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Abstract

Few-shot semantic segmentation (FSS) is an important
task for novel (unseen) object segmentation under the data-
scarcity scenario. However, most FSS methods rely on uni-
directional feature aggregation, e.g., from support proto-
types to get the query prediction, and from high-resolution
features to guide the low-resolution ones. This usually fails
to fully capture the cross-resolution feature relationships
and thus leads to inaccurate estimates of the query objects.
To resolve the above dilemma, we propose a cyclic memory
network (CMN) to directly learn to read abundant support
information from all resolution features in a cyclic manner.
Specifically, we first generate N pairs (key and value) of
multi-resolution query features guided by the support fea-
ture and its mask. Next, we circularly take one pair of these
features as the query to be segmented, and the rest N-1 pairs
are written into an external memory accordingly, i.e., this
leave-one-out process is conducted for N times. In each cy-
cle, the query feature is updated by collaboratively match-
ing its key and value with the memory, which can elegantly
cover all the spatial locations from different resolutions.
Furthermore, we incorporate the query feature re-adding
and the query feature recursive updating mechanisms into
the memory reading operation. CMN, equipped with these
merits, can thus capture cross-resolution relationships and
better handle the object appearance and scale variations in
FSS. Experiments on PASCAL-5i and COCO-20i well vali-
date the effectiveness of our model for FSS.

1. Introduction

Training high performance semantic segmentation mod-
els [1, 3, 18, 24, 42], based on convolutional neural net-
works [12, 27, 38, 47], typically requires large amounts of
human-annotated training data, e.g., pixel-level annotations
are essential for training a desirable segmentation model.
However, data annotating by humans is usually costly and
labor-intensive. Moreover, these models, almost always,
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Figure 1. Illustrations of existing FSS models and our CMN.
(a) Existing FSS methods usually rely on unidirectional feature
aggregation, e.g., utilizing the support prototypes to get the query
prediction or leveraging the high-resolution features to guide the
low-resolution ones. However, some car regions are wrongly pre-
dicted as airplane, which is due to the large object variations in the
support and query images (the airplanes have different scales and
appearance colors). In this case, these unidirectional methods fail
to capture and overcome the object variations. (b) CMN predicts
the airplane in the query image pretty well, which benefits from
our cyclic memory reading on the multi-resolution features.

fail to segment novel (unseen) objects, when given very
few (one) training images (image) with annotations. To
this end, as in conventional zero- and few-shot classification
models [28, 36, 37] that aim to mitigate data annotation and
novel object recognition issues in the high-level semantic
category space, few-shot semantic segmentation (FSS) [25]
has become an active research topic for alleviating these is-
sues in the low-level image pixel space, under the object
segmentation scenario.

FSS leverages scarce support images with ground-truth
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masks – i.e., labeled support set – to segment unseen objects
from a query image, where the focused objects share a com-
mon class for both the support and query images. Besides
the support images, a large-scale training set (base data)
having disjoint classes with the support set is provided for
learning transferable knowledge from the seen to the un-
seen domains. Typically, meta-training [28] is performed
on this base data by episode sampling. Here, the constitu-
tion of each episode is the same as meta-testing scenario,
i.e., a support image set and a query image set. As such,
these support images are used as guidance information for
the foreground prediction of the query image.

Extensive progresses have been achieved in FSS [7, 21,
26, 32], and most of them utilize a two-branch metric-
based network architecture: one for coping with the sup-
port images and the other for the query image. For a con-
sidered class, the support branch outputs its global and/or
local prototypes [9, 17, 39, 46], e.g., by masked average-
pooling on the labeled support feature maps. Further, the
query branch takes these support prototypes as guidance
to segment the query objects by a location-wise match-
ing between query feature in each location and these pro-
totypes. In this way, we can achieve the support guided
prediction maps for the query, which however, is an uni-
directional feature aggregation and thus it is hard to fully
capture the object variations based on these limited support
guidance (Fig. 1(a)). Recently, some works [31, 41, 44] ex-
plore a dense matching scheme – i.e., non-local attention
variants [34] – from support to query images, which can al-
leviate the object variation issue to some extent, however,
these methods are essentially still unidirectional at the pre-
diction layer or at most bi-directional for exchanging infor-
mation between support-query features at the middle layers.
As in common semantic segmentation task, the ideal uti-
lizations of multi-resolution features [4, 16, 30] are the key
for achieving accurate segmentation results. To achieve so,
some works [30,44] adopt feature pyramid fusion in FSS for
enhancing the original features, however, the interactions
between these multi-resolution features are unidirectional
and/or from high-resolution features to low-resolution ones
(Fig. 1(a)), which fails to fully capture the cross-resolution
feature relationships.

In this paper, to address the aforementioned issues, we
propose a novel cyclic memory network (CMN) [14, 22]
(§3.3 and Fig. 2) by directly learning to read abundant sup-
port information from all resolution features for tackling
FSS. Specifically, we generate K pairs (key and value) of
multi-resolution query features guided by the support fea-
ture and its mask. The intuitions under our framework lie
in that (1) Given each pixel in a supposed query feature
having a specific resolution, CMN can explicitly access and
read all the other features with different resolutions, which
are served as comprehensive guidances to distinguish the

considered pixel, i.e., belonging to a foreground or a back-
ground. As shown in the second row of the allocation table
in Fig. 1(b), when taking the medium resolution as query,
the large and small resolutions (memory) are guidances.
(2) Contrast to unidirectional feature aggregation of previ-
ous methods (Fig. 1(a)), CMN circularly takes each resolu-
tion feature as the query one and the rest features are fed
into to the memory, which can thus fully exploit the cross-
resolution relationships and handle the object appearance
and scale changes much better than the previous methods.
As such, a precise prediction of the airplane in the query
image is achieved in Fig. 2(b). Since FSS is a pixel-level
prediction task, to reserve and transfer more structural con-
text for desirable unseen object segmentation, we further in-
corporate the query feature re-adding and the query feature
recursive updating mechanisms (Fig. 3) into the memory
reading operation. To sum up, our contributions are:
• We propose a cyclic memory network (CMN) which

circularly takes the cross-resolution features as memory
guidance to precisely segment the supposed query feature,
for tackling the FSS task. To the best of our knowledge, we
are the first to model FSS as a memory network framework.
•We introduce the query feature re-adding and the query

feature recursive updating mechanisms into the memory
reading operation of CMN, which have improved the per-
formance of CMN significantly.
•We achieve state-of-the-art performances under mean-

IoU and competitive results under FB-IoU on two FSS
benchmarks.

2. Related Work
Memory Networks. Neural Turing Machine [10] is

the pioneer work of using memory network to solve prob-
lems of sorting and copying. Modern end-to-end mem-
ory networks [14, 19, 29] are initially designed for tack-
ling natural language processing tasks by additionally uti-
lizing an external memory for information storing and read-
ing. Later on, memory networks are gradually applied to
vision tasks, such as video object segmentation [22], object
tracking [40], and movie story understanding [20]. Typi-
cally, the encoded key of the query feature is used to mea-
sure its similarity with the stacked keys of the memory, and
the value of the memory is updated by attending these sim-
ilarities. Finally, the fused values are returned for differ-
ent tasks. In this paper, we extend the standard memory
network into a cyclic variant, i.e., CMN, which is suitable
for FSS task and has its own advantages: (i) Based on the
multi-resolution query features (implicitly containing infor-
mation of the support features), we circularly take the fea-
ture of each resolution as query, and the rest as memory;
this can thus fully capture the cross-resolution relationships,
and it is a special design for FSS, which is greatly differ-
ent from other memory-based tasks. (ii) Our framework is
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Figure 2. CMN architecture by illustrating three resolutions. An input episode, constituting of a support image xs and a query image xq ,
is first fed into CMN (§3.3). Then, the Multi-Resolution Shared Encoder is leveraged to generate three pairs of keys and values, which are
interpolated to have the same spatial sizes, denoted as V = {(kl,vl)}3l=1. Further, three times of cyclic memory reading –in the figure, one
cycle is shown with (k1,v1) and {(kl,vl)}3l=2 as key and memory, respectively – are performed on V for capturing the cross-resolution
relationships, which return reinforced value features {v̂l}3l=1. Finally, both {v̂l}3l=1 and the original {vl}3l=1 are repectively concatenated
and taken as inputs to the episodic decoder module for segmenting the query object. L and Lmid (§3.4) are BCE losses for training CMN.

performed in an episode-based meta-learning scheme. At
each episode, the memory is updated as the corresponding
multi-resolution features which are obtained by the current
support-query features. By contrast, all previous methods
leverage memory networks in a fully supervised setting.

Semantic Segmentation. Since the success of fully con-
volutional neural networks [18], great progress has been
made in the semantic segmentation field [18], which aims
to classify each pixel to a specific class. Prevailing segmen-
tation models include Deeplab [3], SegNet [1], UNet [24],
and PSPNet [47]. Besides, dilated convolutions [43],
encoder-decoder structure [24], ASPP [3], and skip con-
nection [3] are widely-used strategies for achieving good
performances. Nevertheless, the above mentioned segmen-
tation models are relying on large amounts of pixel-level
annotations for training, and the trained models always fail
to segment unseen class objects. We aim to tackle the un-
seen object segmentation problem by utilizing CMN.

Few-Shot Semantic Segmentation. Two-branch metric-
based networks are usually adopted for FSS. For instance,
OSLSM [25] consists of a conditional branch for gen-
erating classifier weights and a segmentation branch for
outputting the prediction mask. Inevitably, under the
metric-based learning paradigm, prototypes are obtained
by squeezing the features in the foreground of the sup-
port images, which are taken as guidance to segment the
query images. Other representative methods for FSS are
PL [7], coFCN [23], SG-One [46], A-MCG [13], FWB [21],
PANet [32], CANet [45], CRNet [16], PPN [17] and
PMM [39]. The essential differences of these methods are
the ways of obtaining these prototypes and the ways of us-
ing them. The common aspect of these approaches lies in
the unidirectional feature aggregation process for achieving
the query prediction mask, which thus cannot well capture
the object appearance variances. Inspired by the conven-
tional semantic segmentation, some works [30, 44] explore
the utilizations of multi-resolution features, which, how-

ever, are intrinsically using high-resolution features to guide
the low-resolution ones or using support feature to guide
multi-resolution query ones. As such, the cross-resolution
relationships among support-query images are still out of
full use.

In the FSS literatures, existing works that are most re-
lated to ours are PFENet [30] and BriNet [41]. For pre-
serving the maximum domain generalization capability on
unseen classes, these two works (i) have fixed the backbone
weights and (ii) utilize both mid- and high-level features to
construct discriminative support/query features. To pursue
a desirable generalizable model, we adopt the aforemen-
tioned experiences for building CMN. By contrast, CMN is
the first memory network in FSS field to alleviate the object
variations among support-query images in a cyclic manner.

3. Methodology

3.1. Definitions

In FSS, a base training setDtrain and a test setDtest with
non-overlapping classes are provided for meta-learning and
testing, respectively. In the training stage, multiple episodes
(sub-tasks) are sampled from Dtrain. By contrast, we ran-
domly sample episodes from Dtest for meta-testing. The
constitution of each episode are a support set S and a
query set Q. Specifically, under K-shot setting, we have
S = {(xsi ,ms

i )}Ki=1 constituting of K image-mask pairs,
where, (xsi ,ms

i ) is the ith (support) image-mask pair for
a certain class c. Let Q = {(xq,mq)} with xq and mq

being the query image and corresponding ground-truth bi-
nary mask sampled from the same class c. In this way, each
episode (S,Q) is focused on a specific class c and pro-
ducing a prediction mask m̂q for the contained query im-
age, by feeding S and xq to the model. Next, the binary
cross-entropy loss BCE(m̂q,mq) is calculated for updat-
ing the model weights. Once the model is trained, we fur-
ther perform meta-testing by sampling multiple episodes,

7295



softmax

𝐤𝑖𝐯𝑖 𝑲𝒎 𝑽𝒎

Query Memory
𝐻 ×𝑊 × 𝐶 𝐻 ×𝑊 × 𝐶 𝑁 − 1 × 𝐻 ×𝑊 × 𝐶

[ 𝑁 − 1 𝐻𝑊] × 𝐶𝐻𝑊 × 𝐶 [ 𝑁 − 1 𝐻𝑊] × 𝐶

𝐻𝑊 ×[ 𝑁 − 1 𝐻𝑊]

𝑁 − 1 × 𝐻 ×𝑊 × 𝐶

[ 𝑁 − 1 𝐻𝑊] × 𝐶

𝐻 ×𝑊 × 𝐶𝐻 ×𝑊 × 𝐶

𝐻𝑊 × 𝐶

ConvGRU

Read 𝐯𝑖̂

Stack 
N-1 Times

Figure 3. Implementation of one cycle memory reading, where
⊗

and
⊕

indicate matrix multiplication and addition, respectively.

{(Stsi ,Qts
i )}

Nts
i=1, from Dtest. In the following, we take the

1-shot setting (K=1 in S) for an easy illustration of CMN.

3.2. Overview

As in Fig. 2, CMN is built based on the memory net-
work in a cyclic manner. Under the 1-shot setting, for each
episode (S,Q) with S = {(xs,ms)}, we first feed the sup-
port image-mask pair (xs,ms) and the query image xq (to
be segmented) to the shared encoder for obtaining N pairs
of multi-resolution fused key and value feature maps, de-
noted as V = {(ki,vi)}Ni=1. Each resolution key-value fea-
ture in V is circularly considered as the query to be seg-
mented, and the rest N − 1 resolution features are written
as memory. The keys and values of query and memory are
further fed into our memory reading module with query fea-
ture re-adding and query feature recursive updating mech-
anisms. In this way, every pixel of the key feature map for
the query is densely matched over the key of the memory
to output the similarity scores with all the spatial locations
from different resolutions. These scores in turn are used to
summarize the long-range and cross-resolution information
from the memory, and thus leading to a reinforced value
feature v̂i for the query vi. The above memory reading and
writing process is repeated for N times in a cyclic manner.
As such, we finally obtain the reinforced features of N res-
olutions, termed as {v̂i}Ni=1, which are further taken by the
episodic decoder and used to reconstruct the ground-truth
mask mq of the query image xq .

3.3. Cyclic Memory Network

Multi-Resolution Shared Encoder. Different from previ-
ous memory networks, since we aim to explore the rela-
tionships among different resolution features, we generate
multi-resolution (key and value) feature maps based on a
shared encoder for facilitating the cyclic memory reading.
Specifically, given the support image-mask pair (xs,ms)
and the query image xq as inputs, the encoder outputs N
pairs of key-value feature maps w.r.t. N resolutions, by

designing learnable convolutions, and pyramid pooling op-
erations based on some specific backbones. In our im-
plementation of the encoder, we mainly follow the golden
routines validated by [30, 41]. Taking ResNet having four
group layers (block1-4) as an example, we use feature maps
from both block2 and 3 and compress them to key and
value feature maps with a pre-defined channel dimension
C by a 1×1 convolution. Meanwhile, the mask-pooled sup-
port feature and initial query feature from block4 are used
to obtain a prediction mask, which is also fused into the
multi-resolution key-value features. Further, as in previous
work [46], a masked average-pooled global vector is further
used to assist the construction of multi-resolution features.
Finally, we fix the weights of the backbone during meta-
training, which is also adopted by [30, 41, 45] for achieving
a better generalization on unseen classes.

Specifically, taking the largest resolution as an example,
and suppose we have achieved the initial key and value fea-
ture maps for (xs, xq) based on the compressed features of
block2 and 3 (this operation is denoted as P):

ks,vs = P(xs) ∈ RH×W×C , kq,vq = P(xq) ∈ RH×W×C ,
(1)

where H × W is the used largest resolution, meanwhile,
H , W , and C are the height, width, and channel dimen-
sion, respectively. To get the final multi-resolution key and
value features, pyramid average-pooling [47] is first con-
ducted on kq , vq to generate N new resolution features
Vq = {(kq

i ,v
q
i )}Ni=1 with kq

i (vq
i ) ∈ RHi×Wi×C . We sup-

pose (kq , vq) is included in Vq , andHi>Hj ,Wi>Wj when
i<j. Furthermore, we denote the masked average-pooled
global vector w.r.t. (ks,vs) guided by ms as follows:

(fs
k , f

s
v ) = masked avg pool((ks,vs),ms) ∈ R1×1×C . (2)

Notably, we only construct one pair of global vector un-
der the support key-value features with the largest resolu-
tion. Inspired by [30], we further use the features of block4
fsb4 and fqb4 w.r.t. xs and xq to get a prediction mask fq

(∈ RH×W ) for the key and value of the query image. The
calculation of each element in fq(x, y) is obtained by find-
ing the maximum cosine similarity value among the fea-
ture vectors in the same location considered in fqb4 and all
the foreground locations of fsb4. Finally, we can construct
the multi-resolution key and value feature maps ki,vi ∈
RH×W×C (i = 1, · · · ,N ) as follows:

ki = IH×W (C(kq
i ⊕ EHi×Wi(f

s
k)⊕ IHi×Wi(f

q))),

vi = IH×W (C(vq
i ⊕ EHi×Wi(f

s
v )⊕ IHi×Wi(f

q))),
(3)

where⊕ is the concatenating, Ix×y interpolates the input to
a size of x × y, Ex×y expands the input vector to a size of
x×y, and C consists of one 1×1 and two 3×3 convolutions.
Here, we use I to interpolate the key and value features to
the same spatial and channel sizes, however, they still pre-
serve different resolutions. This operation aims to facilitate
the afterward memory reading operations.
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Cyclic Memory Reading. Since we have obtained N pairs
of key and value feature maps reflecting different resolution
properties w.r.t. the same query image, we circularly take
one pair of them as supposed query to be segmented, and the
rest N -1 pairs are written into an external memory for each
episode training. This cyclic memory reading and writing
process is conducted for N times. Specifically, in one cy-
cle, suppose (ki,vi) is the key and value features serving
as the query, and Vi/N = {(kl,vl)}i−1l=1 ∪ {(kl,vl)}Nl=i+1

are the keys and values in the memory. We first stack the
keys and values of the rest N − 1 resolutions from the
memory, leading to Km ∈ R(N−1)×H×W×C and V m ∈
R(N−1)×H×W×C , where N -1 can be seen as the frame
number of the memory. Further, (ki,vi) and Km, V m are
taken as inputs to the memory reading module, and the out-
puts are the reinforced value v̂i.

During this memory reading, we leverage the key maps
ki and Km of the query and memory to calculate the simi-
larities between all locations of them, and get the following
similarity map:

ei = k̄iKmT ∈ RHW×[(N−1)HW ], (4)

where k̄i ∈ RHW×C and Km ∈ R[(N−1)HW ]×C are the
reshaped maps of ki and Km, respectively. Based on ei,
the value of the memory is retrieved and initially returned
as:

gi = softmax(ei)V m ∈ RHW×C , (5)

where softmax(·) is a row-wise softmax normalization
and V m ∈ R[(N−1)HW ]×C is the reshaped map of V m.
In this way, gi will contain the long-range and cross-
resolution information from the memory. Under the con-
text of our FSS task, since the stacked value maps (V m =
[v1; · · · ;vi−1;vi+1; · · · ;vN ]) in the memory are essen-
tially different resolution variants compared with the cur-
rent query value map vi, we propose a re-adding mecha-
nism by adding a stacked vi with N -1 times (denoted as
V q
i ∈ R(N−1)×H×W×C) into Eq. (5). The final returned

value from the memory is updated as:

gi = softmax(ei)(V m + V q
i ) ∈ RHW×C , (6)

where V q
i ∈ R[(N−1)HW ]×C is reshaped by V q

i . Exper-
imental result shows performance gains by our simple re-
adding mechanism (Table 5).

Finally, instead of concatenating vi and the reshaped gi

(still denoted as gi) followed by the compressing opera-
tion, we propose the query feature recursive updating mech-
anism, which takes vi and gi as inputs and explores the re-
cursive relationships among them. In our implementation,
we adopt ConvGRU [2] to get the final output of the mem-
ory reading module, as following:

v̂i = UGRU(vi,gi) ∈ RH×W×C . (7)

Experimental result shows significant performance gains by
this query feature recursive updating mechanism (Table 5).
Episode Decoder. After N times of memory reading, we
obtain the reinforced value features {v̂i}Ni=1 w.r.t. these
N resolutions. Together with the original value features
{vi}Ni=1, we have two group of multi-resolution features in
total. To reconstruct the GT maskmq of the query image xq

in the current episode, we leverage the following sequential
encoding to each group of the above features:

m̃q
1 = Pcls(PASPP(Pres conv(v1 ⊕ v2 ⊕ · · · ⊕ vN ))) ∈ Rh×w×2,

m̃q
2 = Pcls(PASPP(Pres conv(v̂1 ⊕ v̂2 ⊕ · · · ⊕ v̂N ))) ∈ Rh×w×2,

(8)
where h and w are the height and width of mq; Pres conv,
PASPP and Pcls are denoted as the episode decoder, and
their detailed architectures are in §4.2. The final predicted
mask is taken as the mean of m̃q

1 and m̃q
2, i.e., m̂q = (m̃q

1 +
m̃q

2)/2. Our CMN is trained in an episodic manner. As
such, we term this decoding process as an episode decoder.
The modules in Eq. (3)-(8) for CMN are all differentiable
and we train CMN in an end-to-end manner.

3.4. Training Objective

Until now, §3.3 solely illustrates the paradigm of CMN
training under one episode of a 1-shot case. For the batch-
based training with Nb episodes ({(Si,Qi)}Nb

i=1), where
Qi = (xqi ,m

q
i ). Using Eq. (8), we achieve the predicted

average mask m̂q
i ∈ Rh×w×2 for every query xqi . Further,

we adopt the binary cross entropy (BCE) loss among m̂q
i

and mq
i for training CMN. This BCE loss is as follows:

L =
1

Nb

Nb∑
i=1

BCE(m̂q
i ,m

q
i ). (9)

Inspired by [30], given the multi-resolution value features
(denoted as {ṽi}Ni=0) before the IH×W operation (Eq. (3)),
we use N additional branches to predict the query masks
for these N resolutions. Notably, these N branches are im-
plemented as one 3×3 and one 1×1 convolutions. As such,
we have another mid-level BCE loss:

Lmid =
1

Nb ×N

Nb∑
i=1

N∑
k=1

BCE(Pk
mid(ṽk),m

q
i ), (10)

where Pk
mid(·) indicates the encoding function for the kth

branch. To this end, our final training objective is:

Lfinal = L + Lmid. (11)

4. Experiments
4.1. Settings

Datasets. Two golden FSS datasets – i.e., PASCAL-
5i [25] and COCO-20i [21] – are used for the evaluation of
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Methods Backbone mean-IoU (1-shot) FB-IoU
(1-shot)

mean-IoU (5-shot) FB-IoU
(5-shot)fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean

OSLSM BMVC’17 [25] VGG-16 33.6 55.3 40.9 33.5 40.8 61.3 35.9 58.1 42.7 39.1 43.9 61.5
co-FCN ICLRW’18 [23] VGG-16 31.7 50.6 44.9 32.4 41.1 60.1 37.5 50.0 44.1 33.9 41.4 60.2
AMP ICCV’19 [26] VGG-16 41.9 50.2 46.7 34.7 43.4 62.2 41.8 55.5 50.3 39.9 46.9 63.8
SG-One TCYB’19 [46] VGG-16 40.2 58.4 48.4 38.4 46.3 63.1 41.9 58.6 48.6 39.4 47.1 65.9
PANet ICCV’19 [32] VGG-16 42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7
CANet CVPR’19 [45] ResNet-50 52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6
PGNet ICCV’19 [44] ResNet-50 56.0 66.9 50.6 50.4 56.0 69.9 57.7 68.7 52.9 54.6 58.5 70.5
FWB ICCV’19 [21] ResNet-101 51.3 64.5 56.7 52.2 56.2 - 54.8 67.4 62.2 55.3 59.9 -
PMMs ECCV’20 [39] ResNet-50 52.0 67.5 51.5 49.8 55.2 - 55.0 68.2 52.9 51.1 56.8 -
PPNet ECCV’20 [17] ResNet-50 47.8 58.8 53.8 45.6 51.5 - 58.4 67.8 64.9 56.7 62.0 -
DAN ECCV’20 [31] ResNet-101 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3
SimPropNet IJCAI’20 [9] ResNet-50 54.9 67.3 54.5 52.0 57.2 73.0 57.2 68.5 58.4 56.1 60.0 72.9
BriNet BMVC’20 [41] ResNet-50 56.5 67.2 51.6 53.0 57.1 - - - - - - -
PFENet TPAMI’20 [30] ResNet-50 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
Baseline ResNet-50 62.1 68.2 55.3 53.8 59.9 71.7 63.3 68.7 55.1 55.3 60.6 71.8
CMN ResNet-50 64.3 70.0 57.4 59.4 62.8 72.3 65.8 70.4 57.6 60.8 63.7 72.8

Table 1. Experimental comparisons under 1-shot and 5-shot settings on PASCAL-5i. mean-IoU of each fold and the averaged mean-IoU
(FB-IoU) of four folds are shown.

Methods Backbone mean-IoU (1-shot) FB-IoU
(1-shot)

mean-IoU (5-shot) FB-IoU
(5-shot)fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean

PANet ICCV’19 [32] VGG-16 - - - - 20.9 59.2 - - - - 29.7 63.5
FWB ICCV’19 [21] VGG-16 18.4 16.7 19.6 25.4 20.0 - 20.9 19.2 21.9 28.4 22.6 -
FWB ICCV’19 [21] ResNet-101 17.0 18.0 21.0 28.9 21.2 - 19.1 21.5 23.9 30.1 23.7 -
PMMs ECCV’20 [39] ResNet-101 29.3 34.8 27.1 27.3 29.6 - 33.0 40.6 30.1 33.3 34.3 -
DAN ECCV’20 [31] ResNet-101 - - - - 24.4 62.3 - - - - 29.6 63.9
PPNet ECCV’20 [17] ResNet-50 28.1 30.8 29.5 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -
BriNet BMVC’20 [41] ResNet-50 32.9 36.2 37.4 30.9 34.4 - - - - - - -
PFENet TPAMI’20 [30] VGG-16 33.4 36.0 34.1 32.8 34.1 60.0 35.9 40.7 38.1 36.1 37.7 61.6
PFENet TPAMI’20 [30] ResNet-101 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9
Baseline ResNet-50 34.2 39.6 35.8 34.3 36.0 60.6 37.7 45.7 38.0 37.5 39.7 62.7
CMN ResNet-50 37.9 44.8 38.7 35.6 39.3 61.7 42.0 50.5 41.0 38.9 43.1 63.3

Table 2. Experimental comparisons under 1-shot and 5-shot settings on COCO-20i. mean-IoU of each fold and the averaged mean-IoU
(FB-IoU) of four folds are shown.

CMN. PASCAL-5i is constructed based on PASCAL VOC
2012 [8, 11], and COCO-20i is built from MSCOCO [15].
As in [25] and [21], we split the data into four folds based
on the number of the total classes on the two datasets.
Then, the cross-validation results on each fold are reported.
Specifically, for each evaluation on the two datasets, 15 and
60 object classes are taken as the training set with the rest 5
and 20 object classes as the test set, respectively. For meta-
testing, 1,000 episodes are randomly sampled from the test
set for evaluating their metrics.

Metrics. As in [25,32,33,35], mean-IoU and FB-IoU are
used metrics for evaluating CMN. Specifically, mean-IoU
is achieved by taking the average of the intersection-over-
unions (IoUs) over different foreground classes of the test
set. Meanwhile, the mean-IoU of each fold and averaged
mean-IoU of four folds are reported. FB-IoU indicates the
foreground and background IoU, and all object classes are
taken as one single foreground class in the test set. Further,
FB-IoU is obtained by taking the average of the IoUs of
the foreground and background classes. In the literatures,
compared with FB-IoU, the mean-IoU is widely taken as
the key metric for FSS, this is because the performance bias

of some classes can be alleviated by considering the differ-
ences of all classes.

K-Shot Evaluation. For the K-shot case (K>1),
like [5, 21, 41, 45], a feature-level early fusion strategy [23]
is adopted by averaging the support image features to
achieve a single fused support feature. By doing so, the
afterward operations and evaluations are the same as the 1-
shot case.

4.2. Implementation Details

CMN is implemented by using Pytorch and models are
trained on a Tesla V100 GPU in a meta-learning manner.
The batch size Nb in Eq. (10) for PASCAL-5i and COCO-
20i is 4 and 8, respectively. For CMN training, the SGD
optimizer is adopted, the model is trained for 100 epochs on
two datasets, and the learning rate is 0.0025 and 0.005 for
PASCAL-5i and COCO-20i, respectively. As in [30, 41],
‘poly’ strategy is also used for adjusting the lr.

VGG-16 [27], ResNet-50 [12] and ResNet-101 [12] are
adopted to carry out the experiments on the two datasets
used. As in [9, 30, 41, 45], the used backbones are initial-
ized from the pre-trained models on ImageNet [6] and their
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Figure 4. Segmentation examples on unseen classes for the PASCAL-5i dataset. Specifically, the first row is the support images with
ground-truths (GT) marked as red, the second row is the query images with GT (yellow masks), and the third and fourth rows are the
predictions of the baseline and CMN respectively.

weights are fixed. In this way, the generalization can be pre-
served as much as possible. The channel dimension C in
Eq. (1) is 256 for all experiments. In addition, dilated con-
volutions are used for ensuring the size of the key and value
feature maps after block2 to be 1/8 of the original input.
The input image size is set to 473×473 for all backbones,
thus leading to the largest key and value feature maps with
a size of 60×60, i.e., H=W=60 in Eq. (1). We use three res-
olutions of [60×60, 15×15, 8×8] in Eq. (3) for two datasets,
which means N=3 in our experiments. Moreover, the num-
ber of output channel is set to 256 in the convolution compo-
nents of C in Eq. (3). The architecture details of the decoder
functions in Eq. (8) are: Pres conv: two 1×1 conv of 256
output channels, followed by two 3×3 conv of 256 channel
with residual connections, and finally another two 3×3 conv
of 256 channels with residual connections. PASPP: atrous
spatial pyramid pooling with a 1×1 conv without dilation
and 3×3 conv with dilation rates 6, 12, 18. Pcls: a 3×3 conv
of 256 channels and a 1×1 conv of two channels.

4.3. Comparison with State-of-the-Arts

Our CMN is compared with all the FSS methods under
the metrics of mean-IoU and FB-IoU on the two datasets.
Different from [44, 45] which leverage multi-scale testing,
single scale meta-testing is conducted for CMN. In the
used datasets, spatial regions of most foreground objects are
small in the whole image. As such, the calculated number
of FB-IoU usually benefits from the background regions,

which makes it not a convincing metric to evaluate the per-
formances of the models. Nevertheless, we also report the
averaged FB-IoU over four folds for showing comprehen-
sive references.

PASCAL-5i. Table 1 presents the mean-IoU and FB-
IoU under 1-shot and 5-shot for all the compared methods
under the same testbed. It can be seen that (i) The av-
eraged mean-IoUs under four folds are consistently better
than the compared methods, which validate the effective-
ness of CMN. (ii) CMN performs much better than the base-
line method that uses the same multi-resolution features, yet
without the cyclic memory reading module. (iii) Although,
the FB-IoUs of CMN are not the best one, we still achieve
competitive results compared with the counterpart methods.

COCO-20i. From Table 2, we conclude that state-
of-the-art results on averaged mean-IoUs under both 1-
shot and 5-shot settings are achieved on COCO-20i. For
example, under ResNet-50 backbone and the same train-
ing/test protocols, (i) CMN is better than BriNet [41] by
3.3 on 1-shot setting under the averaged mean-IoU. (ii)
CMN performs much better than the strong baseline meth-
ods. It means that our CMN model has captured the cross-
resolution relations by the memory reading module, which
further boosts the FSS performances.

4.4. Ablation Study

We take PASCAL-5i as an example dataset. Unless spec-
ified, we adopt averaged mean-IoUs over the first two folds
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5-shot testing mean-IoU FB-IoU
1-shot baseline 62.8 72.3
Feature-Avg 63.7 72.8
Mask-Avg 63.3 72.5
Mask-OR 62.9 71.9

Table 3. Comparisons of 5-shot feature fusion.

Backbone mean-IoU
1-shot 5-shot

VGG-16 63.0 64.5
ResNet-50 67.2 68.1
ResNet-101 66.0 67.3

Table 4. Effects of different backbones.
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Figure 5. mean-IoUs under different coeffi-
cient of Lmid.

Models mean-IoU
1-shot 5-shot

CMN w Memory Value 66.2 66.7
CMN w Query Value 66.3 67.7
CMN w Concatenate 65.8 66.3
CMN w Compress 66.0 66.4
Full CMN 67.2 68.1

Table 5. Effects of query feature re-adding and recursive updating
mechanisms.

N
mean-IoU

1-shot 5-shot
1 N/A N/A
2 66.0 66.5
3 67.2 68.1
4 66.9 67.6

Table 6. Effects of feature resolution number N .

– i.e., fold-0 and fold-1 – under 1-shot and 5-shot settings
for all the ablation experiments.
Feature Resolution Number N . The number N of fea-
ture resolutions is important for achieving good results. By
varying N from 1 to 4, the performances of CMN are pre-
sented in Table 6, and N=3 performs best. This means
that CMN with three resolutions is necessary to capture the
cross-resolution relations. We set N=3 in all experiments.
Query Feature Re-adding Mechanism. Since Eq. (6) adds
value feature from query to enrich value feature of memory
during memory reading, we denote the CMN variants using
Eq. (5) and Eq. (6) as CMN w Memory Value and the full
CMN, respectively. The model variant using the value fea-
ture from query instead of that from the memory is further
considered, i.e., gi = softmax(ei)V

q
i which is named as

CMN w Query Value. Table 5 indicates that query fea-
ture re-adding performs better than the models using single
value features.
Query Feature Recursive Updating Machanism. With-
out the query feature recursive updating, 1) we con-
sider concatenating vi and the reshaped gi followed by
the compressing operation, which is termed as CMN w
Concatenate. 2) we compress the channel of all the key
features to C/2 (instead of C) by 1×1 conv, which is de-
noted as CMN w Compress. Experimental results in Ta-
ble 5 show superior performance gains by our query feature
recursive updating mechanism.
Coefficient of Lmid. We set the coefficient (λ) of mid-level
loss in Eq. (11) as 1.0 for all experiments. By varying its
values from {0.0, 0.5, 1.0, 1.5, 2.0}, we observe the mean-

IoU under two folds and the averaged mean-IoU of them,
under 1- and 5-shot settings (Fig. 5). The best performances
are achieved when λ=1.0.
Effects of Backbones. VGG-16, ResNet-50, and ResNet-
101 are used to conduct experiments for evaluating the ef-
fects of different backbones for CMN. Results are shown in
Table 4, where ResNet-50 performs better than others.
Feature Fusion under 5-shot Setting. As shown in § 4.1,
five support image features are fused by an early feature
fusion strategy. We further evaluate two late fusion meth-
ods, i.e., OR fusion on masks [25] and average fusion on
masks [45], to compare their results (Table 3). To achieve
a precise comparison, we leverage averaged mean-IoU and
FB-IoU over four folds for this ablation. Since feature fu-
sion performs best, we use it to get the 5-shot results.

4.5. Visualized Results

We take testing episodes from PASCAL-5i as examples
to visualize the segmentation results under 1-shot setting.
Specifically, the qualitative comparisons of our CMN model
and the baseline model without the cyclic memory read-
ing are illustrated in Fig. 4. We conclude that (i) CMN
can well segment query objects with appearance variations,
e.g., the boad and train objects are well segmented. (ii)
CMN can well segment query objects with scale variations
by the cross-resolution memory reading mechanism. Ex-
amples are sofa and sheep.

5. Conclusion

In this paper, we propose a cyclic memory network
(CMN) to tackle the important few-shot semantic segmen-
tation (FSS) task. In CMN, we generate N pairs of multi-
resolution key and value features, which are circularly taken
as query to be segmented with the rest features written as
memory. In this way, the memory reading is conducted
for N times to process all resolution queries. Moreover,
query feature re-adding and query feature recursive updat-
ing mechanisms are proposed to enhance this memory read-
ing module. CMN achieves new state-of-the-arts on the
used PASCAL-5i and COCO-20i datasets.
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