
Continuous Copy-Paste for One-stage Multi-object Tracking and Segmentation

Zhenbo Xu1,2,3,4,5∗, Ajin Meng1∗, Zhenbo Shi1, Wei Yang1†, Zhi Chen1, Liusheng Huang1

1University of Science and Technology of China
2Hangzhou Innovation Institute, Beihang University, Hangzhou, China

3Beihang Univ, Beijing Key Lab Digital Media, Sch Comp Sci & Engn, Beijing, China
4Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing, China

5ShiFang Technology Inc., Hangzhou, China
†Corresponding Author. E-mail: qubit@ustc.edu.cn

Abstract

Current one-step multi-object tracking and segmentation
(MOTS) methods lag behind recent two-step methods. By
separating the instance segmentation stage from the track-
ing stage, two-step methods can exploit non-video datasets
as extra data for training instance segmentation. Moreover,
instances belonging to different IDs on different frames,
rather than limited numbers of instances in raw consecu-
tive frames, can be gathered to allow more effective hard
example mining in the training of trackers. In this paper,
we bridge this gap by presenting a novel data augmentation
strategy named continuous copy-paste (CCP). Our intuition
behind CCP is to fully exploit the pixel-wise annotations
provided by MOTS to actively increase the number of in-
stances as well as unique instance IDs in training. Without
any modifications to frameworks, current MOTS methods
achieve significant performance gains when trained with
CCP. Based on CCP, we propose the first effective one-stage
online MOTS method named CCPNet, which generates in-
stance masks as well as the tracking results in one shot.
Our CCPNet surpasses all state-of-the-art methods by large
margins (3.8% higher sMOTSA and 4.1% higher MOTSA
for pedestrians on the KITTI MOTS Validation) and ranks
1st on the KITTI MOTS leaderboard. Evaluations across
three datasets also demonstrate the effectiveness of both
CCP and CCPNet. Our codes are publicly available at:
https://github.com/detectRecog/CCP.

1. Introduction
Multi-object tracking (MOT) [30] is of fundamental im-

portance in the field of autonomous driving and video
surveillance. Recently, multi-object tracking and segmen-
tation (MOTS) [23] is introduced as a popular extension

∗ The first two authors contribute equally to this work.

of bounding box (bbox) based MOT. MOTS provides per-
pixel segmentation masks that locate objects more accu-
rately than relative coarse bboxes. As instance masks pre-
cisely delineate the visible object boundaries in crowded
scenes, MOTS largely eliminates the ambiguities caused by
severely overlapped bboxes in both detection and tracking.

Current one-step MOTS approaches struggle to adapt
an additional re-ID branch to existing instance segmenta-
tion methods to obtain both instance masks and their re-ID
features in a single forward pass. Voigtlaender et al. [23]
build TRCNN upon Mask-RCNN and adopt a fully con-
nected layer to predict association vectors for object propos-
als. Also built on Mask-RCNN, MOTSNet [16] proposes a
novel mask-pooling layer to focus on the foreground seg-
ment area rather than bboxes in the association vector ex-
traction. Recently, two-step methods PointTrack [26] and
PointTrack++ [27] separate the tracking phase from the in-
stance segmentation phase and convert the compact image
representation to un-ordered 2D point cloud representation
for learning discriminative instance embeddings. This sepa-
ration brings two advantages: (i) Extra frame-level instance
segmentation datasets can also be used for training [26]; (ii)
The training data for tracking is not restricted to consecutive
frames, thus allowing more unique instance IDs in training
mini-batches [27]. When tracking on the instance segmen-
tation results produced by TRCNN, PointTrack reduces ID
switches (IDS) by 55% [26]. To date, the main successes
have been primarily in multi-step approaches [12, 26, 27].
The significant gap between one-step methods and multi-
step methods suggests that combing tracking with instance
segmentation is a non-trivial problem.

In this paper, we posit that two major causes for the
performance gap between one-step methods and multi-step
methods [26, 27] are: (i) Challenging training data for in-
stance segmentation are limited; (ii) High-quality training
samples for tracking are limited. As pixel-level annotations
required by MOTS are known to be expensive to obtain,

15323

https://github.com/detectRecog/CCP

80 85 90 95
MOTSA

Car

60

65

70

75

80

85
sM

O
TS

A TRCNN
TRCNN+CCP
ViP-DeepLab
PointTrack
PointTrack+CCP
PointTrack++
REMOTS
CCPNet

65 70 75 80 85
MOTSA
Pedestrian

50

55

60

65

70

75

sM
O

TS
A

TRCNN
TRCNN+CCP
ViP-DeepLab
PointTrack
PointTrack+CCP
PointTrack++
REMOTS
CCPNet
CCPNet+ST

Figure 1. Comparison between our CCPNet and state-of-the-art
methods on KITTI MOTS leaderboard for cars (Left) and pedes-
trians (Right). ST denotes self-training (see subsection 4.3).

current MOTS datasets [23, 26] usually have limited frames
and instances, especially for non-rigid objects like pedestri-
ans. Crowded scenes where detection failures often occur
are even rarer (66% of pedestrians in KITTI MOTS are not
adjacent to anyone). Moreover, for KITTI MOTS pedes-
trians, the probability of two adjacent frames containing
valid triplets for training trackers in the training set is only
26.8%. Nevertheless, to make the instance segmentation
network and the tracker more robust, more instances with
different instance IDs that allow for mining harder samples
are desired in training. Therefore, current one-step meth-
ods [23, 9, 16] put great efforts to increase the number of
instances in training by incorporating more frames (e.g. 8
frames [23]) into a mini-batch and reducing the input image
size to save GPU memory accordingly. However, we argue
that simply stacking more frames does not solve the prob-
lem of lacking high-quality training data for tracking. As-
suming a training mini-batch for KITTI MOTS pedestrians
contains n adjacent frames, when n = 2, the average num-
ber of instance IDs is 1.56 and the average number of in-
stances is 3.1. When n = 8, though the average number of
instances increases to 12.5, the average number of instance
IDs (1.70) has not changed dramatically. The scarcity of in-
stance IDs makes it difficult to mine hard triplets, resulting
in limited tracking performance.

To bridge the gap between one-step methods and multi-
step methods, in this paper, we propose a novel video copy-
paste data augmentation strategy named Continuous Copy-
Paste (CCP). The intuition behind CCP is to fully exploit the
pixel-wise annotations provided by MOTS to actively in-
crease the number of instances and instance IDs in training.
To construct a training mini-batch consisting of n frames,
CCP first obtains n consecutive frames as templates from
real videos or videos forged from a single image. Then, we
retrieve several instance blocks from the database built dur-
ing initialization. Each instance block has n crops belong-
ing to the same inst ID. These crops are extracted from n
frames that are close in time but not necessarily adjacent to
each other. To mimic the newly emerging instances and the
leaving ones, two of n instance blocks will be shifted to the
left and right boundary respectively. Other instance blocks
will be pasted on their original positions. It is worth noting

that we preserve the relative positions of n crops in each in-
stance block for all operations on instance blocks. Lastly,
we paste these instance blocks on prepared n templates in
descending order of the number of foreground pixels. CCP
differs from Copy-Paste proposed in recent works [27, 6] in
two aspects. First, we regard the instance block as the basic
pasting unit and maintain the relative offset of crops within
the instance block. CCP not only increases the instance den-
sity but also concentrates on creating high-quality triplets
for tracking. Second, we do not model surrounding visual
context or randomly choose positions for pasting. Except
for instance blocks shifted to image boundaries, instances in
instance blocks that are cropped from different images stay
in their original positions. As shown in Fig. 1, the effec-
tiveness of CCP is examined by combining it with TRCNN
[23] and PointTrack [26].

Based on CCP, we further propose the first effective one-
stage method, named CCPNet, for online MOTS. CCPNet
follows an encoder-decoder structure and predicts pixel-
wise classification confidence, 2D offset pointing to in-
stance centers, clustering parameters, foreground recon-
struction, and pixel embeddings. In the post-processing pro-
cess, pixels are grouped into instances according to their
distance from 2D centers. For each grouped instance, we
apply max-pooling on embeddings of all foreground pix-
els to obtain the instance embedding. After that, instances
are associated according to the distance between their em-
beddings and the mask IOU between their masks. Thanks
to CCP, though CCPNet operates in an online manner, it
beats state-of-the-art methods including both 3D tracking
methods and offline tracking methods on multiple datasets.
Furthermore, we present a self-training method for CCPNet
that brings additional gains (see Fig. 1).

Our main contributions are summarized as follows:

• We propose a novel data augmentation strategy named
CCP for training MOTS approaches. CCP brings sig-
nificant performance gains for current MOTS methods
without modifying their frameworks.

• The first effective one-stage MOTS approach termed
CCPNet is presented, which performs instance seg-
mentation and tracking in one shot.

• Evaluations across three datasets show that CCPNet
outperforms all existing MOTS methods by large mar-
gins. Moreover, CCPNet ranks 1st on the KITTI
MOTS leaderboard.

2. Related Work
MOTS Recent methods for MOTS can be grouped into

two types: one-step methods [23, 16, 19, 20] and multi-

Please check the leaderboard at http://www.cvlibs.net/
datasets/kitti/old_eval_mots.php

15324

http://www.cvlibs.net/datasets/kitti/old_eval_mots.php
http://www.cvlibs.net/datasets/kitti/old_eval_mots.php

Figure 2. Illustrations of CCP when each training mini-batch contains three frames.

step methods [26, 27, 12, 22]. Pioneering one-step works
like TRCNN [23] and MOTSNet [16] modify Mask-RCNN
by employing an additional re-ID branch to predict associ-
ation vectors for object proposals. Besides, different from
Mask-RCNN based approaches, the first one-stage online
method STE [9] learns instance segmentation with monocu-
lar depth estimation and introduces 3D convolutions to learn
a spatial-temporal pixel-wise embedding. Pixels whose em-
beddings are close are grouped into instances and the mean
embedding of all belonging foreground pixels is regarded as
the embedding of the current instance. More recently, sim-
ilar to STE, the offline method ViP-DeepLab [19] extends
Panoptic-DeepLab [2] by adding a depth prediction head to
perform monocular depth estimation and a next-frame in-
stance branch for object association between frames. Un-
like one-step methods, multi-step methods break MOTS
into multiple stages. PointTrack [26] and PointTrack++
[27] train two separate networks for the tracking phase and
the instance segmentation phase respectively. 3D tracking
method MOTSFusion [12] builds up short tracklets using
2D optical flow, and then fuses these short tracklets into dy-
namic 3D object reconstructions. Current multi-step meth-
ods achieve more competitive results than one-step meth-
ods. Our proposed CCP bridges this gap by actively in-
creasing the number of instances and instance IDs.

Copy-Paste General purposed data augmentation meth-
ods like random resizing have been widely used for bbox
based vision tasks [7]. Recently, Copy-Paste has been found
to be effective for both instance segmentation methods [4]
and detection methods [3, 10]. However, copy-paste in the
video processing domain has rarely been studied.

3. Continuous Copy-Paste

As shown in Fig. 2, CCP contains three major stages:
(i) Prepare templates; (ii) Construct instance blocks from
the instance database; (iii) Paste on templates. Our CCP
data augmentation strategy can be integrated into the train-
ing pipeline of any existing MOTS frameworks because it
operates on the training data that are completely decoupled
from the training framework. For the sake of brevity, we
take cars as an example for illustration in Fig. 2. More
details are introduced as below.

0) Initialization. Before following three major stages

to obtain a training mini-batch, we need to construct an in-
stance database {Ei|i = 1, 2, ...}, which is plotted at the
bottom of Fig. 2. Each entry {Ek = {Sj |j = 1, 2, ..., Lk}}
in the instance database corresponds to a unique instance
ID Uk in the training set. The segmentation item, or say in-
stance, Sj , contains the value of foreground pixels as well
as their positions on the 2D image plane at a specific times-
tamp. The length of the entry Lk equals the length of the
track of Uk. It is important to save the segmentation data of
instances according to the instance ID for MOTS data aug-
mentation strategies, because we can conveniently enlarge
the number of instance IDs in limited training templates by
selecting instances belonging to different instance IDs.

1) Prepare Templates. In the first step of preparing
a training mini-batch, n frames {Fm|m = 1, 2, ..., n} are
selected from training videos or are generated based on a
single frame. When selected from training videos, we first
randomly select 2n + 1 consecutive frames. After that, n
frames are randomly chosen in selected frames. To ex-
ploit non-video instance segmentation datasets, CCP also
supports generating consecutive frames from a single im-
age. When generated from a single image I , a re-scale
ratio seed r0 and a re-scale step rδ are randomly gener-
ated. Then, we compute the re-scale ratio for n frames as
{Rm = r0 + (m − 1) ∗ rδ|m = 1, 2, ..., n}. Then, n im-
ages are generated by re-scaling I . Lastly, we adjust the
resolution of n images to the same input resolution by cen-
ter padding or center cropping. As shown in Fig. 2, By
continuously re-scaling individual images, we can generate
visually reasonable images Fm.

2) Construct Instance Blocks. We construct t instance
blocks {(Bi)|i = 1, 2, ..., t}, where t is a hyper-parameter
that represents how many additional instance IDs will be
added in a training mini-batch. An instance block is de-
fined as n crops that are close in time but not necessar-
ily adjacent to each other. As shown in Fig. 2, we ran-
domly select t entries {Ei|i = 1, 2, ..., t} from the in-
stance database. Then, for each entry Ek, similar to the
frame selection from videos, we randomly select 2n + 1
consecutive segmentation items. After that, n segmentation
items are randomly chosen to construct the instance block
{BEk

= {b1, b2, ..., bn}}. We adopt the instance block as
the basic unit for copy-paste instead of crops because the

15325

Cars Pedestrians
wo CCP w CCP wo CCP w CCP

AN of instances 10.79 37.79 4.63 29.35
AN of instances IDs 3.77 12.99 1.58 10.37

Table 1. Training with CCP vs. training without CCP, where n = 3
and t = 15. AN denotes the average number.

instance block preserves the changes in the position of the
same instance ID in a continuous period of time, which is
essential for training trackers. For each instance block in
Fig. 2, we only plot the minimum enclosing rectangle area
of all crops for the sake of clarity.

3) Paste on Templates. Before pasting instance blocks
on n prepared templates, we apply three transformations
to each instance block: (i) Random replay; (ii) Boundary
shift; (iii) Random bottom shearing. Firstly, we randomly
replay the instance block by changing {b1, b2, ..., bn} to
{bn, bn−1, ..., b1}. Secondly, to mimic the newly emerging
instances and the leaving instances, we randomly choose
two instance blocks and move them to the left and the right
boundary, respectively. As shown in Fig. 2, among the three
plotted instance blocks, the left instance block is moved to
the left boundary and the right instance block is moved to
the right boundary. Thirdly, for non-rigid objects like pedes-
trians, the bottom of instances are often occluded by barri-
ers or other objects. Therefore, we also apply random bot-
tom shearing for non-rigid objects with a small probability.
After these transformations, we paste processed t instance
blocks on {Fm|m = 1, 2, ..., n} in descending order of in-
stance sizes that are measured by the number of pasted pix-
els.

As shown in Fig. 2, our CCP strategy can actively in-
crease the number of instance IDs and generate visually rea-
sonable images. After CCP, the number of instance IDs in-
creases from 1 to 16 and the number of instances increases
from 1 to 48. Table 3 lists the differences on KITTI MOTS
between training with CCP and training without CCP.

4. Method
In this section, we present CCPNet, which consists of

a shared encoder and four different decoders: (i) Cluster-
ing decoder; (ii) Classification decoder; (iii) Reconstruction
decoder; (iv) Embedding decoder. The first three decoders
have the same network structure and accept the multi-scale
features output by the encoder as the input. As shown in
Fig. 3, for the embedding decoder, to make it aware of
pixel-wise position information, we add an additional po-
sition embedding layer similar to [31] to the input. CCPNet
extends SpatialEmbedding [15] to jointly perform instance
segmentation and online association by adding the embed-
ding decoder to learn pixel-wise embeddings and the recon-
struction decoder to reconstruct the input image on the fore-
ground area. At the testing phase, CCPNet predicts instance

segmentation results and instance embeddings in one shot.
When compared with PointTrack [26] on the same segmen-
tation results, CCPNet achieves better tracking performance
(see Table 2 and Table 4). At the training phase, CCPNet
accepts multiple frames as input and exploits instances on
all input frames for metric learning. For simplicity, we only
plot two frames and only consider a single class ‘pedestri-
ans’. Instances are tracked online by jointly considering
similarities between instance embeddings and the IOU of
instance masks in two adjacent frames.

4.1. CCPNet

As shown in Fig. 3, for an input image IT at timestamp
T , five different maps are predicted by four decoders. Here
we first introduce the four decoders and then formulate the
loss function of CCPNet.

Clustering decoder. Following SpatialEmbedding [15],
the clustering decoder predicts a 2-dim offset map (Tu, T v)
as well as a 2-dim sigma map (σu, σv). For each pixel pi
whose coordinates are (xi, yi), (Tu

pi
, T v

pi
) denotes the 2D

offset from (xi, yi) to its corresponding instance center on
the image plane. (σu

pi
, σv

pi
) represents the learned pixel-

wise clustering bandwidths. The clustering decoder learns
class-agnostic instance clustering parameters that are essen-
tial for grouping foreground pixels into instances.

Classification decoder. Assuming there are c classes,
the classification decoder predicts (c+1)-dim classification
map. For simplicity, we only plot two frames and only con-
sider a single class (e.g. pedestrians) in Fig. 3. The classifi-
cation decoder outputs instance-agnostic semantic segmen-
tation maps that represent foreground pixels to be clustered
for each class.

Embedding decoder. The embedding map M contains
32-dim pixel-wise embeddings, which are exploited to con-
struct instance embeddings with respect to all foreground
pixels of different instances. Different from STE [9], the
learning target of CCPNet is based on triplets of instances
rather than instance pixels. We think that it is difficult to
force embeddings of pixels belonging to the same instance
to be the same, especially for pixels that lie on the bound-
ary of two adjacent instances in crowded scenes. On the
contrary, learning on triplets of instances not only eases the
difficulty of learning, but also encourages the network to
focus on differentiating instances rather than pixels.

Reconstruction decoder. PointTrack [26] proposes that
deep 2D/3D convolutional layers inevitably mix up features
between adjacent instances in the convolution process and
thus making instance embeddings learned for association
less discriminative. Therefore, in PointTrack [26], raw im-
age pixels rather than deep convolutional features are used
as input, and multiple MLPs rather than convolution lay-
ers are used to extract features. Different from PointTrack,
we think that the main weakness of current trackers results

15326

Figure 3. CCPNet consists of a shared encoder and multiple decoders designed for different prediction targets.

from the training in-efficiency rather than 2D/3D convolu-
tions. However, the success of PointTrack reveals that low-
level features like color and texture serve as strong clues for
discriminating instances. Therefore, to preserve more low-
level features in the encoder, we propose to learn foreground
pixels reconstruction together with other targets.

Now we would like to describe the loss functions of
CCPNet, and before that, we introduce some notations first.
Suppose the resolution of IT is (H,W) and there are KT

instances {Sk|k = 1, ...,KT } on IT . For each pixel pi,
we denote its coordinate in the image plane as (xi, yi)|xi ∈
[0,W − 1], yi ∈ [0, H − 1]. The predicted center C of each
pixel pi is formulated as:

Cpi = (Cx
pi
,Cy

pi
) = (Tu

pi
+ xi, T

v
pi

+ yi) (1)

where (Tu, T v) are predicted by the clustering decoder.
Though each pixel points to its predicted center, it is dif-

ficult to force all pixels to point to their centers accurately.
To relax the loss for pixels far away from the instance cen-
ter, we adopt learnable clustering bandwidths σu and σv

[15]. For each instance Sk, the clustering bandwidths are
computed as follows:

σu
k =

1

|Sk|
∑

pi∈Sk

σu
pi
, σv

k =
1

|Sk|
∑

pi∈Sk

σv
pi

(2)

where |Sk| denotes the number of foreground pixels.
Based on the learned clustering bandwidths, the distance

between pixels and the instance center (Cx
k , C

y
k) of Sk is

computed by a Gaussian function ϕ:

ϕpi
= exp(−

(Cx
pi

− Cx
k)

2

2(σu
pi
)2

−
(Cy

pi
− Cy

k)
2

2(σv
pi
)2

) (3)

Besides, to obtain the instance embedding for instance,
say Sk, we gather all embeddings of all foreground pixels p
of Sk. The shape of the resulting tensor is |Sk| × 32. Then,
as shown in Fig. 3, we apply max pooling to the resulting

tensor along the first dimension to obtain the final 32-dim
instance embedding Ak.

Classification loss Lcls. We adopt the Focal loss [11]
with Online Hard Example Mining [21] to train the classi-
fication decoder. Only 50% of pixels with higher losses are
considered in Lcls.

Lcls =
1

|IT |
∑

pi∈IT

max
50%

FL(pi) (4)

where |IT | is the number of pixels not belonging to ‘Dont-
Care’ [23].

Clustering loss Lclu. The clustering loss consists of
the sigma loss Lsigma and the instance loss. Lsigma is ex-
ploited to force all foreground pixels belonging to the same
instance to have the same sigma value.

Lsigma =
1

|Sk|
∑

pi∈Sk

∥σu
pi

− σu
k∥2 + ∥σv

pi
− σv

k∥2 (5)

For instance Sk, the instance loss is formulated as the
Lovasz-hinge loss [29] between ϕk and the ground truth bi-
nary mask GTk. ϕk is the segmentation confidence map
computed according to Eq. (3). Both the sigma loss and the
instance loss are averaged by all instances. Thus, the overall
clustering loss is formulated as:

Lclu =
1

KT

∑
1≤k≤KT

(β ∗Lsigma+ lovasz(ϕk, GTk)) (6)

where β is set to 10 by default.
Reconstruction loss Lrec. Lrec is the averaged L2 loss

between IT and the reconstructed ÎT for all foreground pix-
els.

Lrec =
1

|p|
∑

p∈∪Sk(1≤k≤KT)

(ITp − ÎTp)
2 (7)

where |p| denotes the number of all foreground instance pix-
els.

15327

Embedding loss Lemb. Assuming there are two frames
IT with KT instances and IT−1 with KT−1 instances in the
training mini-batch, we first gather instance embeddings A
for all KT +KT−1 instances. Then, triplets are constructed
according to the IDs of these instances. After that, we ex-
ploit the batch hard triplet loss [8] for training.

Loss function. The total loss function for CCPNet is
formulated as:

L = αLcls + Lclu + γLrec + Lemb (8)

where α is set to 1.0 by default and γ is set to 0.1 by default.

4.2. Post-process

In the inference stage, instances are clustered class by
class. For each class, the post-processing works as follows.
As shown in the three orange bboxes in Fig. 3, we select
all foreground pixels by applying the confidence threshold
tcls to the classification map. For all foreground pixels, we
group instances in two steps in a recursive manner. Firstly,
we select the pixel p with the highest classification confi-
dence and obtain its predicted instance center Cp. Secondly,
the distances between the predicted centers of all fore-
ground pixels and Cp are computed according to Eq. (3).
A pixel whose distance is below the distance threshold tdist

is considered to belong to the instance to be grouped. After
these pixels are grouped to a new instance, pixels belonging
to this instance are considered as background. All instances
are grouped recursively by applying these two steps. Af-
ter each instance mask is obtained, we aggregate the em-
beddings of all foreground pixels on the embedding map
M . Inspired by PointNet [17], the max-pooling operation
is used to obtain the final fixed-length instance embedding.
Online instance association is performed by jointly consid-
ering the Euclidean distance between cross-frame instances
and mask IOU between instances in adjacent frames. Given
instance segment St0

i at time t0 and instance segment St1
j

at time t1 as well as their instance embeddings Ai and Aj ,
respectively, the similarity SI is computed as follows:

SI = −D(Ai, Aj) + IOU(St0
i , St1

j) ∗ (∥t1 − t0∥ == 1)
(9)

where D represents the Euclidean distance and mask IOU is
considered only for instances belonging to adjacent frames.

Two instances are associated if and only if SI is higher
than a threshold tsim. We set a default alive threshold ta0

to all tracks. If a track does not update in ta0 frames, it
will be terminated. Moreover, for instances that are close
to the boundary, we assign a much smaller alive threshold
ta1 . It is worth noting that our post-processing does not
involve sophisticated tracking strategies (e.g. Kalman filter
(KF) [24]), because it is out of the scope of this paper. If
considered, we believe CCPNet can achieve higher tracking
performances.

Cars Pedestrians
sMOTSA MOTSA sMOTSA MOTSA

STE [9] 46.1 61.3 - -
TRCNN [23] 76.2 87.8 46.8 65.1
MOTSNet [16] 78.1 87.2 54.6 69.3
MOTSFusion [12] 85.5 94.6 58.9 71.9
PointTrack [26] 85.5 94.9 62.4 77.3
PointTrack++ [27] 86.81 95.95 65.51 81.54
CCPNet 87.36 96.23 69.35 85.69
CCPNet (wo Rec.) 86.85 95.74 68.35 84.55
CCPNet+PointTrack 87.07 96.00 69.29 84.97

Table 2. Results on KITTI MOTS Validation. Rec. denotes the
reconstruction decoder.

4.3. Self-training

We further present a self-training strategy that can be
combined with CCP to allow CCPNet to learn on unlabelled
data. After each training epoch, we exploit CCPNet to de-
tect and track instances in raw data. The pseudo labels pro-
vided by CCPNet are considered as the ground-truth MOTS
annotations. It is worth noting that, to alleviate the classi-
fication ambiguities in instance boundaries. We set pixels
whose classification confidence is between tcls/2 and tcls

to ‘DontCare’ [23], which means these pixels are not con-
sidered in the classification loss. In each training epoch,
we exploit the pseudo-labeled raw data as templates with
slightly more instance blocks pasted. The results on KITTI
MOTS testset (see Table 3) validates that self-training helps
CCPNet achieve higher performances.

5. Experiments
In this section, we first present our results on KITTI

MOTS [23], APOLLO MOTS [23], as well as MOTS20
[23]. As our CCP can be integrated into the training pipeline
of many MOTS frameworks, we also combine it with TR-
CNN [23] and PointTrack [27] respectively to examine its
effectiveness. Then, we show the ablation study on CCP.

Metric. Following previous works [9, 23, 16, 12, 26,
27, 28, 19], we concentrate on sMOTSA and MOTSA. We
do not focus on ID switches (IDS) because it varies with
the instance segmentation results. For example, in some
cases, more false negatives lead to fewer IDS. We com-
pare IDS only under the same segmentation results. Be-
sides, the main metric for the KITTI MOTS is updated from
sMOTSA to HOTA [13] at the end of February 2021. HOTA
is a higher-order metric for MOT and focuses more on the
tracking performance. As previous methods do not provide
the results on the new HOTA metric, we provide the main
results with HOTA on the KITTI MOTS leaderboard (see
Table 3) rather than KITTI MOTS Validation.

We use their open-sourced code with minor modifications to the data
loader to make them work with CCP.

HOTA is updated at the submission of this paper. The original Evalua-
tion server can be found at http://www.cvlibs.net/datasets/
kitti/old_eval_mots.php

15328

http://www.cvlibs.net/datasets/kitti/old_eval_mots.php
http://www.cvlibs.net/datasets/kitti/old_eval_mots.php

Cars Pedestrians
sMOTSA MOTSA HOTA sMOTSA MOTSA HOTA

TRCNN [23] 67.00 79.60 56.63 47.30 66.10 41.93
TRCNN+CCP 72.05 85.24 57.89 48.37 66.65 43.92
MOTSNet [16] 71.00 81.70 - 48.70 62.00 -
MOTSFusion [12] 75.00 84.10 73.63 58.70 72.90 54.04
PointTrack [26] 78.50 90.90 61.95 61.50 76.50 54.44
PointTrack+CCP 81.52 92.81 67.94 64.34 78.41 58.44
PointTrack++ [27] 82.80 92.60 67.28 68.10 83.60 56.67
REMOTS [28] 75.92 86.74 71.61 65.97 81.33 58.81
ViP-DeepLab [19] 81.03 90.74 76.38 68.76 84.52 64.31
CCPNet 84.47 94.40 73.61 70.16 85.85 60.50
CCPNet+Self-Train 84.47 94.36 75.12 70.55 86.36 62.22

Table 3. Results on KITTI MOTS Leaderboard.

Experimental Setup. For KITTI MOTS, following
PointTrack [26], we pre-train CCPNet on the combination
of the KINS dataset [18] and KITTI MOTS. Images from
the KINS dataset are exploited as an additional source of
templates. The pre-training of CCPNet takes 30 epochs at
a learning rate of 5 · 10−4. For APOLLO MOTS as well as
MOTS20, we train CCPNet from scratch using CCP with-
out additional training data. The training of CCPNet takes
15 epochs at a learning rate of 2 · 10−4. It is worth noting
that, similar to recent Copy-Paste [6], training with CCP is
much faster than training without CCP due to much higher
instance densities.

For CCP, we adopt n = 3 frames by default. For video
frames, each frame will be regarded as an isolated image
at a probability of 0.2 and is used to generate n frames by
re-scaling this frame. We add at most 15 instance blocks
(comparisons are available in Table 6) for KITTI MOTS
and APOLLO MOTS, respectively. As the input image of
MOTS20 is four times bigger than KITTI MOTS, we add
at most 25 instance blocks for MOTS20. The number of in-
stance blocks added to each frame is randomly chosen be-
tween 0 and the maximum number. Moreover, when we
select segmentation items for each instance block, nb is set
to 7 by default. The probability of random replay is 0.5
and the probability of random bottom shearing is 0.2. It is
worth noting that, based on the observation of the character-
istics of KITTI MOTS and MOTS20, we apply the random
bottom shearing and the boundary shift only to relatively
bigger instances.

For CCPNet, the input resolution of KITTI MOTS and
APOLLO MOTS is 1248 × 384. As to MOTS20, the input
resolution is 1088 × 1280. Due to the much larger input
resolution, we train CCPNet at half-precision. tcls is set to
0.4 and tdist is set to 0.41 for both pedestrians and cars.
tsim is 7.5 by default. Besides, ta0 and ta1 are set to 8 and
3 respectively. Moreover, we exploit the raw KITTI data
[5] for self-training. On KITTI MOTS, CCPNet processes
images at a speed of 7 FPS when test on a single 2080Ti
card.

5.1. Main Results

We compare recent works on MOTS: STE [9], TRCNN
[23], MOTSNet [16], MOTSFusion [12], PointTrack [26],
PointTrack++ [27], REMOTS [28], and ViP-DeepLab [19].

Results on KITTI MOTS Validation. The results on
KITTI MOTS Validation are summarized in Table 2. For
cars, CCPNet only achieves a small improvement of 0.5%
on sMOTSA. However, for non-rigid instances like pedes-
trians, CCPNet surpasses PointTrack++ by nearly 4% on
sMOTSA. The large improvements on pedestrians not only
demonstrate the effectiveness of CCP, but also show that
there is still much room for improvement in the MOTS
performance for pedestrians. Moreover, without the re-
construction decoder, MOTSA that is closely related to
the tracking performance decreases by 1% for pedestrians.
Note that adding the reconstruction decoder does not impact
the speed of CCPNet, as it is abandoned in the inference
stage. Qualitative results are shown in Fig. 4.

Results on KITTI MOTS Leaderboard. We present
the main results in Table 3. When trained with the self-
training strategy, CCPNet achieves the highest sMOTSA
score on the leaderboard. The demo videos are available
in the supplementary material. Moreover, it is worth not-
ing that combing CCP with current MOTS methods brings
significant performance improvements without any modifi-
cations to their frameworks. It brings TRCNN a gain of 5.0
% on sMOTSA for cars and PointTrack a gain of over 3%
on sMOTSA for both cars and pedestrians. For the very re-
cently updated metric HOTA, we are slightly behind the of-
fline tracking method ViP-Deeplab. We believe that a more
sophisticated tracking strategy can bridge this gap. How-
ever, it is out of the scope of this paper.

Results on APOLLO MOTS validation. We follow
PointTrack [26] to validate the effectiveness of CCPNet on
APOLLO MOTS. CCPNet surpasses PointTrack by 2.5%
on both sMOTSA and MOTSA. Besides, when examined on
the same segmentation results produced by CCPNet, CCP-

Please check the leaderboard at http://www.cvlibs.net/
datasets/kitti/old_eval_mots.php

15329

http://www.cvlibs.net/datasets/kitti/old_eval_mots.php
http://www.cvlibs.net/datasets/kitti/old_eval_mots.php

Figure 4. Quantitative results of CCPNet. Instances of the same track id are plotted in the same color.

Seg. sMOTSA MOTSA
DeepSort [25] TRCNN 45.71 57.06
TRCNN [23] TRCNN 49.84 61.19
DeepSort PointTrack 64.69 73.97
PointTrack [26] PointTrack 70.76 80.05
PointTrack CCPNet 72.89 82.22
CCPNet CCPNet 73.20 82.53

Table 4. Results on APOLLO MOTS validation.

sMOTSA MOTSA
TRCNN [23] 40.6 55.2
UBVision 52.8 67.4
SORTS [1] 55.0 68.3

Private
Detection

CCPNet 59.3 75.5
SORTS ReID 55.8 69.1Public

Detection REMOTS [28] 70.4 84.4
Table 5. Results on MOTS20 Leaderboard.

Cars Pedestrians
sMOTSA MOTSA sMOTSA MOTSA

n=2 (MA=15) 87.33 96.18 69.35 85.69
n=3 (MA=15) 87.36 96.23 68.76 85.45
wo BS 87.23 96.09 68.65 84.94
MA=5 86.77 95.42 67.98 84.55
MA=10 87.26 96.09 68.39 84.79
MA=25 86.72 95.59 67.49 83.63

Table 6. Ablation study on CCP. BS denotes boundary shift.

Net obtains 0.3% higher MOTSA and the IDS decreases by
15%. When adopting PointTrack [26] to track on the seg-
mentation results of CCPNet (see the last row of Table 2
and the second last row of Table 4), CCPNet shows higher
tracking performances.

Results on MOTS20 Leaderboard. MOTS20, which
is built on MOT16 [14], is a very challenging MOTS
dataset with many crowded scenarios. With strong pre-
computed public detection results generated by models that
are pre-trained by large datasets, methods in the 5th BMTT
MOTChallenge Workshop like REMOTS [28] achieve very
high performances. By comparison, our CCPNet is trained
from scratch on MOTS20 with around 2000 images as the
training set. For a fair comparison, we compare CCPNet
with methods using private detections. As shown in Ta-
ble 5, our CCPNet achieves state-of-the-art performances
on the MOTS20 leaderboard with much higher sMOTSA
and MOTSA.

5.2. Ablation Study

Impact of input frames of CCP. We only test n = 2 and
n = 3 due to the GPU memory limitation. As shown in the

first two rows of Table. 6, training with n = 3 shows better
MOTS performances for cars. However, the gap between
n = 2 and n = 3 is small, which shows that the number of
frames has little effect on the effectiveness of CCP.

Impact of border shift of CCP. To validate the effec-
tiveness of border shift, we fix the parameters of the encoder
and the decoders except for the embedding decoder to make
sure that the segmentation results will not change. Then, we
train CCPNet under the condition of border shift as well as
removing border shift. As shown in the third row of Table.
6, though the MOTSA only decreases negligibly, the IDS
decreases from 24 to 17 for cars and decreases from 23 to
18 for pedestrians.

Impact of the maximum number of instance blocks
of CCP. We examine the impact of the maximum number
of instance blocks on KITTI MOTS. As shown in the last
three rows in Table 6, the performance gain is notable when
the maximum number increase from 5 to 10. When the
maximum number increases to 25, the performance starts
to decrease. Though adding more instances brings more
crowded scenes, it makes the domain deviation so signifi-
cant that harms the performance on the validation set.

6. Conclusion

In this paper, we proposed an effective data augmenta-
tion method named CCP to help MOTS methods achieve
higher performances without any modifications to their
frameworks. CCP can exploit non-video frames into MOTS
training and continuously copy-paste instances to continu-
ous frames to increase both the number of instances and the
number of unique instance IDs. When trained with CCP,
current methods achieve great performance gains. More-
over, we put forward the first effective one-stage MOTS
method named CCPNet that accomplishes instance segmen-
tation and instance association in a single forward pass.
Evaluations across three datasets demonstrate that our CCP-
Net achieves state-of-the-art results, outperforming previ-
ous methods by large margins.

Acknowledgment

This work was supported by the Anhui Initiative in
Quantum Information Technologies (No. AHY150300).

15330

References
[1] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE International Conference on Image Processing (ICIP),
pages 3464–3468. IEEE, 2016. 8

[2] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12475–12485, 2020. 3

[3] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut,
paste and learn: Surprisingly easy synthesis for instance de-
tection. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1301–1310, 2017. 3

[4] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao
Gou, Yong-Lu Li, and Cewu Lu. Instaboost: Boosting
instance segmentation via probability map guided copy-
pasting. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 682–691, 2019. 3

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, 2012. 7

[6] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D. Cubuk, Quoc V. Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. arXiv preprint arXiv:2012.07177, 2020. 2, 7

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 3

[8] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737, 2017. 6

[9] Anthony Hu, Alex Kendall, and Roberto Cipolla. Learning a
spatio-temporal embedding for video instance segmentation.
arXiv preprint arXiv:1912.08969, 2019. 2, 3, 4, 6, 7

[10] Mate Kisantal, Zbigniew Wojna, Jakub Murawski, Jacek
Naruniec, and Kyunghyun Cho. Augmentation for small ob-
ject detection. In 9th International Conference on Advances
in Computing and Information Technology (ACITY 2019),
pages 119–133. Aircc Publishing Corporation, Dec. 2019.
3

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 5

[12] J. Luiten, T. Fischer, and B. Leibe. Track to reconstruct and
reconstruct to track. IEEE Robotics and Automation Letters,
5(2):1803–1810, 2020. 1, 3, 6, 7

[13] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
Torr, Andreas Geiger, Laura Leal-Taixe, and Bastian
Leibe. Hota: A higher order metric for evaluating multi-
object tracking. International Journal of Computer Vision,
129(2):548–578, Feb 2021. 6

[14] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K.
Schindler. MOT16: A benchmark for multi-object tracking.
arXiv:1603.00831 [cs], Mar. 2016. arXiv: 1603.00831. 8

[15] Davy Neven, Bert De Brabandere, Marc Proesmans, and
Luc Van Gool. Instance segmentation by jointly optimizing
spatial embeddings and clustering bandwidth. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8837–8845, 2019. 4, 5

[16] Lorenzo Porzi, Markus Hofinger, Idoia Ruiz, Joan Serrat,
Samuel Rota Bulò, and Peter Kontschieder. Learning multi-
object tracking and segmentation from automatic annota-
tions. arXiv preprint arXiv:1912.02096, 2019. 1, 2, 3, 6,
7

[17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 6

[18] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia.
Amodal instance segmentation with kins dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3014–3023, 2019. 7

[19] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. ViP-Deeplab: Learning visual percep-
tion with depth-aware video panoptic segmentation. arXiv
preprint arXiv:2012.05258, 2020. 2, 3, 6, 7

[20] Sarthak Sharma, Junaid Ahmed Ansari, J Krishna Murthy,
and K Madhava Krishna. Beyond pixels: Leveraging geom-
etry and shape cues for online multi-object tracking. In 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 3508–3515. IEEE, 2018. 2

[21] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.
Training Region-Based Object Detectors with Online Hard
Example Mining. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 761–769, Las
Vegas, NV, USA, June 2016. IEEE. 5

[22] Young-min Song and Moongu Jeon. Online multi-object
tracking and segmentation with gmphd filter and simple
affinity fusion. arXiv preprint arXiv:2009.00100, 2020. 3

[23] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger,
and Bastian Leibe. Mots: Multi-object tracking and segmen-
tation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7942–7951, 2019. 1,
2, 3, 5, 6, 7, 8

[24] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin
Wang. Towards real-time multi-object tracking. arXiv
preprint arXiv:1909.12605, 2(3):4, 2019. 6

[25] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE international conference on image processing
(ICIP), pages 3645–3649. IEEE, 2017. 8

[26] Zhenbo Xu, Wei Zhang, Xiao Tan, Wei Yang, Huan Huang,
Shilei Wen, Errui Ding, and Liusheng Huang. Segment as
points for efficient online multi-object tracking and segmen-
tation. In European Conference on Computer Vision, pages
264–281. Springer, 2020. 1, 2, 3, 4, 6, 7, 8

15331

[27] Zhenbo Xu, Wei Zhang, Xiao Tan, Wei Yang, Xiangbo
Su, Yuchen Yuan, Hongwu Zhang, Shilei Wen, Errui Ding,
and Liusheng Huang. Pointtrack++ for effective online
multi-object tracking and segmentation. arXiv preprint
arXiv:2007.01549, 2020. 1, 2, 3, 6, 7

[28] Fan Yang, Xin Chang, Chenyu Dang, Ziqiang Zheng, Sakri-
ani Sakti, Satoshi Nakamura, and Yang Wu. Remots: Refin-
ing multi-object tracking and segmentation. arXiv preprint
arXiv:2007.03200, 2020. 6, 7, 8

[29] Jiaqian Yu and Matthew Blaschko. Learning submodular
losses with the lovász hinge. In International Conference
on Machine Learning, pages 1623–1631, 2015. 5

[30] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. arXiv preprint
arXiv:2004.01888, 2020. 1

[31] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 4

15332

