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Figure 1: We propose a differentiable framework to estimate underwater scene geometry along with the time-varying water
surface. The inputs to our model are a video sequence captured by a fixed camera. Dense correspondence from each frame
to a world reference frame (selected from the input sequences) is pre-computed, ensuring the reconstruction is performed
in a unified coordinate system. We feed the flow fields, together with initialized water surfaces and scene geometry (all are
initialized as planar surfaces), into the framework, which incorporates ray casting, Snell’s law and multi-view triangulation.
The gradients of the specially designed losses with respect to water surfaces and scene geometry are back-propagated, and
all parameters are simultaneously optimized. The final result is a quality reconstruction of the underwater scene, along with
an estimate of the time-varying water-air interface. The data shown here was captured in a public fountain environment.

Abstract

We present a method for reconstructing the 3D shape of
underwater environments from a single, stationary camera
placed above the water. We propose a novel differentiable
framework, which, to our knowledge, is the first single-
camera solution that is capable of simultaneously retrieving
the structure of dynamic water surfaces and static underwa-
ter scene geometry in the wild. This framework integrates
ray casting of Snell’s law at the refractive interface, multi-
view triangulation and specially designed loss functions.

Our method is calibration-free, and thus it is easy to col-
lect data outdoors in uncontrolled environments. Experi-
mental results show that our method is able to realize robust
and quality reconstructions on a variety of scenes, both in a
laboratory environment and in the wild, and even in a salt
water environment. We believe the method is promising for
applications in surveying and environmental monitoring.

1. Introduction

Shallow waters in rivers, lakes, and oceanfronts are im-
portant sites both for their ecosystems, as well as for their
economic significance. Environmental monitoring and sur-
veying of these shallow water regions is therefore a task of
comparable importance. Unfortunately, detailed 3D scan-
ning of such environments is currently cumbersome, since it
requires placing cameras or 3D scanners under water, which
incurs significant equipment costs, and results in slow ac-
quisition time.

A more convenient solution would be to 3D image the
environment directly from above water. This is a rather
challenging problem, since the fluid, acting as a transmit-
ting medium, is unknown and usually non-stationary. The
refraction changes dynamically, and causes a time-varying
distortion of the underwater scene. While there has been
some work on this problem over the years [26, 36, 1, 11],
the state of the art methods require extensive calibration and



work primarily in laboratory settings.
In contrast, our method requires no calibration and works

“in the wild”. We are able to reconstruct underwater geom-
etry up to a global scale factor, using a single, stationary
camera. The distortions from the moving water surface pro-
vide a changing parallax for each point on the underwater
surface. If this parallax is known, it can be used to triangu-
late the underwater geometry.

We utilize this observation by jointly estimating both the
underwater geometry and the dynamic shape of the water
surface (Fig. 1). To this end, we propose a novel differ-
entiable framework governed by ray casting, Snell’s law
at the refractive interface, and multi-view triangulation, to
tie together all parameters in an integrated image formation
model. With our specifically designed loss function, we can
progressively and simultaneously optimize the structures of
water surfaces and scene geometry to fit the model. Our
method is calibration-free and uses only a video sequence
as input. Specifically, we make the following contributions:

¥ We establish a connection between the distorted pat-
terns observed by a single camera and the time-varying
fluid structures and the underwater 3D scene geometry.

¥ We formulate a differentiable framework to recon-
struct unknown dynamic water surfaces and scene ge-
ometry simultaneously with a specially constructed
objective function.

¥ We demonstrate our method on a variety of synthetic
and real scenes. The real scenes are conducted both in
the lab and in the wild. We even test the method over
seawater.

2. Related work
Transparent Object Reconstruction The reconstruction
of transparent objects is complicated by the change in light
direction at the object interface due to refraction [10]. Con-
ventional multi-view stereo vision, designed for diffuse ob-
jects with Lambertian reflection, is not applicable to these
types of objects. Recently, various approaches have been
proposed for rigid transparent object reconstruction. Most
of the work is realized with specialized hardware setups,
for instance light field probes are proposed to capture the
changes of the refractive index field [28], a Time-of-Flight
camera is used to measure the distorted depth based on the
varying speeds of light in transmission mediums with dif-
ferent refractive indexes [23], a tomographic camera sys-
tem [27], variable illuminations [35], a specialized water
tank setup to alter light paths [7], or coded patterns to illu-
minate the scene and a turntable to realize diverse view-
points [31, 18] are proposed. Li et al. [16] propose a
learning-based strategy for the transparent shape recovery.
They use a rendering layer to model the imaging process of

refraction and reflection with arbitrary environment maps,
however, the background environments must also be mea-
sured ahead of time for correspondence estimation.

Fluid Reconstruction Many fluids are special types of
transparent objects, and they are usually non-stationary.
Time-resolved recovery of fluid structures can be realized
by tracing the motions of the immersed tracers in the fluids.
In the literature, the methods for reconstructing image phe-
nomena, e.g. smoke [8, 6], dye [5, 4] and particles [33, 32],
have been developed.

A variety of non-intrusive approaches have also been
proposed to estimate the shape of fluids by analyzing the
distortions of background patterns. The problem of recon-
structing time-varying inhomogeneous refractive index dis-
tributions have been addressed in [2, 13]. Dedicated optical
setups with active illuminations are presented for acquir-
ing fluid structures [29, 34]. Morris et al. [19] extend the
traditional multi-view triangulation to be appropriate for re-
fractive scenes, and build up a stereo setup for water sur-
face recovery. A learning-based single-image approach has
recently been presented for recovering dynamic fluid sur-
faces [24]. Like reconstructing rigid transparent objects,
the above mentioned work requires an undistorted reference
image of the background patterns or known reference pat-
terns to construct a ray-ray correspondence. Qian et al. [21]
build a 3 ! 3 camera array and exploit the correspondence
from multiple viewpoints to estimate the water surface and
the underwater scenes. In contrast, our method only em-
ploys a single camera, and extract the time-varying, yet
temporally stable, water surfaces and geometrically regu-
larized underwater scenes by analyzing the temporal distor-
tions and forming a multi-view triangulation over time.

Reconstructing refractive surfaces is also related to spec-
ular object reconstruction [10, 17, 37, 30] and image
restoration from refractive distortion [25, 20, 15, 12].

Structure from Distortion Optical distortion can be seen
in many places in reality. As previously described, transpar-
ent objects made of glasses or plastics, non-stationary water
surfaces can bend the light rays passing through them and
cause distorted patterns from the camera view. The shape of
the transparent objects could be retrieved by measuring the
ray deflection. Accordingly, this deflection provides differ-
ent viewpoints of the background scenes, which allows for
triangulation of the depth information.

By the fact that the transparent object itself is compli-
cated to reconstruct, seminal work imposes strong assump-
tions when constructing depth cues from distorted images
to 3D coordinates of the scene points. Tian et al. [26] ex-
tract the depth of the scenes from the fluctuation of pro-
jected image pixels measured by a fixed camera. Simi-
larly, Alterman et al. [1] exploit refractive distortions of
a stereo setup to yield a position likelihood of the object



via stochastic triangulation. These statistical approaches as-
sume that the fluctuation of the distorted patterns is random
over time. Knowing that light paths are bent by the water
surface via Snell’s law when crossing water-air interface,
the time-varying fluid structures cannot be determined from
their approaches. Chen et al. [3] propose to use a trans-
parent medium with parallel planar faces to gain a refrac-
tive view for triangulation. Zhang et al. [36] reconstruct
fluid surface and immersed scene structures by analyzing
the cues of distortion and defocus. Their method requires
an undistorted reference image, which is inaccessible out-
side the lab. Moreover, they assume the surface normal to
be the same for surface areas where the defocus patterns are
back-projected to, which does not hold for real fluids. Ju-
lian et al. [11] propose to extract the scene depth by looking
through a wetted window, where each water drop provides
a distorted view of the scene. Their approach estimates the
structure of water drops and pixel-to-ray mappings, while
an assumption of a low-parameter model is imposed on the
water drops. Fully characterizing the water drops is as chal-
lenge as reconstructing transparent objects. In comparison,
we could realize full characterizations on both the back-
ground scene geometry and time-varying water surfaces.

3. Differentiable Framework

The reconstruction task is to estimate the underwater
scene geometry from a single camera. In the meantime,
a dynamic water surface needs to be estimated to establish
multi-view triangulation. This task is challenging as any
update of one of the two geometries also implies changes to
the other. We propose a differentiable framework, integrat-
ing both ray casting based on Snell’s law, and multi-view
triangulation to estimate both geometries from the distor-
tion patterns in the captured video frames. In this frame-
work, the gradients with respect to the parameters of wa-
ter surfaces and underwater scene geometry are computed
through back-propagation from specifically designed loss
functions, and therefore they can be updated simultane-
ously. In the following, we describe how we parameterize
the water surface and the underwater scene geometry, how
to construct the framework and tailored loss functions.

Notation. Points and vectors are represented by bold let-
ters, for instance o denotes the nodal point, n denotes the
surface normal. Objects are represented by italic capital let-
ters, for instance S denotes the water surface, P denotes the
underwater scene. Scalar values are represented by italic
letters, for instance B denotes a B-spline coefficient, ! de-
notes the weights compensate for different loss functions.
(x, y) and t denotes the pixel position in the image plane
and t-th frame in the video sequence, and are referenced
with superscripts and subscripts, respectively.

3.1. Surface and Scene Representation

In our setup as illustrated in Fig. 2 left, the camera is
placed at the origin of the coordinate system, and its princi-
ple axis is aligned with the z-axis. The water surface S is
parameterized by image plane coordinate (x, y). Suppose
we work with a pinhole camera model, and the focal dis-
tance is 1, the emitted ray from image point (x, y) intersects
with S at:

sx,y = D x,y (x, y, 1)! , (1)
where D x,y is the vertical distance from the camera nodal
point to its corresponding intersection point sx,y . This pa-
rameterization can model the shape of the water surface
by finding the function of D x,y and explicitly tracing the
rays where they are refracted. Moreover, this representation
makes it straightforward to apply both spatial and tempo-
ral regularizers to the non-stationary water surfaces, as de-
scribed in Sec. 3.4. D x,y is represented by a set of uniform
cubic B-spline patches, making the surface C2 continuity.
Specifically, for any point (x, y) within the image plane,

D x,y =
m x!

i =0

m y!

j =0

Ci,j B i (x)Bj (y), (2)

where Ci,j is a control point in a mx ! my patch
{ C1,1, C1,2, ..., Cm x ,m y } . Bi (x) and Bj (y) are the cubic
B-spline basis functions that can be derived knowing (x, y).
Fig. 2 illustrates how the surface is parameterized and an
example of a 4 ! 4 patch. For simplicity of notation, we
rewrite Eq. 2 in its vector form:

D x,y = b! c, (3)

where b " Rm x m y " 1 and c " Rm x m y " 1 are constructed
from vectorized basis functions and control points. The in-
tersection point between the ray from image point (x, y) and
water surface is then written as:

sx,y = b! c(x, y, 1)! . (4)

The surface normal at sx,y can also be computed in the form
of a cross product of ! sx,y

!x and ! sx,y

!y . Derived from Eq. 4,
it yields:

nx,y =
" " b!

"x
c,

" b!

"y
c, # x

" b!

"x
c # y

" b!

"y
c # b! c

#!
.

(5)
! b !

!x and ! b !

!y can be explicitly derived from the cubic B-

spline basis functions. b , ! b !

!x and ! b !

!y need to be com-
puted once, and are reused in the optimization procedure.

Given a camera ray ex,y intersecting sx,y , where ex,y =
o# sx,y , and the corresponding surface normal at nx,y , from
Snell’s law, we can compute the refracted ray at sx,y as:

r x,y =

$ %

1 # (
1
#

)2(1 # nx,y áex,y )2 #
1
#

nx,y áex,y

&

nx,y

+
1
#

ex,y , (6)
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Figure 2: Left: An illustration of our setup. A camera is placed above the water. The rays from the camera are traced,
which are refracted by the water-air interface following Snell’s law. The interface is represented by a set of control points
corresponding to a uniform cubic B-spline surface. We show an example of a 4! 4 cubic B-spline patch. Right: A schematic
diagram for multi-time triangulation. At consecutive frames, a surface point p is observed at different pixel positions due to
the time-varying distortion caused by refraction in the water surface. This effect provides the parallax needed to triangulate
the depth of the surface point. The pixel position is referenced with superscripts, and time frame is referenced with subscripts.

where ádenotes dot product, and # is the refractive index of
water (we let # be 1.33 and the refractive index of air be 1).
The refracted ray r x,y intersects with the underwater scene
P at the point defined by:

px,y = (p x , py , pz )! , (7)

where px , py , pz are the x, y, and z-coordinates. Unlike the
water surface, the underwater geometry is represented as a
discrete point cloud, since the scene structure may not nec-
essarily be smooth. We assume the underwater scene to be a
Lambertian surface, so that the brightness constancy holds
(all surface points appear the same color from all observa-
tion angles).

3.2. Multi-Time Triangulation

Knowing only sx,y and r x,y , we cannot determine the
coordinate of px,y . As in multi-view 3D reconstruction, the
3D position can be determined as the intersection of mul-
tiple projection rays. We exploit the property of dynamic
water surfaces to establish a multi-time triangulation. The
light rays from the underwater scene change direction when
passing through the water-air interface, and thus the projec-
tion of the scene onto image plane varies over time. The
variance of the projected positions relates to the structure of
non-stationary water surface. Given two light paths at time
step t and t + 1 as an example as demonstrated in Fig. 2
right, the rays from a scene point p intersect with the wa-
ter surface at sx t ,y t

t and sx t +1 ,y t +1
t +1 at two consecutive time

steps, and they are observed by the same camera at image
positions (xt , yt ) and (xt +1 , yt +1 ), respectively. The image
displacement (xt , yt ) # (xt +1 , yt +1 ) can be obtained from
computing the optical flow of those two frames.

Given the surface information, rays from image pix-
els (xt , yt ) and (xt +1 , yt +1 ) are traced, and we can ob-
tain sx t ,y t

t and r x t ,y t
t for time step t , and sx t +1 ,y t +1

t +1 and
r x t +1 ,y t +1

t +1 for time step t +1 following Eq. 4-Eq. 6. Finding
the 3D position of intersected underwater points is equiva-
lent to solving a minimization problem for finding the point
with the closest distance from both refracted rays. To gen-
eralize the model to a video frame with in total T frames,
the objective function is formulated as:

dis(p, S1, ..., ST ) =
T!

t =1

$p # sx t ,y t
t #

"
(p # sx t ,y t

t )! r x t ,y t
t

#
r x t ,y t

t $2
2, (8)

where dis(p, S1, ....ST ) defines the summation of the dis-
tance of a particular underwater point cloud p to its asso-
ciated refractive rays generated from surface structures at
various time steps (ranging from 1 to T ). This term ties
together all frames.

Confidence Mask. The computation of point cloud 3D po-
sitions relies on an accurate estimation of the image dis-
placement. It is known that the computation of optical flow
between two frames is prone to error in the presence of
large motions, extreme distortions, and dramatic illumina-
tion changes. All of these issues may occur for captured
underwater point clouds. In a global optimization, mis-
estimated flows in one area may negatively impact the re-
construction accuracy everywhere. We introduce a confi-
dence mask to suppress unreliable rays when finding the
intersection point. The modified Eq. 8 is then expressed as:



dis(p, S1, ..., ST ) =
T!

t =1

M t $p # sx t ,y t
t #

"
(p # sx t ,y t

t )! r x t ,y t
t

#
r x t ,y t

t $2
2, (9)

where M t is the confidence mask for that scene point at
time step t . The mask is determined by backward warp-
ing the t-th frame to see whether the image pixels match,
which is not updated in the optimization framework. If the
pixels match, let M t be 1, otherwise, let M t be 0. With
the employment of the confidence mask, a false refrac-
tive rays will not be counted when computing the value of
dis(p, S1, ....ST ). This will enhance the robustness of the
reconstruction method as demonstrated in Sec. 4.

3.3. Integrating Surfaces and Underwater Scenes

In our setting, the estimation of the surface structure and
underwater point clouds are codependent – updating one
variable causes changes in another one. Previous work tack-
les this type of problem in an iterative scheme, alternat-
ing on these two subproblems and each of them is solved
independently. We propose a novel strategy to integrate
both factors into a differentiable framework as illustrated in
Fig. 1. This framework integrates tracing the camera rays to
find intersection points with water surfaces, refracting the
rays passing through water-air interface following Snell’s
law and finding the underwater scene geometry via multi-
time triangulation. Given the framework with underwater
point clouds and time-varying water surfaces, the loss of the
entire model is computed through forward propagation fol-
lowing the designed pipeline. Afterwards, the variables are
simultaneously optimized from the back-propagated gradi-
ents from the model loss. The objective function of the
framework is defined as:
L total = ! 1L distance + ! 2L curvature + ! 3L temporal + ! 4L projection,

(10)
which is a weighted summation of distance loss, curvature
loss, temporal loss and projection loss. In the optimiza-
tion process, the surfaces and the scene geometry are all
initialized as planar surfaces. All parameters are progres-
sively and simultaneously updated, and finally the model
converges at stationary points (also see supplement). In the
following, we discuss each component of the loss functions.

3.4. Loss Function
Distance Loss. The optimized water surfaces and underwa-
ter point clouds should be consistent with the input video
in the sense that refracted rays corresponding to the scene
point in different frames (as identified by the optical flow)
should actually meet at the same 3D point, which also co-
incides with a point in the 3D point cloud. This is achieved
by minimizing the defined distance loss function:

L distance =
!

p #P

dis(p, S1, ..., ST ). (11)

This distance loss term is adopted from Eq. 9, which is
applied to all underwater point clouds. The structures of
the underwater scene and the time-varying water surfaces
are integrated in this term, which makes them codependent.
Notice that this term is non-convex since there always exists
a single-view depth-normal ambiguity [19].

Curvature and Temporal Loss. Applying additional reg-
ularization terms on the water surface is a common strat-
egy to encourage a smooth and temporal coherent recon-
struction. Spatial and temporal smoothness are two basic
features for dynamic water surfaces. We employ the mean
curvature loss to govern its spatial smoothness, which is ap-
proximated as:

L curvature =
T!

t =1

$
" 2ct

"x 2 $2
2 + $

" 2ct

"y 2 $2
2. (12)

We further use the wave equation as a rough model govern-
ing the evolution of the water surface over time. Therefore,
the temporal loss can be written as:

L temporal =
T $ 1!

t =2

$
" 2ct

"t 2 # c2
'

" 2ct

"x 2 +
" 2ct

"y 2

(
$2

2, (13)

where c is the magnitude of the velocity. The applied pa-
rameterization strategy makes these two loss functions easy
to compute, and ensures that the gradients with respect to
time-varying surfaces can be propagated in the framework.

Projection Loss. Imposing regularization terms on the un-
derwater scene geometry is not trivial as for the water sur-
face. The rays originating from adjacent underwater scene
points interlace after passing through wavy water surface,
thus their projected image pixels may not be adjacent [21].
Imposing spatial smoothness simply on the captured image
pixels is not effective.

Clearly, this adjacency relationship holds when the wa-
ter surface is flat or there is no interference of water
(a standard 3D-to-2D perspective projection). It would
be feasible to enforce spatial smoothness on the virtually
projected heightmaps of the point clouds – the projected
heightmap synthesized from flat water surface or the pro-
jected heightmap synthesized from direct perspective pro-
jection. However, generating the first heightmap involves
an iterative projection operation as bending of light paths
occurs at the water-air interface. In contrast, generating
the second heightmap is relatively easier, a linear operator
projects the 3D point clouds to the image plane. We choose
the second option in our implementation to regularize re-
covered underwater point clouds. Specifically, we define h
as the synthesized heightmap projected from the estimated
point clouds, and the $1 norm of its gradient is defined as
the projection loss, which could be written as:

L projection = $%h$1. (14)
This term proves to be effective in smoothing out the noise
while preserving edge information in the recovered scenes.



4. Results and Discussions
The cubic B-spline coefficients and confidence masks

were pre-computed and were stored in sparse matrices. We
implemented the proposed algorithm in PyTorch. We used
Adam [14] for optimization. The learning rate for under-
water point clouds is set to 5e$ 2, and the learning rate for
water surfaces is set to 1e$ 3 and is reduced to 1e$ 4 after
1000iterations. The program takes around 2 hours to pro-
cess a total of 120frames with 30,000 reconstructed points,
using 1600iterations on a Nvidia 2080 Ti GPU.

4.1. Synthetic Experiments

We first conduct synthetic experiments to validate the
proposed reconstruction framework. We use the Middle-
bury dataset [9] to model the 3D underwater scene (20 dif-
ferent scenes), and the dynamic water surfaces are repre-
sented as a sum of multiple waves from point sources. We
set the focal length of the camera to 1 unit, and the pixel
size to 0.01 units. The camera is vertically placed above the
water at a distance of 20 units. The depth of the underwa-
ter scene ranges from 40 to 60 units from the camera. The
refractive index of water is fixed at 1.33. A sequence of
120 consecutive distorted images is generated by ray trac-
ing. Taking one frame from the sequence as a reference, we
compute the optical flows to all other frames using the flow
estimation model PWC-Net [22].

The single-view depth-normal ambiguity exists on the
depth and normal of the water surface [19], and it forms
a non-convex reconstruction problem, there could be a set
of solutions satisfying the constraints. By fixing the time-
varying water surfaces, the underwater point clouds become
deterministic. Therefore, we can quantitatively evaluate the
reconstruction accuracy on the point clouds with known wa-
ter surface and study the effectiveness of the confidence
mask and projection loss. This reconstruction problem can
still be solved in the same framework.

For evaluation, we use the metric of average Euclidean
distance measured between the true and the estimated posi-
tions of the point clouds. We set ! 1 = 1 , ! 2 = ! 3 = 100
and ! 4 = T e$ 5 for all experiments. Table. 1 shows the av-
erage Euclidean distance under different experimental set-
tings on the synthetic experiments. In general, our model
yields higher reconstruction accuracy for the point clouds
when using more frames. This is similar to the behavior of
multi-view 3D reconstruction methods. Erroneous optical
flow estimates contribute to uncertainly in the point cloud,
and using more input frames provides more diverse viewing
angles of the scenes, which reduces the noise.

The use of a confidence mask and the total-variation reg-
ularizer on the projected heightmap of the point clouds also
proves effective in addressing this uncertainty. The confi-
dence masks filter out those erroneous viewing angles, and
the regularizer further smooths out the depth of the esti-

Table 1: Average Euclidean distance between the true and
the estimated point clouds on synthetic data with different
parameter and experimental settings.

Number of Frames 30 60 120
w/o Projection Loss 0.286 0.265 0.255
w/o Confidence Mask 0.278 0.258 0.249
w/o both 0.306 0.284 0.271
Full model 0.254 0.233 0.227
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Figure 3: Comparisons of the estimated underwater scenes.
A modified approach from [24] serves as a baseline. Our
method could produce a reasonable recovery of the under-
water scene. Notice that the baseline method still requires
an additional undistorted frame as reference.

mated point clouds. We find that the error in the computed
flow vectors mainly concentrates in the boundary areas. For
some frames, the water surface refracts the rays outside the
regular field of view of the camera, so that the computed
flow vectors become unreliable. For these points, the cam-
era can only provide one-sided viewing information, result-
ing in very small baselines for triangulation.

4.2. Experiments in the Lab

Next, we validate our method on real experiments con-
ducted in a laboratory environment. We used a FLIR GS3-
U3-41C6C camera with a 50 mm lens (the lens distortion
should be calibrated to validate pinhole camera model). The
camera was placed on top of a tank, pointing down verti-
cally, at a distance of ca. 300 mm to the flat water surface.
The water waves were introduced by pouring a cup of water
into the tank. We used an aperture of f / 6.0. The video was
recorded at 60 fps with a resolution of 1024! 1024and we
captured 120 frames in total for processing.

Fig. 3 visualizes one distorted image, and the recovered
underwater point clouds. To the best of our knowledge, no
existing work could retrieve the underwater geometry using
the same hardware configuration as ours. We modify the
SOTA single-camera fluid surface estimation method [24]
as a baseline method. The time-varying surfaces are first
estimated by their model, and then we feed the surfaces into
the multi-time triangulation framework to estimate the un-
derwater geometry. Fig. 3 shows that decoupling the esti-
mation of water surfaces and underwater scene could not
yield a reasonable reconstruction on the underwater envi-
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Figure 4: Reconstructions of additional two scenes captured in the public fountain environment. They were collected in
different weather conditions with relatively mild winds (top) and strong winds (bottom), respectively. From let to right:
Two captured frames and corresponding recovered surface shapes, the side and top views of the recovered underwater scene
geometry. Both results exhibit an adequate representation, even with strong water distortions. We recommend to view the
3D geometry and time-varying water surfaces in the supplemental video.

ronments, while our integrated model delivers an adequate
recovery. It needs to point out that [24] exploits a simple
setup (like ours), and requires a reference frame captured
without distortion. This reference frame will be unavailable
in an uncontrolled environment, e.g. in the wild.

We also conduct quantitative and qualitative compar-
isons with [24] on water surface estimation, which the
method is originally designed for. The results are presented
in the supplement.

4.3. Experiments in the Wild

Finally, we tested our reconstruction model outside the
lab. Our method neither requires a complicated hardware
setup nor does it impose impractical assumptions like other
approaches. We can easily capture data for processing in the
wild. The first experiments were conducted for scenarios in
a large public fountain. We captured 1080p videos at 60 fps
using a smartphone held by a tripod, and downsampled the
images by a factor of 8 yielding 240! 135underwater point
clouds. The smartphone was placed above the water surface
at a distance around 20 cm, and the depth of the underwa-
ter scenes roughly range from 20# 35 cm. The data was
captured under various weather conditions where the waves
were driven by natural winds of different strengths.

Fig. 4 visualizes captured images at two frames, corre-
sponding reconstructed surface structures, the side and top
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Figure 5: Qualitative comparisons (referring to the data in
Fig. 4 top) on the projected heightmaps using (full model)
and without using the mask strategy and projection loss
(simplified model). The full model delivers more smooth,
yet finer-detail preserved, geometric structures.

views of the recovered underwater scene geometry, which is
represented by a set of discrete point clouds. Two different
examples correspond to videos captured under a relatively
mild (top) and strong (bottom) fluid disturbance, respec-
tively. The recovered point clouds exhibit a faithful rep-
resentation of the underwater scenes which are consistent
with the expectation. The recovered time-varying water sur-
faces also agree with the observed distortion patterns even
in conditions with rather strong fluctuations. Please also re-
fer to the supplemental video for dynamic visualizations of
all results. Fig. 1 shows an additional reconstruction result,
where data was collected in the same fountain environment.

Fig. 5 shows the projected heightmap of the recovered
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Figure 6: Reconstructions of two data sets collected in salt water environments. The seawater becomes more turbid and the
geometric structures under seawater is more complicated, while our method can still realize a reasonable reconstruction. This
shows that our method is effective, and robustly handles reconstructions in rather complicated environments. Please also
refer to the supplemental video for 360-degree views of the estimated 3D geometry.

scene geometry with and without using the confidence mask
and projection loss. The recovered scene geometry using
the full model tends to be more smooth and some fine de-
tails, e.g. edge of the objects, are better preserved.

Fig. 6 shows two more data sets which were captured by
a sea shore. The captured images reveal that reconstruct-
ing the scenes under salt water is more challenging as the
water is more turbid. However, our method can still real-
ize a robust and adequately good recovery of the underwa-
ter scene geometry in this rather difficult experiment. This
demonstrates that our method is robustly handling scenes
with some level of turbidity, which is a common effect in
natural bodies of water.

5. Conclusion and Future Work
This paper presents a novel approach to reconstruct the

3D shape of underwater scene via a single camera. This is
realized by the time-varying distortions from moving wa-
ter surface which provides a multi-time triangulation. We
propose a dedicated differentiable framework accounting
for the ray casting, ray refraction, and multi-time triangula-
tion. This framework integrates the dynamic water surfaces
and underwater scene geometry as inputs, such that both
parameters, with planar surfaces as initialization, are pro-
gressively optimized from specially constructed and proven
effective loss functions. Extensive in-the-wild experimental
results, even tested in the salt water environments, validate
the effectiveness and robustness of the proposed approach.

We do find in some situations our approach fails. Fig. 7
shows a failure case for the proposed method. The data
was captured in the same fountain environment as shown in
Fig. 4, but on a rather windy day. One frame of the images
exhibits that the background scenes are hugely distorted by
a vortex-like water wave. Under this condition, a precise

Figure 7: A failure case for the fountain scene as shown in
Fig. 4. The water waves were driven by rather strong winds,
and they exhibit a vortex structure (highlighted in a white
box). Our method fails to produce a quality representation
as a precise correspondence matching cannot be satisfied.

image registration becomes problematic, and therefore the
reconstruction of the scene geometry fails as well. Our
reconstruction framework relies on a preprocessed dense
and precise correspondence matching. When the waves
are driven by excessively strong external force and become
choppy, they are no longer in accord with the imposed
smoothness regularizers, and then our method fails to re-
cover geometry of adequate quality. This limitation could
be a potential direction to explore in the follow-up work.

This work is a first attempt to recover the refractive sur-
face and the background geometry in the wild using a single
camera. It greatly simplifies the hardware setups and re-
laxes impractical assumptions as imposed by alternative ap-
proaches. However, our current approach is limited to set-
tings where the light path is refracted only once by a refrac-
tive surface. Generalizing the model to more complicated
conditions could be an interesting avenue for future work,
for instance reconstructing glass or plastic objects with a
minimum of two refractions [31, 16, 18], or reconstructing
inhomogeneous fluids [2, 6]. For the time being, there are
no reliable solutions to recover these kinds of transparent
objects in the wild.
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