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Abstract

Autonomous highlight detection is crucial for enhanc-
ing the efficiency of video browsing on social media plat-
forms. To attain this goal in a data-driven way, one
may often face the situation where highlight annotations
are not available on the target video category used in
practice, while the supervision on another video category
(named as source video category) is achievable. In such
a situation, one can derive an effective highlight detec-
tor on target video category by transferring the highlight
knowledge acquired from source video category to the tar-
get one. We call this problem cross-category video high-
light detection, which has been rarely studied in previous
works. For tackling such practical problem, we propose a
Dual-Learner-based Video Highlight Detection (DL-VHD)
framework. Under this framework, we first design a Set-
based Learning module (SL-module) to improve the con-
ventional pair-based learning by assessing the highlight ex-
tent of a video segment under a broader context. Based on
such learning manner, we introduce two different learners
to acquire the basic distinction of target category videos
and the characteristics of highlight moments on source
video category, respectively. These two types of highlight
knowledge are further consolidated via knowledge distilla-
tion. Extensive experiments on three benchmark datasets
demonstrate the superiority of the proposed SL-module,
and the DL-VHD method outperforms five typical Unsu-
pervised Domain Adaptation (UDA) algorithms on various
cross-category highlight detection tasks. Our code is avail-
able at https://github.com/ChrisAllenMing/
Cross_Category_Video_Highlight.

1. Introduction
In current days, people show growing interests in sharing

the videos recording their daily life on the social media plat-

forms like YouTube and Instagram. Among all these videos,

the well-edited ones that summarize the highlights of spe-
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surfing

skiing
Figure 1. The situation in which the target video category used in

practice lacks supervision, while another video category, i.e. the

source one, possesses annotation.

cific events are apparently more attractive to the audience.

However, in most cases, the original video of a real-world

event contains many contents unrelated to its gist, and it is

an onerous and time-consuming task to pick out the high-

light parts of the video manually. Therefore, in order to en-

hance the efficiency of video content refinement, it is desir-

able to develop a machine learning model for autonomous

video highlight detection.

To endow a model with the capability of identifying the

highlight segments within a video, existing works have ex-

plored various ways of supervision, including the explicit

highlight annotations [10, 49, 15], the frequent occurrence

of specific video segments [23, 48, 21], the duration of a

video [41], etc. These approaches generally focused on

training a highlight detector for a specific video category

(e.g. surfing, skiing, parkour, etc.), while the transferability

of a highlight detection model across different video cate-

gories has been less studied in previous works.

As a matter of fact, in practical applications, one can face

the situation where supervisory signal is lacked on the tar-

get video category intended to be used in practice, while

the supervision on another video category is available, just

as shown in Fig. 1. Under such situation, we consider the

problem of Cross-category Video Highlight Detection. The

setting of this problem is analogous to that of Unsupervised

Domain Adaptation (UDA) [20] in which one seeks to adapt
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the knowledge learned from the labeled source domain (the

source video category with supervision) to the unlabeled

target domain (the unsupervised target video category).

In addition, for optimizing the highlight detector, most

of existing methods [10, 49, 15, 23, 41, 14] followed the

philosophy of pair-based learning, i.e. comparing a positive

sample (e.g. a highlight video segment or a segment bag

containing highlights) with a negative one, and, after train-

ing, the former is expected to rank higher than the latter.

Nevertheless, such learning manner might not fully exploit

the contextual information spanning among different video

segments. For example, in a soccer match, the moment of

a player’s dribbling the ball is more attractive than the one

of the players’ entering the pitch, and both of them are less

exciting than the moment of a goal. These relationships can

hardly be captured by a single segment pair, which makes

the highlight prediction of a pair-learning-based model po-

tentially imprecise in the span of a whole video.

Motivated by the facts above, in this work, we propose a

Dual-Learner-based Video Highlight Detection (DL-VHD)

framework to address the Cross-category Video Highlight

Detection problem. Under this framework, we first devise

a Set-based Learning module (SL-module) to improve the

conventional pair-based learning manner for highlight de-

tection. In a nutshell, this module learns to regress the high-

light score distribution over a set of segments from the same

video, in which a Transformer encoder [37] is employed to

model the interrelationship among various video segments.

Based on this learning mechanism, we further introduce

two different learners to capture two types of knowledge

about highlight moments. In specific, the coarse-grained
learner gains the basic concepts about what distinguishes

the videos of target category from other ones, and the fine-
grained learner acquires the precise highlight notions on

source videos. These two kinds of knowledge are further

integrated by distilling each of them into the other learner,

and such integrated knowledge forms the more complete

concepts about the highlight moments on target video cate-

gory. In practice, the SL-module can be individually applied

to derive an effective highlight detector when the segment-

level annotation is available on the target video category,

while, when such annotation is unobtainable, we can resort

to the DL-VHD method for highlight knowledge transfer.

Our contributions can be summarized as follows:

• To the best of our knowledge, this work is the first at-

tempt at cross-category video highlight detection, in

which we utilize a dual-learner-based scheme to trans-

fer the concepts about highlight moments across dif-

ferent video categories.

• We propose a novel set-based learning mechanism

which is able to identify whether a video segment is

highlight or not under a broader context.

• Under the category-specific setting, we verify the su-

perior performance of the SL-module over previous

methods. For cross-category highlight detection, the

DL-VHD model substantially surpasses existing UDA

algorithms and performs comparably with the super-

vised model trained on target video category.

2. Related Work

Video Highlight Detection. This task aims at assigning

each video segment a score of its worthiness as highlight.

In recent years, the videos studied for this task extend from

sport videos [24, 42, 33] to general videos from social me-

dia [32] or first-person camera shooting [49]. According to

the manner of supervision, the existing works on this topic

can be generally divided into two classes. For the super-

vised methods [10, 49, 15, 32], the highlight annotations of

all segments in a video are given. For the weakly-supervised

approaches [23, 48, 21, 41, 14], various weak supervisory

signals have been exploited to define highlights, including

the frequent occurrence of specific segments within a video

category [23, 48, 21], the duration of a video [41] and the

information from segment bags [14]. For model optimiza-

tion, most of these methods [10, 49, 15, 32, 41, 14] fol-

lowed the philosophy of pair-based learning, i.e. comparing

between a positive sample and a negative one.

Improvements over existing methods. In this work, we

novelly explore the cross-category video highlight detection

problem through learning two types of knowledge about

highlight moments and integrating them on target video

category. In addition, a set-based learning mechanism is

proposed to improve the pair-based learning by performing

highlight prediction on a set of video segments, such that

the highlight extent of each segment can be judged more

precisely with rich contextual information.

Unsupervised Domain Adaptation (UDA). UDA fo-

cuses on generalizing a model learned from the labeled

source domain to another unlabeled target domain. To

pursue this goal, a commonly used strategy is to mini-

mize a specific metric for measuring domain shift [2, 20],

e.g. Maximum Mean Discrepancy (MMD) [8, 36], Multi-

Kernel MMD [17], Weighted MMD [47], Wasserstein Dis-

tance [28, 16] and the difference of feature covariance [31]

or feature norm [46]. On another line of research, adversar-

ial learning is employed to facilitate domain-invariance on

either pixel level [3, 27, 13] or feature level [6, 35, 18, 45].

In order to introduce the discriminative information on tar-

get domain, recent works [40, 5, 25, 44, 38, 43] utilized the

pseudo labels of target samples for category-level domain

alignment. This work explores cross-category video high-

light detection, a similar problem as UDA, in which one

intends to transfer the highlight knowledge acquired from

the source video category to the target one.
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3. Method

In the cross-category video highlight detection problem,

a set of videos containing the highlight moments of source

video category, i.e. DS = {vSk }|DS |
k=1 , are given, and each

video v ∈ DS is divided into Nv segments {(si, yi)}Nv
i=1

with similar duration, where yi denotes the ground-truth

highlight label for segment si. In addition, we have an-

other set of videos including the highlight moments of target

video category, i.e. DT = {vTk }|DT |
k=1 , while the segment-

level highlight annotations of target category are not avail-

able on these videos. Under such condition, the main ob-

jective is to derive an effective highlight detector on target

video category through fully exploiting the labeled source

videos and the unlabeled target ones.

3.1. Motivation and Overview

Cross-category Video Highlight Detection. In real-

world applications, the segment-level highlight annotations

may not be available for the target video category that the

model is applied to, while one can obtain the supervision on

another video category (named as source video category).

Therefore, in such a situation, a natural question to ask

is how to transfer the knowledge about highlight moments

on source video category to the target one, i.e. performing

cross-category video highlight detection. A straightforward

answer is to leverage the existing Unsupervised Domain

Adaptation (UDA) techniques for feature distribution align-

ment between two distinct video categories. However, such

distribution alignment is hard, if not ill-posed, for the high-

light detection problem, since the highlight segments for the

target category may be nuisance for the source one, and vice

versa, which is experimentally illustrated in Sec. 4.3.

To acquire the exact highlight concepts for target video

category using the data from both categories, we propose a

Dual-Learner-based Video Highlight Detection (DL-VHD)

framework. Under this framework, the model learns two

kinds of knowledge about highlight moments, i.e. the dis-

tinction of target category videos with other ones and the

characteristics of highlights on source category. These two

types of knowledge are further merged to form the more

complete highlight concepts about target video category.

Set-based Learning. Previous works [10, 49, 32, 41, 14]

commonly trained the highlight detection model by con-

trasting a highlight segment s+ with a non-highlight seg-

ment s−, which seeks to model the conditional distribution

p(y+, y−|s+, s−). However, such pair-based learning may

fail to discover the more complex highlight relations among

more than two segments. For example, the excitement level

of a soccer match differs from moment to moment, and the

relative highlight extent of these moments cannot be suffi-

ciently captured by pairs of video segments.

Motivated by such limitation, we propose a Set-based

T
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Figure 2. (a) The overall framework of SL-module. (b) The archi-

tecture of the Transformer encoder used in this module.

Learning module (SL-module). Its core idea is to train the

model to predict the highlight score distribution over a set

of video segments, and the prediction of a single segment is

depended on all the other segments in the set, which models

p(y1, y2, · · · , yN |s1, s2, · · · , sN ) (N denotes the set size).

By including such contextual information spanning among

different video segments, it is expected that the model can

assign more accurate highlight score to each segment.

Cross-category Video Highlight Detection via Set-
based Learning. In order to bridge the highlight patterns

of two distinct video categories, it is essential to explore the

interrelationship among the video segments within the same

category and also across different categories. Such complex

relational patterns can be better captured under the rich con-

text provided by segment sets. Based on such motivation,

in DL-VHD, we employ SL-module as the basic learning

module to acquire more precise highlight knowledge.

3.2. Set-based Learning Module

The SL-module models the interdependency among the

video segments in a set and predicts the highlight score of

each segment under such set-determined context, as shown

in Fig. 2(a). Next, we introduce the detailed learning and

inference schemes of this module.

Learning scheme. In each learning step, a set of N an-

notated segments randomly sampled from the same video,

i.e. x = {(sj , yj)}Nj=1, is given, and a pre-trained C3D [34]

model F extracts the feature embedding of each segment,

i.e. z = {zj}Nj=1 = {F (sj)}Nj=1 (F is fixed in the learning

phase). On these segment embeddings, a Transformer en-

coder [37] T models the interrelationship among different

segments and outputs the contextualized segment embed-

dings, i.e. z̃ = {z̃j}Nj=1 = T (z). The Transformer encoder

used in our method basically follows the original design

in [37] which stacks L layers of multi-head self-attention
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Figure 3. Illustration of DL-VHD. Three kinds of segment sets are constructed with a labeled source video and an unlabeled target video,

and the segment embeddings are derived by a C3D extractor and a Transformer encoder. A coarse-grained and a fine-grained learner are

supervised by the mixed and source segment set, respectively, and their knowledge is further consolidated by knowledge distillation.

and feed forward network. In contrast, we remove the po-

sitional encoding module for the permutation-invariance of

set learning, and, as suggested in [39], Layer Normaliza-

tion (LN) [1] is applied before each self-attention and feed

forward module. The architecture of the Transformer en-

coder is shown in Fig. 2(b). We refer readers to the original

literature [37] for more details.

Upon the contextualized segment embeddings, a scoring

model C predicts the highlight score of each video segment,

i.e. ŷ = {ŷj}Nj=1 = {C(z̃j)}Nj=1. Now that the highlight

prediction on a segment set is obtained, we define the learn-

ing objective. During the learning phase, the basic desider-

ata is to match the highlight score distribution on set x pre-

dicted by the model with the ground-truth distribution. To

attain this goal, we define the learning objective as follows:

min
T,C

Lpred, (1)

Lpred = DKL

(
σ
({yj}Nj=1

)
, σ

({ŷj}Nj=1

))
, (2)

where σ(·) denotes the softmax function producing the pre-

dicted and ground-truth highlight score distributions, and

DKL(·, ·) stands for the Kullback–Leibler divergence.

Inference scheme. To infer the highlight score of a seg-

ment s from a test video, we first construct a segment set

containing s and other N − 1 context segments adjacent

to s in the video, denoted as x = {sj}Nj=1. Half of these

context segments are right before s in the video, and the

other half are right after. Segment duplication is conducted

if the segments around s cannot fill the set. Here, we do not

use the set composed of random segments as in the learning

phase for the sake of suppressing the variance of prediction.

We then infer the highlight score of all segments in the set,

i.e. ŷ = {ŷj}Nj=1, by feeding them into the C3D feature

extractor, the Transformer encoder and the scoring model

successively. Finally, we pick out ŷid(s) (id(s) stands for

the index of s in x) as the highlight score of the video seg-

ment to be evaluated.

3.3. Dual-Learner-based Video Highlight Detection

On the basis of SL-module, we now explore the cross-

category video highlight detection problem. Its main ob-

jective is to derive an effective highlight detector on target

video category by fully exploiting the labeled source videos

DS and the unlabeled target ones DT . To pursue such goal,

we seek to capture the highlight concepts about target video

category from two aspects. On one hand, there exists some

obvious features that distinguish the target category videos

from the ones of other topics, e.g. the surfboard in surfing

videos, the ski pole in skiing videos, etc. The perception of

such features endows a model with the basic capability of

picking out the segments of the target category from a video

mixing different contents. On the other hand, there are some

common characteristics of highlight moments sharing be-

tween distinct video categories. For instance, the moments

with a standing person moving on some surface of the scene

can be the highlights of both surfing and skiing videos. Such

generic knowledge can be employed to identify the high-

light moments for the target video category. However, nei-

ther of these two types of concepts alone can sufficiently

define the highlights on the target category, which calls for

a scheme that integrates different knowledge.

Following the above intuitions, we design a dual-learner-

based framework, in which two kinds of highlight knowl-

edge are learned by a coarse-grained learner and a fine-
grained learner respectively, and they are further integrated

by a knowledge distillation [12] scheme. The graphical il-

lustration of this framework is shown in Fig. 3. We state the

detailed learning and inference schemes as follows.

Learning scheme. In each learning step, we use a set

of labeled segments randomly sampled from a video in DS ,

denoted as xS = {(sSj , ySj )}Nj=1, and a set of unlabeled seg-

ments randomly sampled from a video in DT , denoted as

xT = {sTj }Nj=1. Based on these two sets, we further con-

struct a mixed set with the segments from two video cate-

gories, denoted as xM = {(sMj , yMj )}Nj=1 (yMj equals to

1 if sMj is a target category segment and is 0 otherwise), in

which half of the segments are randomly sampled from xS ,

and the other half are from xT . Using the C3D feature ex-

tractor and Transformer encoder, we respectively derive the

contextualized segment embeddings for these three sets, i.e.
z̃S = {z̃Sj }Nj=1, z̃T = {z̃Tj }Nj=1 and z̃M = {z̃Mj }Nj=1.

Upon these segment embeddings, on one hand, we intro-

duce a coarse-grained learner Ccoarse to learn the basic dis-
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tinction of target video segments with the source ones. This

is achieved by matching the highlight prediction of Ccoarse

on mixed set, i.e. ŷM = {ŷMj }Nj=1 = {Ccoarse(z̃
M
j )}Nj=1,

with the ground-truth highlight distribution on that set,

which defines the coarse-grained highlight prediction loss:

Lcoarse = DKL

(
σ
({yMj }Nj=1

)
, σ

({ŷMj }Nj=1

))
. (3)

On the other hand, a fine-grained learner Cfine is intro-

duced to acquire the knowledge about highlight moments

on the source video category. This is attained through the

supervised learning on set xS , in which the prediction of

Cfine, i.e. ŷS = {ŷSj }Nj=1 = {Cfine(z̃
S
j )}Nj=1, is aligned

with the ground-truth highlight score distribution:

Lfine = DKL

(
σ
({ySj }Nj=1

)
, σ

({ŷSj }Nj=1

))
. (4)

Now that two types of knowledge about highlight mo-

ments are acquired by two different learners, we aim to in-

tegrate them on the target video category. Inspired by the

idea of knowledge distillation [12], we would like to distill

the knowledge of each learner into the other learner without

impairing its original knowledge. Specifically, the coarse-

grained and fine-grained learner are both utilized to predict

the highlight scores of the segments in set xT , which gives

out ŷT ,coarse = {ŷT ,coarse
j }Nj=1 = {Ccoarse(z̃

T
j )}Nj=1 and

ŷT ,fine = {ŷT ,fine
j }Nj=1 = {Cfine(z̃

T
j )}Nj=1. We then gener-

ate the prediction reflecting both kinds of highlight knowl-

edge by averaging ŷT ,coarse and ŷT ,fine, which produces

ŷT ,avg = {ŷT ,avg
j }Nj=1 = {(ŷT ,coarse

j + ŷT ,fine
j )/2}Nj=1. In

order to perform knowledge distillation between two learn-

ers, we constrain the individual prediction from either the

coarse-grained or fine-grained learner to approach the aver-

age prediction, which defines the distillation loss as below:

Ldistill =
1

2

(
DKL

(
σ
({ŷT ,avg

j }Nj=1

)
, σ

({ŷT ,coarse
j }Nj=1

))

+DKL

(
σ
({ŷT ,avg

j }Nj=1

)
, σ

({ŷT ,fine
j }Nj=1

)))
.

(5)

The overall learning objective can be summarized as:

min
T,Ccoarse,Cfine

Lcoarse + Lfine + λLdistill, (6)

where λ is the trade-off parameter balancing between high-

light prediction and knowledge distillation losses.

Inference scheme. During inference, given a segment

s from a target category video, we first extend it into a

set with other N − 1 context segments adjacent to s in

the same video, and the set is denoted as xT = {sTj }Nj=1.

The selection of these context segments follows the scheme

depicted in the inference part of Sec. 3.2. The highlight

score of each segment in xT is respectively inferred by

the coarse-grained and fine-grained learner, which derives

the highlight prediction ŷT ,coarse = {ŷT ,coarse
j }Nj=1 and

ŷT ,fine = {ŷT ,fine
j }Nj=1. These two kinds of predictions are

further averaged to produce ŷT ,avg = {ŷT ,avg
j }Nj=1. Finally,

we pick out ŷT ,avg
id(s) (id(s) denotes the index of s in xT ) as

the highlight score of segment s.

4. Experiments
In this section, we compare the proposed SL-module and

the DL-VHD method with existing video highlight detection

approaches under the category-specific and cross-category

setting, respectively.

4.1. Experimental Setup

Model details. Following [10, 41], a C3D model [34]

pre-trained on the UCF101 dataset [30] serves as the back-

bone for feature extraction, and its parameters are fixed dur-

ing training. The Transformer encoder is constructed with

5 layers of self-attention and feed forward block, and each

multi-head self-attention module is equipped with 8 atten-

tion heads. The scoring model C, coarse-grained learner

Ccoarse and fine-grained learner Cfine are all instantiated as

a multi-layer perceptron with architecture FC(4096,1024)

→ ReLU → FC(1024,256) → ReLU → FC(256,1), where

FC is short for fully-connected layer.

Training details. In all experiments, an SGD optimizer

(initial learning rate: 0.001, momentum: 0.9, weight decay:

5 × 10−4) is employed to train the model for 50 epochs,

and the learning rate is multiplied by 0.1 every 20 epochs.

For each video segment, 16 frames are sampled from it with

the same interval. Without otherwise specified, the set size

N is set as 20, and the trade-off parameter λ is set as 1.0
(parameter sensitivity is analyzed in Sec. 5.2). We use an

NVIDIA Tesla V100 GPU for training. Our method is im-

plemented with the PyTorch [22] deep learning framework,

and the source code will be released for reproducibility.

Performance comparison. Under the category-specific

setting, six supervised video highlight detection (or video

summarization) methods, i.e. Video2GIF [10], LSVM [32],

KVS [23], DPP [7], vsLSTM [50] and SM [9], and six

weakly-supervised approaches, i.e. RRAE [48], SG [19],

DSN [21], VESD [4], LIM-s [41] and MINI-Net [14], are

introduced for comparison. For the cross-category setting,

the SL-module trained on the source/target video category

serves as the lower/upper bound of model performance.

For the sake of fair comparison, five UDA algorithms, i.e.
DAN [17], DeepCORAL [31], RevGrad [6], MCD [26] and

AFN [46], are combined with SL-module to compare with

the proposed DL-VHD method, and the detailed combina-

tion schemes are provided in the supplementary material.
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Table 1. Highlight detection results (mAP) of weakly-supervised and supervised methods on the YouTube Highlights dataset.

Category
Weakly-supervised Methods Supervised Methods

RRAE [48] LIM-s [41] MINI-Net [14] Video2GIF [10] LSVM [32] SL-module (w/o T ) SL-module

dog 0.49 0.579 0.537 0.308 0.60 0.690 0.708
gymnastics 0.35 0.417 0.528 0.335 0.41 0.506 0.532

parkour 0.50 0.670 0.689 0.540 0.61 0.690 0.772
skating 0.25 0.578 0.709 0.554 0.62 0.687 0.725
skiing 0.22 0.486 0.583 0.328 0.36 0.636 0.661
surfing 0.49 0.651 0.638 0.541 0.61 0.695 0.762

Average 0.383 0.564 0.614 0.464 0.536 0.651 0.693

Table 2. Highlight detection results (top-5 mAP score) of weakly-supervised and supervised methods on the TVSum dataset.

Category
Weakly-supervised Methods Supervised Methods

SG [19] DSN [21] VESD [4] LIM-s [41] MINI-Net [14] KVS [23] DPP [7] vsLSTM [50] SM [9] SL-module (w/o T ) SL-module

VT 0.423 0.373 0.447 0.559 0.803 0.353 0.399 0.411 0.415 0.837 0.865
VU 0.472 0.441 0.493 0.429 0.653 0.441 0.453 0.462 0.467 0.663 0.687
GA 0.475 0.428 0.496 0.612 0.754 0.402 0.457 0.463 0.469 0.724 0.749

MS 0.489 0.436 0.503 0.540 0.813 0.417 0.462 0.477 0.478 0.851 0.862
PK 0.456 0.411 0.478 0.604 0.780 0.382 0.437 0.448 0.445 0.767 0.790
PR 0.473 0.417 0.485 0.475 0.545 0.403 0.446 0.461 0.458 0.594 0.632
FM 0.464 0.412 0.487 0.432 0.559 0.397 0.442 0.452 0.451 0.580 0.589
BK 0.417 0.368 0.441 0.663 0.717 0.342 0.395 0.406 0.407 0.708 0.726
BT 0.483 0.435 0.492 0.691 0.769 0.419 0.464 0.471 0.473 0.779 0.789
DS 0.466 0.416 0.488 0.626 0.591 0.394 0.449 0.455 0.453 0.612 0.640

Average 0.462 0.424 0.481 0.563 0.698 0.398 0.447 0.451 0.461 0.712 0.733

Table 3. Highlight detection results (mAP) of weakly-supervised

and supervised methods on the ActivityNet dataset.

Category
Weakly-supervised Supervised

LIM-s [41] MINI-Net [14] LSVM [32] SL-module (w/o T ) SL-module

eat&drink 0.638 0.702 0.670 0.716 0.736
personal care 0.663 0.689 0.657 0.725 0.744

household 0.621 0.745 0.707 0.763 0.787
sport 0.710 0.794 0.769 0.835 0.849
social 0.743 0.760 0.740 0.758 0.779

Average 0.675 0.738 0.709 0.759 0.779

4.2. Category-specific Video Highlight Detection

When highlight annotations are available on the video

category intended to be used, SL-module can be individu-

ally applied to train a highlight detector under the category-

specific setting. We compare it with existing video highlight

detection and video summarization methods in this section.

Datasets. YouTube Highlights [32] is composed of six

video categories, i.e. dog, gymnastics, parkour, skating, ski-

ing and surfing, and each category has approximately 100

videos. Segment-level annotations are provided to indicate

whether a segment is a highlight moment or not. We follow

the standard training-test split [32] for model evaluation.

TVSum [29] is a video summarization dataset consisting

of 10 categories of video events with 5 videos in each cat-

egory, and frame-level importance score is provided in this

dataset. Following previous works [41, 14], we average the

frame-level importance scores to achieve the segment-level

highlight scores. For each video category, we select the two

longest videos (about 10 minutes in total) for training and

the rest three ones for test.

ActivityNet [11] is a large-scale database for human ac-

tivity classification and detection. We employ the data of

the temporal action localization track for highlight detec-

tion. Specifically, we split the video samples to five cate-

gories, i.e. eat&drink, personal care, household, sport and

social, according to the first-level action label. The tempo-

ral Intersection over Union (tIoU) between a video segment

and a ground-truth event of a specific category is used as the

segment’s highlight label for this video category. Totally,

we utilize 2520 videos for training and 1260 videos for test,

and the detailed dataset statistics for all video categories are

provided in the supplementary material.

Results on YouTube Highlights. In Tab. 1, we compare

our method with existing approaches on six video categories

of YouTube Highlights. It can be observed that the pro-

posed SL-module outperforms previous pair-learning-based

algorithms, i.e. LIM-s, MINI-Net, Video2GIF and LSVM,

on all six categories, and superior average mAP is still ob-

tained when the Transformer encoder T is removed from

our model. This phenomenon illustrates the superiority of

set-based learning over pair-based methods, in which the

broader contextual information within a segment set enables

more precise highlight prediction of each video segment.

Results on TVSum. Tab. 2 reports the performance of

various video highlight detection and video summarization

approaches on TVSum. On nine of ten video categories, the

proposed SL-module achieves the best performance, and,

when removing the Transformer encoder, it still outper-

forms the state-of-the-art MINI-Net on seven of ten cate-

gories. These results verify the effectiveness of set-based
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Table 4. Cross-category highlight detection results (mAP) on the

YouTube Highlights dataset. (source video category: surfing; the

underlined result surpasses the target-oracle.)

Methods →dog →gymnastics →parkour →skating →skiing

Source-only 0.485 0.505 0.547 0.568 0.545

DAN [17] 0.652 0.487 0.713 0.638 0.611

DeepCORAL [31] 0.634 0.513 0.732 0.659 0.620

RevGrad [6] 0.628 0.493 0.654 0.640 0.597

MCD [26] 0.567 0.529 0.499 0.642 0.654

AFN [46] 0.625 0.517 0.575 0.653 0.626

DL-VHD (Lcoarse only) 0.574 0.498 0.704 0.635 0.631

DL-VHD (Lfine only) 0.485 0.505 0.547 0.568 0.545

DL-VHD (w/o Ldistill) 0.630 0.529 0.718 0.683 0.658

DL-VHD (full model) 0.649 0.540 0.748 0.713 0.686
Target-oracle 0.708 0.532 0.772 0.725 0.661

learning under the circumstances with limited training data,

i.e. only two videos per category for training.

Results on ActivityNet. In Tab. 3, we evaluate the per-

formance of three existing methods and two configurations

of the proposed model. Since the experiments on Activ-

ityNet dataset were not commonly included in previous

works, we examine these works by the released source code

(for MINI-Net and LSVM) or our re-implementation (for

LIM-s). The experimental results on this large-scale dataset

further verify the superiority of the proposed set-learning

method (i.e. obtaining the highest test mAP on all five video

categories) when the training data is abundant.

4.3. Cross-category Video Highlight Detection

Under the cross-category highlight detection setting, we

evaluate the effectiveness of DL-VHD and various UDA

algorithms on transferring the highlight knowledge from

source video category to the target one. In all experiments,

the videos of source category possess segment-level anno-

tations, while the videos of target category are unannotated.

Tasks. YouTube Highlights consists of six video cate-

gories, and we employ surfing as the source category and

evaluate each of the cases that one of the other five cate-

gories serves as the target one. Also, we consider a more

difficult setting where dog is used as the source category

(i.e. adapting from dog activities to human ones), and the

results of this setting are in the supplementary material.

ActivityNet contains five categories of human activities,

and we utilize sport as the source category and aim at trans-

ferring the knowledge of sport highlights to other four video

categories. The adaptation towards each target video cate-

gory is separately examined.

Cross-category results on YouTube Highlights. Tab. 4

reports the performance of various approaches on five cross-

category highlight detection tasks, in which surfing serves

as the source category. Source-only (target-oracle) method

represents the SL-module trained on the source (target)

video category in a supervised fashion, where an obvious

performance gap exists between them. We can observe that

Table 5. Cross-category highlight detection results (mAP) on the

ActivityNet dataset. (source video category: sport; the underlined

result surpasses the target-oracle.)

Methods →eat&drink →personal care →household →social

Source-only 0.674 0.667 0.707 0.722

DAN [17] 0.656 0.678 0.694 0.735

DeepCORAL [31] 0.708 0.705 0.765 0.744

RevGrad [6] 0.687 0.701 0.722 0.731

MCD [26] 0.712 0.713 0.761 0.756

AFN [46] 0.718 0.704 0.750 0.749

DL-VHD (Lcoarse only) 0.689 0.694 0.742 0.741

DL-VHD (Lfine only) 0.674 0.667 0.707 0.722

DL-VHD (w/o Ldistill) 0.713 0.715 0.778 0.754

DL-VHD (full model) 0.730 0.728 0.793 0.766
Target-oracle 0.736 0.744 0.787 0.779

the full model of DL-VHD surpasses five existing UDA al-

gorithms on four of five tasks, and it surprisingly outper-

forms the target-oracle model on two tasks, i.e. surfing →
gymnastics and surfing → skiing. Such results illustrate that

cross-category video highlight detection cannot be easily

deemed as a variant of UDA problem, and more dedicated

techniques (e.g. the proposed dual-learner and knowledge

distillation schemes) can better discover the transferrable

highlight patterns across different video categories.

Cross-category results on ActivityNet. In Tab. 5, we

compare the proposed DL-VHD model with five UDA

methods on the cross-category highlight detection tasks of

ActivityNet, and sport is utilized as the source category in

all these tasks. The full model of DL-VHD achieves higher

mAP than the UDA algorithms on all four tasks, and it even

outperforms the target-oracle model on the sport → house-

hold task. These empirical results verify that the DL-VHD

model succeeds in capturing the human-related action pat-

terns on the target video category under the guidance of la-

beled source videos and unlabeled target videos.

5. Analysis
In this section, we conduct more in-depth analysis of our

approach to evaluate the effectiveness of major model com-

ponents both quantitatively and qualitatively.

5.1. Ablation Study

Effect of Transformer encoder. In all three video high-

light detection datasets, we compare the performance of the

SL-module with and without Transformer encoder T , as

shown in Tabs. 1, 2 and 3. It can be observed that, after

applying the Transformer encoder, the proposed set-based

learning method obtains a clear performance gain on all

tasks, which demonstrates the importance of interrelation-

ship modeling when learning from a set of video segments.

Effect of dual learners and knowledge distillation.
In Tabs. 4 and 5, we investigate the main components of

DL-VHD through three additional model configurations:

(1) Lcoarse only: only the coarse-grained learner is utilized
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Figure 4. Highlight predictions of three methods on the surfing → skiing task. (Each video segment is denoted by its first and last frames.)

Figure 5. Sensitivity analysis of set size N (left) and trade-off pa-

rameter λ (right).

to predict the highlight extent of a segment with respect

to the target video category; (2) Lfine only: only the fine-

grained learner is employed for highlight prediction on tar-

get category (this configuration is equivalent to the source-

only baseline); (3) w/o Ldistill: both the coarse- and fine-

grained learners are trained, while their knowledge is not

integrated by the knowledge distillation loss. When the two

learners are individually applied, the coarse-grained learner

outperforms the fine-grained one, which, we think, is be-

cause the supervision for coarse-grained learner is more rel-

evant to the highlight patterns on target video category than

the supervision applied to fine-grained learner. In the full

model, the knowledge distillation scheme is able to further

promote model’s performance upon configuration (3) by in-

tegrating the knowledge of two learners.

5.2. Sensitivity Analysis

Sensitivity of set size N . In this experiment, we analyze

the sensitivity of the proposed SL-module to the set size.

Fig. 5(a) shows the model performance on two highlight

detection tasks under different set sizes. It can be observed

that our set-based learning method can achieve stable per-

formance gain when the size of each segment set is large

enough, i.e. N � 16.

Sensitivity of trade-off parameter λ. In this part, we

discuss the selection of trade-off parameter λ which bal-

ances between highlight prediction and knowledge distilla-

tion objectives. In Fig. 5(b), we plot the performance of

DL-VHD on two cross-category highlight detection tasks

using various λ values. The highest mAP on target video

category is gained when the value of λ is around 1.0, which

indicates that the appropriate balance between two distinct

optimization objectives is attained under such condition.

5.3. Visualization

For the cross-category highlight detection task surfing →
skiing, Fig. 4 visualizes the highlight prediction results of

three methods, i.e. source-only, AFN and DL-VHD, on a

target category video. For each method, we select the seg-

ments with the closest highlight score to the correspond-

ing coordinate value (0.2, 0.4, 0.6 or 0.8), and each seg-

ment is represented by its first and last frames. The source-

only model fails to capture the highlight patterns of skiing,

and the AFN algorithm performs better but still overvalue

a non-highlight segment by a score near 0.6. By compar-

ison, DL-VHD assigns highlight scores to various video

segments most appropriately. More visualization results on

other tasks can be found in the supplementary material.

6. Conclusions and Future Work
In this research, we novelly explore the cross-category

video highlight detection problem with a Dual-Learner-

based Video Highlight Detection (DL-VHD) framework.

Under this framework, a Set-based Learning module (SL-

module) is proposed to improve the commonly employed

pair-based learning, and dual-learner and knowledge distil-

lation schemes are further introduced for highlight knowl-

edge transfer. The comprehensive experiments under both

the category-specific and cross-category settings verify the

exceeding performance of the proposed method.

Our future explorations will involve further improving

the algorithm for cross-category highlight detection, apply-

ing the proposed approach to more sophisticated real-world

applications and studying on the generalization capability

of video highlight detection models.
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