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Figure 1: We propose a framework to estimate physically correct motions from noisy pose estimations from video. This
allows us to train a motion synthesis network directly on video data, removing the need for mocap data used in prior work.

Abstract
Human motion synthesis is an important problem with

applications in graphics, gaming and simulation environ-
ments for robotics. Existing methods require accurate mo-
tion capture data for training, which is costly to obtain.
Instead, we propose a framework for training generative
models of physically plausible human motion directly from
monocular RGB videos, which are much more widely avail-
able. At the core of our method is a novel optimization
formulation that corrects imperfect image-based pose esti-
mations by enforcing physics constraints and reasons about
contacts in a differentiable way. This optimization yields
corrected 3D poses and motions, as well as their corre-
sponding contact forces. Results show that our physically-
corrected motions significantly outperform prior work on
pose estimation. We can then use these to train a gener-
ative model to synthesize future motion. We demonstrate
both qualitatively and quantitatively significantly improved
motion estimation, synthesis quality and physical plausibil-
ity achieved by our method on the large scale Human3.6m
dataset [12] as compared to prior kinematic and physics-
based methods. By enabling learning of motion synthesis
from video, our method paves the way for large-scale, real-
istic and diverse motion synthesis.

1. Introduction

Given videos of human motion, how can we infer the 3D
trajectory of the body’s structure and use it to generate new,
plausible movements that obey physics constraints? Ad-

dressing the intricacies of this question opens up an array of
possibilities for high-fidelity character animation and mo-
tion synthesis, informed by real-world motion. This would
benefit games, pedestrian simulation [55] in testing environ-
ments for self-driving cars, realistic long-horizon predic-
tions for model-based control and reinforcement learning,
as well as physics-based visual tracking.

The vast majority of existing approaches in learning-
based human motion synthesis [1, 59, 26, 21, 5]
rely on large-scale motion capture observations, such
as AMASS [32], which are typically costly and time-
consuming to acquire, logistically challenging, and most
often limited to recordings in indoor environments. These
factors form a bottleneck that hinders the collection of high-
quality human motion data, particularly in settings where
there is interaction among multiple people or interaction
with a number of stationary and moving objects in the
scene. The recorded motions typically also lack realism
and diversity as they are acquired by acting out a set of
pre-defined motions. In addition to this issue, many time-
series models trained on motion capture data make predic-
tions that are oblivious to the physics constraints of motion
and contact, often leading to inaccurate, jerky, and implau-
sible motion.

In this paper we entirely forego reliance on motion cap-
ture and aim to train physically plausible human motion
synthesis directly from monocular RGB videos. We pro-
pose a framework that refines noisy image-based pose esti-
mates by enforcing physics constraints through contact in-
variant optimization [37, 36], including computation of con-
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tact forces. We then use the results of the refinement to train
a time-series generative model that synthesizes both future
motion and contact forces. Our contributions are:

• We introduce a smooth contact loss function to per-
form physics-based refinement of pose estimates, es-
chewing the need for separately trained contact detec-
tors or nonlinear programming solvers.

• We demonstrate that when visual pose estimation is
combined with our physics-based optimization, even
without access to motion capture datasets, it is suffi-
cient to train motion synthesis models that approach
the quality of motion capture prediction models.

We validate our method on the Human3.6m dataset [12],
and demonstrate both qualitatively and quantitatively the
improved motion synthesis quality and physical plausi-
bility achieved by our method, compared to prior work
on learning-based motion prediction models, such as
PhysCap [44], HMR [16], HMMR [58], and VIBE [18].

2. Related Works

We organize the rich existing literature on motion syn-
thesis across two axes: (a) kinematic vs. physics-based
methods, and (b) imitation learning vs. model-based control
and reinforcement learning. Table 1 provides a summary of
the most relevant works.

2.1. Kinematic Motion Synthesis

Kinematic motion synthesis models make predictions
without necessarily satisfying physics constraints. Non-
parametric methods in this category attempt to blend mo-
tion clips and concatenate them into a coherent trajectory.
Examples of this type of work include motion matching [5]
and the use of motion graphs [19, 42] and motion fields [21]
in character animation.

Parametric kinematic methods, on the other hand, rely
on pose predictions made by a time-series generative model,
typically a neural network. After training, the example mo-
tions are not used for prediction anymore, in contrast to non-
parametric approaches. To maintain consistency in the pre-
dicted motion many papers make use of motion generation
via recurrent neural networks (RNN) [7, 33, 54, 61, 8, 47],
variational autoencoders for time-series data [26, 10, 56],
autoregressive models [11, 46], transformers [23], or by ex-
plicitly maintaining a memory bank of past motions.

2.2. Physics-Based Motion Synthesis

Physics-based animation methods make motion predic-
tions that satisfy the body dynamics and are informed by
physics constraints [2], often including contacts, which

Input Modality Physics Functionality
DLow [56] mocap synthesis
RFC [57] mocap ∼ synthesis
MOJO [59] mocap synthesis
PhysCap [44] video X pose est.
Rempe et al. [43] video X pose est.
Ours video X pose est., synthesis

Table 1: Comparison of features of different related works. RFC
uses a physics simulator but does not use proper contact dynamics.

adds to the realism of the generated movement. Semi-
nal work in contact-invariant optimization [37, 36] intro-
duced soft inverse dynamics constraints to optimize center-
of-mass trajectories as well as contact forces without re-
quiring explicit planning of contact locations. In [35] and
in [40], it was shown that this framework could be sped up
and also be used in a setting where target velocities are se-
lected interactively.

In addition to imposing soft physics constraints, re-
cent reinforcement learning controllers have been used for
motion synthesis with hard physical constraints [29, 28].
These approaches leverage model-based sampling planning
to generate physically correct motions which corrects pose
estimation errors and model mismatch. Injecting hard
physics constraints for dynamics and contact has been a
fruitful approach in trajectory optimization for humanoid
robots [6], which typically makes use of nonlinear program-
ming solvers and mixed integer-quadratic programs. Incor-
porating example motions and training data into these opti-
mization frameworks, however, is challenging. So is gener-
ating diverse motions. Moreover, execution times of these
frameworks are typically not suitable for real-time opera-
tion.

To balance the fidelity of dynamics with the cost of com-
putation time, simplified physics models such as centroidal
dynamics models, or models that enforce soft-dynamics
constraints, have been commonly used in literature. For ex-
ample, [52, 20] use centroidal dynamics to fine-tune char-
acter motion from physically incorrect motion templates.

Model-free reinforcement learning approaches, which
do not assume known or learned dynamics, are gain-
ing popularity due to their flexibility, efficiency in high-
dimensional motion synthesis that tracks realistic reference
motion. In DeepMimic [41], model-free controllers are
trained to output torques to follow the reference motion.
DeepMimic is able to physically correctly reproduce a large
variety of motion skills. However it takes hours or days
just to reproduce one motion. Since then, efforts have been
made to extend model-free controllers. In [53, 51], by im-
proving the capacity of neural networks, controllers can
now master all the skills in a large motion dataset without
having to retrain for each motion as in DeepMimic.

11533



2.3. Kinematic and Physics-Based Pose Estimation

Purely kinematic approaches for 3D pose and shape [60,
59] estimation from video, such as HMMR [17], VIBE [18],
and XNect [34], predict past and future motion, without in-
corporating physics constraints. Physics constraints, how-
ever, can act as a regularizer, adding temporal consistency
to the estimated 3D motion. Both motion capture and hu-
man video data have been used as observations in pose esti-
mation, with the latter modality leading to an ill-posed prob-
lem. For example, PhysCap [44] achieves physically plausi-
ble real-time human motion estimation in 3D from videos,
including modeling of contacts and prediction of their lo-
cations, which leads to minimal foot-to-floor penetration.
[43] also models hard contact constraints, which cannot be
changed after detection. Physics-based visual tracking [50]
provides additional examples of work in this area, including
ones that handle contacts [24, 4] as hard constraints during
trajectory optimization, as well as entire meshes [30].

Our main difference from these works is that by using
our proposed soft contact penalty, contact events can form
dynamically and softly during optimization. Our method
does not need separate contact labelling, and instead of a
complex alternating optimization with discrete steps to re-
label contacts, it optimizes in two contiguous passes with
an off-the-shelf unconstrained LBFGS optimizer.

3. Method
An overview of our proposed framework for learning

motion synthesis from videos can be seen Fig 2. It consists
of four steps: 1) Given an unlabeled video, we estimate the
positions of 2D and 3D body joints at each video frame us-
ing a monocular pose estimation model [14]. 2) We then
transform the 3D body joints at each frame to relative body-
part rotations of the parametric body model, SMPL [31],
using inverse-kinematics [15, 22]. 3) We then refine the
initial motion estimates using our proposed physics-based
optimization which results in physically plausible and tem-
poral coherent motion for the entire video. 4) We process
all available videos with aforementioned steps, and subse-
quently use the resulting motions to train our motion syn-
thesis model. In the following we detail each step.

3.1. 3D Pose Estimation

Given an unlabeled RGB video, we estimate the 3D
body pose from each frame using a monocular pose esti-
mation model. For this, we chose the method of [14, 13]
as it provides 3D body pose in absolute camera coordi-
nates. We follow [14] and use HRNet-w32 [48] as the back-
bone, and train it on Humans3.6M [12], 3DPW [49] and
MSCOCO [25] datasets. At each frame, it provides the 3D
pose ppe ∈ RJ×3 and 2D pose ppe,2d ∈ RJ×2, where the
3D pose x is estimated up to a scaling factor. The global

video sequence

Pose 
estimator

Motion 
Initialization

Physics 
Optimization

Motion 
Synthesis Model

3D 
keypoints

IK SMPL
spline 
fitting

Figure 2: Overview of our framework. A video sequence is
processed by a per-frame CNN pose estimator. The 3d and 2d
keypoint detections are passed to an inverse kinematics step that
forms an initial estimate of the SMPL body model motion using
3D keypoints. We then optimize this initialization with our physics
loss and use the produced motions in place of motion capture to
train motion synthesis models.

scale of the person is approximated using the mean bone
length, which obviously is sub-optimal and leads to physi-
cally implausible results, e.g. feet penetrating the ground-
plane. Since the pose of each frame is estimated indepen-
dently, we found that the resulting poses contain a large
amount of jitter both spatially as well as in terms of scale.

3.2. Motion Representation and Initialization

The 3D positions are not the most optimal representa-
tion for effectively modelling the spatial and temporal inter-
/intra-part correlations, as slight changes in the depth of the
person under the same pose will lead to significantly dif-
ferent 3D positions for all body parts. Hence, we convert
the 3D positions to local body-part rotations using the ana-
lytical inverse-kinematics method of [22] using swing-twist
decomposition. Similar to [22], we use the parametric body
model SMPL [31] to kinematically represent the body mo-
tion. SMPL consists of a linear function that takes the pose
parameters θ ∈ R24×3 and shape parameters β ∈ R10 as in-
put and produces an articulated triangle mesh M ∈ R6980×3

containing 6890 vertices. Like in SMPL, we paramaterize
joint rotations with the exponential map representation. The
method of [22] uses a trained model to predict the twist
component for all body joints. In this work, we initially
set the twist to zero, and optimize it as part of the physics
optimization as we will explain later in this section.

Given the 3D body pose in all video frames t = [0, T ]
represented as local rotations θt, we first remove the the
high-frequency noise by smoothing the motion using a But-
terworth low-pass filter. The exponential map rotation suf-
fers from singularities at 2π rotations, hence we model
global root rotation by separating out global yaw rotation
and representing it with per-frame rotation offsets. Specifi-
cally1,

θroott =

(
t∑

τ=0

∆θroot,yawτ

)
∗ θroot,xyt

1We apply all mathematical operations on joint rotations including the
optimization using quaternion, but leave the conversion for brevity.
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Variable Description
β Body shape parameter for SMPL

model. It is static over time.
proott Root position.
∆θroot,yawt Delta axis angle rotation only along

the z gravity direction.
θjointst Axis angle local rotation of joints

root for each spline knot.
θroot,xyt XY rotation of root as unnormal-

ized xy quaternion.
f ct Scaled contact forces at the nc con-

tact sites.
∆ti Delta time to next spline knot.

Table 2: Overview of variables that are directly optimized, their
symbol and description. For all of the variables that depend on
time, we are actually optimizing the parameters of their respective
splines (including tangent values).

We apply the same smoothing procedure to the global root
positions proott as well. Gathering these, we represent the
overall motion in generalized coordinates qt = {proott , θt}.

Although this motion sequence can then be optimized
directly, we further model the motion with cubic splines to
constrain our motions to be smooth and reduce the dimen-
sionality of our optimization variables. Specifically, we use
cubic Hermite splines where the node positions of the spline
are initialized to temporally evenly spaced frames covering
the whole motion (effectively subsampling it by a factor
of 8) and the tangents are initialized according to the rule
for Catmull-Rom splines. To compute the full motion se-
quence, we simply query the spline at the sampling times of
the original motion sequence. We also optimize the timings
∆ti between the spline knots but found its inclusion to have
negligible impact on the final results.

3.3. Motion Optimization

In the motion optimization step, we refine the motion
by jointly optimizing the body shape β and global character
poses {qt}t=1:T to match both the pose estimator detections
as well as a full-body physics loss term that uses a smooth
contact penalty [38]. Note that we optimize only one set
of shape parameters β for the entire sequence, as the iden-
tity of the person does not change within a sequence. This
stage also optimizes corresponding ground contact forces
f ct which we parameterize with splines just as we do for the
pose. The total loss function to be optimized in our method
combines a physics loss with a pose estimation loss and a
smoothness regularization.

Ltotal = Lpose + Lphysics + Lsmooth

We detail each part below. We evaluate the losses at evenly
spaced discrete time points in the motion and average over
the entire sequence.

3.3.1 Physics Loss

We now detail the computation of our differentiable physics
loss function, given a motion and associated contact forces.

Assume that a temporally evenly spaced sequence of mo-
tion frames {qt}1:T and contact forces {f ct }1:T are given,
where qt and f ct represent the generalized coordinates and
global contact forces of the body at time t. The loss function
consists of three main parts:

Lphysics(qt, f
c
t ) = Ldynamics + Lcontact + Lpenetration

(1)
The dynamics loss penalizes impossible forces. Rigid body
dynamics satisfy the Newton-Euler equations which admits
a unique inverse dynamics function mapping motions to the
required generalized forces that would give rise to them.

frt (q(·)) = Mq̈t + Cq̇t + g (2)

The inverse dynamics computation involving mass matrix
M , centrifugal and coriolis forces Cq̇t and gravity g can
be efficiently computed using the Recursive Newton Euler
algorithm which exploits the sparsity structure induced by
the kinematic tree and we use finite difference approxima-
tions for the time derivatives of q(t). For a thorough tutorial
on rigid body dynamics, one can refer to [27]. Using frt
we can calculate the dynamics loss by comparing it to the
actual forces on the character.

Ldynamics = wdynamics||frt −Bfat − JT f ct ||2 (3)

Here JT maps all the contact forces from the contact points
onto the full space and similarly B maps joint actuation fat
forces to the full space. Instead of leaving fat as yet an-
other optimization variable, the optimal value of Bfat can
be easily chosen by assuming no limits on actuation force.
Practically this means that only residual forces on the root
(and other unactuated joints) will be penalized and other-
wise it is assumed that any extra acceleration is due to actu-
ation. Magnitude of joint actuation is implicitly limited by
penalizing acceleration of 3d joint positions and rotations,
described later.

The humanoid character model is approximated with
boxes, cylinders and spheres and differentiably scaled as a
function of the skeleton. We detail this in the supplemen-
tary. Full-body inertia is accurately accounted for in the
inverse dynamics loss and does not make use of centroidal
approximations as in prior work [36]. Contact forces are
assumed to be exerted only by the feet at 4 different contact
points (which we will refer to as end effectors) per foot that
lie on the corners of the box approximation to the feet as
in [44] and [43], although more contact locations could be
readily added to the current framework.

The contact cost penalizes violation of Signorini’s con-
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ditions for contact:

Lcontact =

nc∑
i

ct,i

(
we||et,i||2 + wė||ėt,i||2

)
(4)

Here, et,i ∈ R3 is the minimum displacement between the
ith end effector position and the contact surface and its time
derivative ėt,i is also included to prevent slip. They are pe-
nalized in proportion to the contact variable ct,i related to
the contact force. The contact variable represents the de-
gree to which a contact is present at that time step. It ranges
from 0 to 1 and is obtained through a soft step function of
the contact force magnitude as:

ct,i =
1

2
(tanh(k1||f ct,i|| − k2) + 1) (5)

The contact variable is a monotonically increasing function
of the contact force. Furthermore, it saturates for large val-
ues of f c. This can be seen as a soft-relaxation of the hard
step function in the complementarity condition. Intuitively,
optimality is reached by bringing the contact force to zero
and/or the contact distance to zero. Slipping and rolling
contacts are not considered in this work.

Without further restrictions the contact objective only
penalizes violation of the Signorini conditions when it
specifically chooses to apply contact force. As such the
method can generate motions with penetrating objects with-
out contact force. To avoid this, a separate term is used to
explicitly penalize interpenetration:

Lpenetration = wpen

nc∑
i

max({dt,i + kmargin, 0})2 (6)

Here, dt,i is the signed distance of the contact surface at the
ith end effector which is negative if it is penetrating.

3.3.2 Pose Estimation Loss

The pose fitting loss Lpose we use is common in human
shape estimation [3]. Lpose is evaluated per frame and
summed. It measures the motion error in terms of local 3d
keypoints deviation, global camera projected 2d keypoint
deviations, log probability of the motion under a pose prior
and deviation of the SMPL body shape from the mean body
shape.

We also use a kinematic acceleration penalty to ensure
our motions are smooth.

Lsmooth =
1

njoints
(wθ̈||θ̈t||

2 + wp̈||p̈t||2) (7)

Here p̈t is the global linear acceleration of the joints.
All of our loss terms have tuned weights which are de-

tailed in the supplementary along with additional loss de-
tails. Although our method is not overly sensitive to this

tuning, it is important to have a good balance between
weighing Ldynamics and Lcontact. Outside of that, the bal-
ance between Lphysics and Lpose was loosely tuned such
that Lpose does not deviate much from a purely kinematic
optimization.

3.3.3 Implementation Details

We implement our full pipeline in PyTorch and use an off-
the-shelf implementation of the LBFGS optimizer [39] with
a history size of 100, base step size of 1.0 and Armijo-Wolfe
line search. The optimization is run in 2 stages totalling 750
iterations. First 250 iterations of kinematic optimization is
performed where the only difference is that Lphysics loss
is disabled, then 500 iterations of physics optimization is
performed with Lphysics enabled. The LBFGS memory is
cleared between the 2 stages.

3.4. Generative Model

Once our motion has been optimized we can use it like a
standard motion capture dataset.

In particular, we demonstrate that it can be used to train
motion synthesis model that are typically only trained on
mocap datasets. We follow prior work in generative human
motion synthesis and adopt the state of the art Diversifying
Latent Flows (DLow) method [56]. DLow uses a standard
recurrent conditional VAE (CVAE) with a GRU encoder,
auto-regressive decoder architecture to predict future mo-
tion given a short clip of past motion as context. Addition-
ally it uses a learned post-hoc sampling strategy that opti-
mizes directly for both best-of-1 accuracy and diversity of a
finite number set of future motion predictions.

DLow takes as input and produces as output a sequence
of root relative 3d keypoint positions and root velocities.

4. Experimental Results
In this section we evaluate our method and compare to

previous work. We split our evaluations into the two stages
of our pipeline. We first provide experimental details of our
evaluation setting 4.1. Next, we evaluate our physics refine-
ment step for pose estimation and compare against state of
the art physics-based approach PhysCap [44] and pose es-
timators HMR [16], HMMR [17], and VIBE [18]. Finally,
we demonstrate the benefits of using our physics optimiza-
tion correction in terms of downstream performance on mo-
tion synthesis.

4.1. Dataset and Experimental Setting

We use the large scale Human3.6M dataset for our
evaluations (and additional comparison to [43] on Hu-
manEva [45] is provided in the supplementary). Motions
were recorded from 4 cameras and a motion capture system
was used to produce accurate annotations for the character.
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HMR [16] HMMR [17] PhysCap [44] Ours (kin) Ours (dyn) VIBE*
no Procrustes MPJPE (↓) 78.9 79.4 97.4 73.6 68.1 65.6
global root position (↓) 204.2 231.1 182.6 148.2 85.1 -
esmooth (↓) 11.2 6.8 7.2 5.42 4.0 -
σsmooth (↓) 12.7 5.9 6.9 1.06 1.3 -

Table 3: Comparison of pose estimation accuracy and quality metrics for our method with physics (dyn) and without physics
(kin) along with competitive pose estimator baselines. All errors are measured in millimeters. VIBE [18] is a strong oracle
method that uses the large-scale AMASS [32] motion capture dataset for training. Note that as PhysCap [44] and the other
baselines operate at 25fps, we downsample our 50fps motion for making a direct comparison.

We use subjects 9 and 11 which form the standard validation
set and use the same motions as PhysCap [44]. Specifically,
these motions do not include interactions with the chair ob-
ject or lying/sitting motions. They are: directions, discus-
sions, greeting, posing, purchases, taking photos, waiting,
walking, walking dog and walking together.

4.2. Physics-corrected Pose Estimation

Through our evaluation we want to answer the following
questions: 1) Does our proposed physics loss improve the
accuracy of pose estimation?, 2) Does it improve the phys-
ical plausibility of pose estimation?, and 3) How does our
method compare against other physics/temporal pose esti-
mation methods?

As we do not have access to the DeepCap dataset [9], we
evaluate our method on the large scale Human3.6m dataset.
We split motions into even chunks such that they are be-
low 2000 frames (40 seconds). Most motions can be pro-
cessed in one or two chunks, but a few motions require three
chunks. Optimization completes in 3-4 minutes for a chunk
of length 40 seconds.

Baselines. To address the first 2 points, we introduce a
kinematic optimization baseline, which is equivalent to our
method in all aspects, except that Lphysics is not included in
the total loss for optimization (and consequently the end ef-
fector forces are also not included in the optimization vari-
ables). We also compare against HMMR [17], which is a
kinematic 3D mesh and pose prediction model from videos
of human motions in the wild. We further compare to its
predecessor, HMR [16], which performs a similar function
given a single RGB image, as opposed to a video. Our third
baseline is PhysCap [44], a physics-based 3D pose pre-
diction model from monocular video that includes contact
modeling and minimizes foot-to-floor penetration, unlike
other similar methods. We also compare against VIBE [18],
a strong oracle that predicts both pose and body shape, but
which has been trained on the large-scale AMASS [32] mo-
tion capture dataset. Similarly to HMR and HMMR, VIBE
relies on an adversarial objectives that discriminates be-
tween mocap motion and predicted motion.

Evaluation metrics. We adopt evaluation metrics out-
lined in PhysCap [44]. Following standard practice, we
measure mean per joint position error (MPJPE) on the 15
joint reduced skeleton and the mean global root position er-
ror. The esmooth loss is also introduced in PhysCap and we
report it as well. It measures the difference in 3d keypoint
velocity magnitude between the ground truth motion and
the predicted motion which illustrates the amount of jitter-
ing present in the motion and is computed as follows:

Ĵ it = ||p̂t − p̂t−1|| (8)

JitGT = ||pGTt − pGTt−1|| (9)

esmooth =

T∑
t

∑
joints

||pGTt − pGTt−1|| (10)

Pose estimators that do not make use of physics losses
often violate the conditions of static contact. We create met-
rics based on the foot joint that directly aim to measure this.
Contact condition violation occurs in two ways which we
design metrics for to test. To evaluate foot floating arte-
facts, we compare foot global z position error (efoot,z) on
ground truth:

efoot,z = mean(|p̂foot,z − pGTfoot,z|) (11)

To evaluate foot sliding artefacts, we compare foot global
xy velocity error (efoot,vxy) with respect to ground truth.

efoot,vxy = mean(||∆tp̂foot,xy −∆tp
GT
foot,xy||) (12)

Results. We detail our pose estimation accuracy results
in Table 3. Our method greatly outperforms PhysCap [44]
on root-aligned mean joint position error without procrustes
alignment. In fact, our method approaches learning-based
video pose estimation methods that leverage the large scale
AMASS motion capture datasets [32] to form a motion
prior. Our kinematic motion baseline is competitive with
HMR [16] and HMMR [17] on its own, demonstrating the
power of optimization-based pose estimation.

Furthermore, we greatly improve in terms of global root
position estimation as well. We attribute this to the fact that
we optimize motion and body shape jointly along with our
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efoot,vxy (↓) efoot,z (↓)
Ours (kin) 4.65 95.7
Ours (dyn) 2.71 18.9

Table 4: Ablation comparison of contact-sensitive metrics, foot
tangential velocity error (efoot,vxy) and foot global height error
(efoot,z) with and without physics loss.

contact-aware physics loss. Thereby the movement of 2d
joint detections over time can help estimation of the bone
lengths as can be seen Fig 3, instead of taking the initial
average bone lengths without further refinement as done
in PhysCap [44]. This shows that relying on temporally
learned pose estimators alone to recover global scale and
bone lengths is suboptimal. PhysCap does not have a direct
mechanism to allow these bone lengths to be optimized with
respect to contact aware losses as they optimize in separate
iterative stages. However, we have a single differentiable
objective that is jointly optimized with all variables includ-
ing shape parameters.

The addition of the physics loss makes a noticable im-
provement in terms of MPJPE and a very large improve-
ment on global root position and esmooth. The large im-
provement in the joint speed error esmooth is immediately
visible in videos of the two approaches which are included
in supplementary. For our kinematic baseline, without guid-
ance on when contacts are formed and broken, feet joints
of the character can often slide side to side during contact
and without enforcement of the Newton Euler equations,
the root of the character can freely move without limitations
and often slide side to side during fast walking phases.

The major contributor to the difference in global root
position error is due to depth ambiguity. Whereas, the
kinematic baseline can only form a rough approximation
to depth using body priors and motion cues, our physics
loss enforces contact with the ground plane directly, greatly
improving depth estimation. We further find the benefits
of including the physics loss on the physical plausibility of
contacts through our custom metrics outlined in Table 4.
Specifically, the physics loss reduces foot tangent velocity
error by more than 40% and height error by 80%.

Qualitative results. Measuring the quality of motion cap-
ture is difficult and quantitative metrics do not always paint
the full picture. We include qualitative examples of our out-
put as composited renders. We also show representative
failure cases from the most inaccurate frames of our pre-
dictions in Fig. 5.

Many of the largest error cases occur near crouching mo-
tions. Here we are mainly limited by our geometric charac-
ter approximation. The box geometry of our character does
not capture the true underlying foot geometry. Our model
is unable to represent significant foot flexion. However, we
note that the character pose is still stable and the contact of

Figure 3: Optimization result on video. Here we show a photo
snapping motion produced by our framework, video frames from
the input motion are included below.

Figure 4: Pose estimation result. In light orange is the motion
initialization for our optimization, in blue is the final output of our
method overlayed on the red skeleton which is ground truth joints.
In the camera view on the right, the initial pose looks plausible, but
is refined drastically as the body shape is optimized by our method
as seen on the side view shown on the left.

Figure 5: Failure cases. Even when the mocap reconstruction
error is quite high, the motion output of our method still evaluates
consistently low under our physics loss and visually looks phys-
ically plausible. These failure cases are selected from the worst
performing frames in terms of mocap reconstruction.

our end effectors still engaged with the ground plane.
We also note that estimated contacts are also realistic. In

fact, even though we do not use a contact detection network,
we are still able to estimate realistic forces from only video
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input. Figure 3 qualitatively demonstrates estimated ground
contact forces during a typical walking gait.

4.3. Motion Synthesis from Video

Here we show results for our combined framework that
trains a motion generative model from video. Through our
evaluation we want to answer the following questions: 1)
When trained with only our pose estimation-generated data,
can we learn high quality motion synthesis models?, 2) How
much does our physics loss in the pose estimation step im-
prove the performance of the down-stream motion synthesis
model?

To address these questions, we train the same DLow [56]
model with 3 different training datasets. DLow(GT) is the
oracle model that trains with actual mocap data. DLow(PE-
dyn) is our proposed method that uses the physics corrected
pose estimation results from the previous stage. DLow(PE-
kin) is a baseline that uses the kinematically-optimized pose
estimation results from the previous stage and is used to
ablate the benefit of using physics loss. We also include the
results of the standard VAEs trained in the different fashions
without DLow sampling.

We keep experimental settings identical between the 3
and the only varying factor is the input training data. Ul-
timately we evaluate the trained motion synthesis models
on the ground truth validation set. As the Human3.6M [12]
dataset contains multi-view cameras for each motion, we
only make use of videos from the first camera to generate
our datasets which simulates a monocular RGB video set-
ting. We follow a similar evaluation protocol to DLow [56]
and compare against it.

Additionally, as we limit our pose estimator to the valida-
tion set of Human3.6m, we only train the motion synthesis
model with motions from the two characters, (S9 and S11).
Therefore we split the motions from S9 and S11 evenly into
a training and evaluation set for the motion synthesis model.
Specifically, every motion named ’[Action] 1’ is used for
validation leaving, one other motion of the same action type
in the training set.

Apart from this, we use the exact same experimental set-
tings as in DLow [56]. Given a context of 0.5 seconds,
DLow predicts the future 2 seconds of the motion. All mo-
tions are sampled at the original 50FPS of the mocap. We
use DLow with 10 output motion modes.

Evaluation metrics. We report standard metrics used in
motion synthesis. The two distinct objectives of motion
synthesis is to generate diverse, yet accurate motions. Ac-
curacy is measured on the 15 joint skeleton model, average
distance error (ADE) measures average root-aligned joint
position error averaged over the predicted future motion se-
quence and final distance error (FDE) is the same, but mea-
sured only at the final frame of the predicted motion, which

Diversity (↑) ADE (↓) FDE (↓)
DLow(PE-kin) 10.53 0.590 0.698
DLow(PE-dyn) 10.96 0.573 0.685
DLow(GT)* 12.22 0.490 0.617
cVAE(PE-kin) 7.419 0.639 0.756
cVAE(PE-dyn) 7.413 0.612 0.738
cVAE(GT)* 6.801 0.5617 0.706
ERD(GT)* 0 0.722 0.969

Table 5: Comparison of motion synthesis diversity and accu-
racy between motion synthesis models with different training data.
Note that the errors are measured in meters as we stick to the con-
vention in motion synthesis works. The (GT)* denotes that the
method was trained with ground truth mocap data, not estimated
from video and should be understood to be an oracle baseline. PE-
dyn is using our physics corrected pose estimation dataset and PE-
kin is ablating away the physics loss in the physics correction.

emphasizes longer term accuracy. Both metrics are in me-
ters. Diversity is measured by average pairwise distance
(APD). Given the set of samples produced by the motion
synthesizer this gives the average L2 distance between all
pairs of motion samples.

Results. We tabulate the evaluation of our models in Ta-
ble 5. The cVAE is the VAE that forms the backbone for the
DLow method. As expected we do not match the quality
of the oracle model which uses ground truth motion capture
data. However, we are very competitive with this oracle.
DLow trained using our physics corrected input (PE-dyn)
is only worse in average joint distance by 16.9%, in final
distance error by 11.0% and in average motion diversity by
10.3%. For both the DLow model and the cVAE model,
adding physics loss to the correction step for generating
training data consistently improves all evaluated metrics.

Qualitative results. Please see the supplementary for
videos and visualizations of the motions produced from our
trained motion model.

5. Conclusion

In this paper, we introduced a new framework for
training motion synthesis models from raw video pose
estimations without making use of motion capture data.
Our framework refines noisy pose estimates by enforcing
physics constraints through contact invariant optimization,
including computation of contact forces. We then train a
time-series generative model on the refined poses, synthe-
sizing both future motion and contact forces. Our results
demonstrated significant performance boosts in both, pose-
estimation via our physics-based refinement, and motion
synthesis results from video. We hope that our work will
lead to more scaleable human motion synthesis by leverag-
ing large online video resources.
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