) 38.6(-0.3) 58.8(+0.3) 41.1(-0.4) 66.0(+0.2) 86.9(0.0) 71.5(-0.4)
MoCo[19] 20.2(-4.1) 33.9(-6.8) 20.8(-4.3) 36.3(-1.1) 55.0(-1.5) 39.0(-0.7) 38.7(-0.2) 57.9(-0.6) 41.5(0.0) 66.8(+1.0) 87.4(+0.5) 72.5(+0.6)
MoCov2[5] 22.2(-2.1) 36.9(-3.8) 23.0(-2.1) 37.2(-0.2) 56.2(-0.3) 39.6(-0.1) 39.3(+0.4) 58.9(+0.4) 42.1(+0.6) 66.8(+1.0) 87.3(+0.4) 73.1(+1.2)
DetCo 25.3(+1.0) 41.6(+0.9) 26.5(+1.4) 38.4(+1.0) 57.8(+1.3) 41.2(+1.5) 39.7(+0.8) 59.3(+0.8) 42.6(+1.1) 67.2(+1.4) 87.5(+0.6) 73.4(+1.5)

Table 7. One-stage object detection and keypoint detection fine-tuned on COCO. All methods are pretrained 200 epochs on ImageNet.
DetCo outperforms all supervised and unsupervised counterparts.

Method RetinaNet R50 COCO 1% Data RetinaNet R50 COCO 2% Data RetinaNet R50 COCO 5% Data RetinaNet R50 COCO 10% Data
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Rand Init 1.4 3.5 1.0 2.5 5.6 2.0 3.6 7.4 3.0 3.7 7.5 3.2
Supervised 8.2 16.2 7.2 11.2 21.7 10.3 16.5 30.3 15.9 19.6 34.5 19.7
MoCo[19] 7.0(-1.2) 13.5(-2.7) 6.5(-0.7) 10.3(-0.9) 19.2(-2.5) 9.7(-0.6) 15.0(-1.5) 27.0(-3.3) 14.9(-1.0) 18.2(-1.4) 31.6(-2.9) 18.4(-1.3)
MoCo v2[5] 8.4(+0.2) 15.8(-0.4) 8.0(+0.8) 12.0(+0.8) 21.8(+0.1) 11.5(+1.2) 16.8(+0.3) 29.6(-0.7) 16.8(+0.9) 20.0(+0.4) 34.3(-0.2) 20.2(+0.5)
DetCo 9.9(+1.7) 19.3(+3.1) 9.1(+1.9) 13.5(+2.3) 25.1(+3.4) 12.7(+2.4) 18.7(+2.2) 32.9(+2.6) 18.7(+2.8) 21.9(+2.3) 37.6(+3.1) 22.3(+2.6)

Table 8. Semi-Supervised one-stage detection fine-tuned on COCO 1%, 2%, 5% and 10% data. All methods are pretrained 200
epochs on ImageNet. DetCo is significant better than supervised / unsupervised counterparts in all metrics.

Method Epoch AP AP50 AP75

Rand Init - 33.8 60.2 33.1
Supervised 90 53.5 81.3 58.8
InsDis [40] 200 55.2(+1.7) 80.9(-0.4) 61.2(+2.4)
PIRL [30] 200 55.5(+2.0) 81.0(-0.3) 61.3(+2.5)
SwAV [3] 800 56.1(+2.6) 82.6(+1.3) 62.7(+3.9)
MoCo [19] 200 55.9(+2.4) 81.5(+0.2) 62.6(+3.8)
MoCov2 [5] 200 57.0(+3.5) 82.4(+1.1) 63.6(+4.8)
MoCov2 [5] 800 57.4(+3.9) 82.5(+1.2) 64.0(+5.2)
DetCo 100 57.4(+3.9) 82.5(+1.2) 63.9(+5.1)

200 57.8(+4.3) 82.6(+1.3) 64.2(+5.4)
800 58.2(+4.7) 82.7(+1.4) 65.0(+6.2)

Table 9. Object Detection finetuned on PASCAL VOC07+12
using Faster RCNN-C4. DetCo-100ep is on par with previous
state-of-the-art, and DetCo-800ep achieves the best performance.

semantic segmentation with FCN-16s [29]. The results are
shown in Table 6.

Although its domain is totally different from COCO,
DetCo pre-training can still significantly improve the trans-
fer performance. On instance segmentation, DetCo outper-
forms supervised counterpart and MoCo v2 by 3.6 and 2.4
on APmk

50 . On semantic segmentation, DetCo is also 1.9%
and 0.8% higher than supervised method and MoCo v2.

DensePose. Estimating 3D shape from a single 2D im-
age is challenging. It can serve as a good testbed for
self-supervised learning methods, so we evaluate DetCo on
COCO DensePose [1] task and find DetCo also transfer well
on this task. As shown in Table 5, DetCo significantly out-
performs ImageNet supervised method and MoCo v2 in all
metrics, especially +1.4 on AP50.

Method Epoch ImageNet VOC07
Top1 Top5 Acc

Jigsaw [31] - 44.6 - 64.5
Rotation [16] - 55.4 - 63.9
InsDis [40] 200 56.5 - 76.6
LocalAgg [44] 200 58.8 - -
PIRL [30] 800 63.6 - 81.1
SimCLR [4] 1000 69.3 89.0 -
BYOL [18] 1000 74.3 91.6 -
SwAV [3] 200 72.7 - 87.6
MoCo [19] 200 60.6 - 79.2
MoCov2 [5] 200 67.5 - 84.1
DetCo 200 68.6 88.5 85.1

Table 10. Comparison of ImageNet Linear Classification and
VOC SVM Classification. Although DetCo is designed for de-
tection, it is also robust and competitive on classification task, and
it substantially exceeds MoCov2 baseline by 1.1%.

4.3. Image Classification

We follow the standard settings: ImageNet linear classi-
fication and VOC SVM classification. For ImageNet linear
classification, the training epoch is 100, and the learning
rate is 30, the same as MoCo. Our DetCo also outperforms
its strong baseline MoCo v2 by +1.1% in Top-1 Accuracy
as shown in Table 10. It is also competitive on VOC SVM
classification accuracy compared with state-of-the-art coun-
terparts.
Discussion. While DetCo is designed for object Detec-
tion, its classification accuracy is still competitive. On Ima-
geNet classification, DetCo largely outperforms concurrent
DenseCL [39], PatchReID [8] and InstLoc [41], even sur-
passes the MoCo v2 baseline [5] by 1.1%. Although in-
ferior to strongest classification method, SwAV, DetCo ex-
hibits better detection accuracy. Overall, DetCo achieves
best classification-detection trade-off.
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Image DetCo MoCo v2

Figure 4. Attention maps generated by DetCo and MoCov2 [5].
DetCo can activate more accurate object regions in the heatmap
than MoCov2. More visualization results are in Appendix.

4.4. Visualization Results

Figure 4 visualizes the attention map of DetCo and
MoCo v2. We can see when there is more than one object in
the image, DetCo successfully locates all the objects, while
MoCo v2 fails to activate some objects. Moreover, in the
last column, the attention map of DetCo is more accurate
than MoCo v2 on the boundary. It reflects from the side that
the localization capability of DetCo is stronger than MoCo
v2, which is beneficial for object detection. More analysis,
implementation details and visualization results are shown
in Appendix.

4.5. Ablation Study

Experiment Settings. We conduct all the controlled ex-
periments by training 100 epochs. We adopt MoCo v2 as
our strong baseline. More ablation studies about hyper-
parameters are shown in Appendix. In table 11 and 12,
“MLS” means Multi-Level Supervision, and “GLC” means
Global and Local Contrastive learning.

Effectiveness of Multi-level Supervision. As shown in
Table 11 (a) and (b), when only adding the multi-level su-
pervision on MoCo v2, the classification accuracy drop but
detection performance increase. This is reasonable and ex-
pectable because for image classification, it is not necessary
for each layer to remain discriminative, and only the final
layer feature should be discriminative. However, keeping
multiple level features discriminative is essential for object
detection because modern detectors predict boxes in fea-
ture pyramids. We find that intermediate supervision will
slightly decrease the final layer feature’s representation and

+MLS +GLC Top1 Top5 mAP
(a) × × 64.3 85.6 56.3
(b) ✓ × 63.2 ↓↓↓ 84.9 ↓↓↓ 57.0 ↑↑↑
(c) × ✓ 67.1 ↑↑↑ 87.5 ↑↑↑ 56.8 ↑↑↑
(d) ✓ ✓ 66.6 ↑↑↑ 87.2 ↑↑↑ 57.4 ↑↑↑

Table 11. Ablation: multi-level supervision (MLS) and global
and local contrastive learning (GLC). The results are evaluated
on ImageNet linear classification and PASCAL VOC07+12 detec-
tion.

+MLS +GLC Res2 Res3 Res4 Res5
(a) × × 47.1 58.2 70.9 82.1
(b) ✓ × 50.9 ↑↑↑ 67.1 ↑↑↑ 78.7 ↑↑↑ 81.8 ↓↓↓
(c) × ✓ 47.8 ↑↑↑ 59.8 ↑↑↑ 75.0 ↑↑↑ 84.6 ↑↑↑
(d) ✓ ✓ 51.6 ↑↑↑ 69.7 ↑↑↑ 82.5 ↑↑↑ 84.3 ↑↑↑

Table 12. Ablation: multi-level supervision (MLS) and global
and local contrastive learning (GLC). Accuracy of feature in
different stages are evaluated by PASCAL VOC07 SVM classi-
fication.

improve the shallow layer features’ representation, which is
beneficial to object detection.

We also evaluate the VOC SVM classification accuracy
at four stages: Res2, Res3, Res4, Res5 to demonstrate the
enhancement of the intermediate feature. As shown in Ta-
ble 12 (a) and (b), the discrimination ability of shallow fea-
tures vastly improves compared with baseline.

Effectiveness of Global and Local Contrastive Learning.
As shown in Table 11 (a) and (c), when only adding global
and local contrastive learning, the performance of both clas-
sification and detection boosts up and surpasses MoCo v2
baseline. Moreover, as shown in Table 11 (d), GLC can fur-
ther improve the detection accuracy as well as the classifica-
tion accuracy. This improvement mainly benefits from the
GLC successfully make network learn the image-level and
patch-level representation, which is beneficial for object de-
tection and image classification. From table 12 (a), (c) and
(d), the GLC can also improve the discrimination of differ-
ent stages.

5. Conclusion and Future work

This work presents DetCo, a simple yet effective pre-
text task that can utilize large-scale unlabeled data to pro-
vide a pre-train model for various downstream tasks. It
demonstrates state-of-the-art transfer performance on vari-
ous instance-level detection tasks, e.g. VOC and COCO de-
tection as well as semantic segmentation, while maintaining
the competitive performance on image classification. We
hope DetCo can serve as an alternative and useful pre-train
model for dense predictions and faciltate future research.
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