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Abstract

To fully leverage the data captured from different scenes
with different view angles while reducing the annotation
cost, this paper studies a novel crowd counting setting, i.e.
only using partial annotations in each image as training
data. Inspired by the repetitive patterns in the annotated
and unannotated regions as well as the ones between them,
we design a network with three components to tackle those
unannotated regions: i) in an Unannotated Regions Char-
acterization (URC) module, we employ a memory bank to
only store the annotated features, which could help the vi-
sual features extracted from these annotated regions flow
to these unannotated regions; ii) For each image, Feature
Distribution Consistency (FDC) regularizes the feature dis-
tributions of annotated head and unannotated head regions
to be consistent; iii) a Cross-regressor Consistency Regu-
larization (CCR) module is designed to learn the visual fea-
tures of unannotated regions in a self-supervised style. The
experimental results validate the effectiveness of our pro-
posed model under the partial annotation setting for sev-
eral datasets, such as ShanghaiTech, UCF-CC-50, UCF-
QNRF, NWPU-Crowd and JHU-CROWD++. With only
10% annotated regions in each image, our proposed model
achieves better performance than the recent methods and
baselines under semi-supervised or active learning settings
on all datasets. The code is https://github.com/
svip-lab/CrwodCountingPAL.

1. Introduction
The crowd counting task aims to estimate the total num-

ber of persons in static images or dynamic videos. The re-
cent data-driven models have achieved satisfactory results
on crowd counting due to the success of CNN [10], but they

∗: Equal Contribution. †: Corresponding author.

Figure 1. Crowd counting with different supervisions.

still require large amounts of annotated data. For instance,
the annotators need to label the positions of all heads with
points to overcome the various challenging scenes, such as
the lighting, camera view, occlusion and various head poses
in Fig. 1 (a). Such a labeling strategy is an extremely labor-
intensive task, e.g., the total annotation cost is 3,000 human
hours in labeling the NWPU-Crowd dataset [42].

Naturally, a key question arises. Can the designed model
still produce the competitive performance but use as few
annotations as possible? One of the potential directions is to
use a part of the dataset in full annotations, as shown in Fig.
1 (b), under the semi-supervised learning (SSL) [21, 34]
or active learning [47] strategy. Although these strategies
could reduce the number of annotated training images, we
still need to fully annotate the images. It might result in
limited challenging scenes, limited viewing angles of the
camera as well as limited lighting conditions, which might
degrade the model’s generalization ability in the test stage.

We notice that in one image, the person’s head poses are
usually the same or similar and the lighting conditions and
the viewing angles are consistent. It might be redundant to
annotate all the person heads in one image. Therefore, to
fully leverage the data captured from different scenes with
different view angles while reducing the annotation cost,
we propose a novel crowd counting setting, named Partial
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Figure 2. An Illustration of the repetitive pattern. The region within the red bounding box is the partially annotated region. The ∆Density

map shows the density δ between the red point and the rest regions, and the ∆Feature map represents the feature distance δ between
the red point and the rest regions. The blue and orange curves in (f) represent the average minimum distance distribution of the features
extracted from the CSRNet (fully-annotated data) and our model (partially-annotated data). The red point is the example used in (a). They
indicate that the similar or repetitive patterns (density or feature) occur not only in the annotated regions (within the red bounding box) or
unannotated regions (without the red bounding box), but also between the annotated and unannotated regions in almost all images.

Annotation Learning. Different from those attempts that
fully annotate a few training images, our proposed partial
annotation learning only partially (e.g. 10%) annotates a
patch in each training image. In particular, each image con-
sists of both 10% annotated regions and 90% unannotated
regions in Fig. 1 (c). We do it on the whole training images.

One of the main challenges of partial annotation learning
is how to leverage the many unannotated regions for learn-
ing a good visual representation in each image since the
CNN-based methods could extract useful and efficient fea-
tures for the annotated regions. We observe that the image
textures are usually consistent or the same, such as the per-
son’s head poses, lighting conditions, and the viewing an-
gles, just like the Fig. 2 (a). Further, to investigate whether
there exist such repetitive patterns on feature space, we cal-
culate the distance between the red point and the rest regions
in density map space in Fig. 2 (c) and feature space in Fig. 2
(d). At the global level, there is a similar even the same dis-
tribution on the deep blue regions, the most crowded region,
in both Fig. 2 (c) and (d). Further, we calculate the average
minimum distance in each image between each position in
the labelled region and the positions in unlabelled region in
ground truth density map space in Fig. 2 (e) and feature
space in Fig. 2 (f). The blue and orange curves represent
the average minimum distance distribution of the features
extracted from the CSRNet (fully-annotated data) and our
model (partially-annotated data). The red point is the ex-
ample used in Fig. 2 (a). The almost flat blue curve shows
the repetitive feature patterns occur not only in the unanno-
tated or annotated regions but also between the unannotated
and annotated regions in almost all images. Thus, it shows
the consistency assumption is reliable for almost all images.

Looking back at the main challenge of how to extract the

useful features from unannotated regions, we design the fol-
lowing modules at the local and global level to make full use
of the repetitive patterns. Firstly, we employ the memory
bank idea to store the repetitive feature patterns extracted
from the annotated regions in the whole dataset in con-
trolled storage size. Then the features of the unannotated re-
gions could find their nearest counterpart in the memory for
the image representation. Consequently, the memory bank
could help the information of the annotated regions flow to
the unannotated regions. If only considering each feature
vector at the local level, it might not be similar or repetitive
for the features extracted from annotated and unannotated
regions. Besides, since the background consists of unlim-
ited patterns and objects, such as the building or sky, we
only consider the consistency of the feature distribution of
the person’s head regions. Thus, we design a Feature Distri-
bution Consistency regularizer to regularize the features ex-
tracted from unannotated head regions have similar feature
distribution with those extracted from the annotated head
regions. In particular, we firstly forward the network with-
out backward gradient to get the predicted density map as
an attention map, which could roughly distinguish the head
regions and background regions.

Motivated by previous work [20], we propose to utilize
a Cross-regressor Consistency Regularization to learn the
visual representations for both annotated and unannotated
regions in a self-supervised style. The proposed model in-
cludes two branches to estimate density maps generated by
Gaussian bandwidth with different sigma. It uses the con-
sistency of crowd numbers between two different estimated
density maps within the same image.

The contributions of this work are summarized as fol-
lows: (1) To reduce the annotation cost and produce the
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competitive performance, we propose a novel crowd count-
ing setting, named partial annotation learning, that only an-
notates a patch of each training image. (2) Inspired by
the repetitive patterns, we design an Unannotated Regions
Characterization at the local level and Feature Distribution
Consistency regularizer at the global level to leverage the
unannotated regions for visual representation. (3) Based
on the consistency of crowd numbers, we also design a
Cross-regressor Consistency Regularization to learn the vi-
sual representations in a self-supervised style. (4) The ex-
perimental results demonstrate the effectiveness of our pro-
posed model. With only 10% annotated regions in each im-
age, our proposed model achieves better performance than
the recent methods and baselines under semi-supervised or
active learning settings on all datasets.

2. Related Work
2.1. Crowd Counting

Early crowd counting methods could be roughly divided
into detection-based approaches [40, 44, 12] and regression-
based approaches [3, 4, 16]. Recently, in view of the suc-
cess of Convolutional Neural Networks (CNNs) in image
classification [37], object detection tasks [6], CNN-based
approaches [8, 2, 1, 17, 43, 18, 14, 22, 28, 41, 45] have
been widely applied in crowd counting. MCNN [46] is pro-
posed to regress density map for different head sizes with
multi-column convolutions. After that, Switch-CNN [30]
and CP-CNN [33] are proposed to choose adaptive scales
and incorporate contextual information to improve crowd
counting. CSRNet [13] is introduced with dilated convo-
lution to expand receptive field. To simultaneously solve
counting, density map regression and localization, a com-
position loss is designed in [9]. Ma et al. [23] present a
bayesian loss to maximize the predicted expectations of the
head with point supervision. Hu et al. [7] search for an
automatic multi-scale network to extract effective features
of heads with Neural Architecture Search (NAS) strategy.
To obtain more accurate head localization, some detection-
based crowd counting methods [14, 22, 28] and the cor-
responding networks are also proposed and achieve com-
parable performance with regression-based methods. Al-
though Wang et al. propose a synthetic counting dataset
with GTA-V game and a domain adaptation method to al-
leviate the burden of labeling in real scenarios, there exists
still a gap between performances compared with training in
real datasets.

2.2. Counting With Limited Label

Manual labeling is very labor-intensive work in crowd
counting for those images with dense heads, thus people
begin to seek some crowd counting methods with a limited
label. An almost unsupervised learning strategy [29] is pro-

posed for dense crowd counting, where almost 99.9% of
the parameters of the proposed model are trained without
any labeled data. However, the performance of the model is
not satisfactory. To obtain a balance between performance
and data annotation, Liu et al. [20] leverage unlabeled data
to rank the number of heads for crowd counting with a self-
supervised method. Lei et al. [11] design a network that
can effectively train models from count-level annotations,
which is regarded as a weakly supervised learning. In [21],
Liu et al. propose a self-training algorithm to incorporate
these inter-relationships to generate reliable pseudo-labels
for semi-supervised learning. ResNet50-GP [34] is a Gaus-
sian Process-based iterative learning mechanism, using the
estimation of pseudo-ground truth for the unlabeled data.
Zhao et al. [47] propose an active learning framework to
gradually label heads.

Since each image includes both the annotated and unan-
notated regions, these methods [34, 21, 47] cannot be di-
rectly applied and need some modifications, such as adding
an annotated region mask or cropping these annotated re-
gions and training. Since the annotated regions could be in
many small areas, the cropped images might be in low res-
olution, which might result in the failure of the multi-scale-
based methods. More importantly, the semi-supervised
learning methods are trained on the limited challenging
scenes, which might limit their generalization ability.

Different from works, we introduce a novel partial an-
notation learning setting for crowd counting, where only
requires annotating a small patch in each image. In [15],
Lin et al. propose a similar block sub-image annotation
(50% pixels) as a replacement for full-image annotation.
Domain adaptation (DA) mainly tries to align feature dis-
tribution gap between inter-images from the different data
distribution. Our method also aligns the feature distribution
gap between intra-image patches with the same data distri-
bution, where the gaps mainly result from the lack of labels.
Some techniques in DA [48] [38], such as adversarial align-
ment, pseudo label retraining, mean teacher could be further
studied to enforce the feature distribution consistency.

3. Method

3.1. Problem Formulation

In this work, we propose a novel partial annotation learn-
ing setting for crowd counting. We only annotate one patch
of each image. All annotated and unannotated regions are
used in the training process.

Given an image I ∈ R3×H×W , the total count num-
ber is N , ground truth persons. Under the partial annota-
tion setting, we only annotate a patch Iin ⊂ I , about 10%
of H × W area, and Np (Np < N ) is the number of
annotated persons. Then the density map GT of the im-
age I is generated by partial annotations as formulated as:

15572



Figure 3. An Illustration of our model.

GT (p) =
∑Np

i=1 δ(p − pi) ∗ Gσ , where pi is the center lo-
cation of the ith person in the annotated regions.

In our setting, since each image, I includes both the
less annotated and more unannotated regions, one of the
main challenges is how to extract as much as possible use-
ful visual representation from both of them. Inspired by
the repetitive patterns in either annotated or unannotated re-
gions and the ones between them, we propose a model with
the three components, as illustrated in Figure 3. In the fol-
lowing, we will describe each module in detail.

3.2. Feature Extraction

Following the CSRNet [13], we use the VGG16 [32] to
extract the features and use the same regressor in CSRNet
to estimate the density maps. The convolutional layers are
used as an encoder and two fully-connected layers are re-
moved. If the size of the input patch is H ×W , the feature
map F0 extracted from the Conv5 layer is reduced by 1

8 , via
3 max-pooling layers.

3.3. Unannotated Regions Characterization

Motivated by the repetitive patterns between the anno-
tated and unannotated regions in the feature space, as shown
in the Fig. 2 (d), we employ a VQ-based memory to store
the repetitive feature patterns from the whole images in con-
trolled storage size. It only stores the visual annotated fea-

tures instead of the features extracted from the unannotated
regions. Consequently, the unannotated features could com-
bine with their nearest counterpart in the memory for better
image representation.

In particular, similar to the VQ-VAE [39, 27], there is
one memory bank E to encode and store the annotated vi-
sual features in the whole dataset. The memory bank E
is defined as a latent vector dictionary E := e1, e2, ..., en,
where ei ∈ R1×128 denotes the stored feature in the dictio-
nary and n is the total size of the memory.

There are two stages in this part: the update stage and
the retrieval stage. To note that, in the update stage, we only
use the learned features extracted from these annotated re-
gions, the red patch in Fig. 3, to update the memory back
E, whose receptive fields locate or consists of the annotated
regions. Specially, the memory bank takes the feature F0

as inputs. For the feature vector fj of F0 in these anno-
tated regions, we find the most similar latent vector ei in
the memory bank, via the L2 distance measure:

f̂j = ei, i = argmin
k
‖fj − ek‖22. (1)

Once the nearest vector ei is found, we replace the fj by
ei. Following [39], we use vector quantisation, a dictionary
learning algorithm to learn the embedding space. The VQ
objective uses l2 error ‖sg[f ]− e‖22 to move the embedding
vectors ei towards the encoder outputs fj , which is used for
updating the memoryE. sg is the stopgradient operator. We
use ‖f − sg[e]‖22 to make sure that the encoder commits to
an embedding and its output does not grow. The vectors in
E is learnable from the training set. The latent vectors in
memory E are updated only according to these annotated
features.

In the retrieval stage, the features extracted from both of
the annotated regions, i.e., the red patch in the top of Fig. 3
and unannotated regions, i.e., the blue patches in the top of
Fig. 3 need to retrieve the most similar latent vector ei in
the memory bank, similar to Eq. 1. Finally, we concatenate
the retrieved features and the original features as the final
outputs of the memory bank, donated as F1.

On the one hand, the unannotated regions could borrow
these annotated features via the memory, based on the repet-
itive patterns between the annotated and unannotated re-
gions. On the other hand, it is easy to expand the trained
model to a new domain with the help of the learned anno-
tated features extracted from the whole dataset. To note that,
the process of the features extracted from the annotated re-
gions looks like K-means. Both of them can be regarded as
a quantization of features. But the K-means method needs
to pre-define the number of clusters, while our update phase
does not need it.

For learning each feature vector located at the unanno-
tated regions, the simple solution might be to directly re-
trieve its most similar feature vector from the feature space
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of the whole image or the same image. However, when re-
trieving from the whole image, the search space is much
large, resulting in a huge time and memory cost. If re-
trieving from the same image, the search space is limited
and lacks enough repetitive patterns. Thus, we employ the
memory idea to store the repetitive feature pat-terns ex-
tracted from the whole images in controlled storage size.

3.4. Feature Distribution Consistency

A similar feature distribution occurs not only in the an-
notated or unannotated regions but also between annotated
or unannotated regions, as shown in Fig. 2 (d). Since the
background consists of all kinds of objects, such as build-
ings, sky, and so on, we only consider the feature distribu-
tion of the person’s head regions. These head regions have
limited patterns, such as front head or back hair. Inspired
it, at the global level, we also design a feature regularizer to
regularize the feature distribution extracted from the unan-
notated head regions similar to one extracted from the anno-
tated head regions as well as the feature distribution within
the annotated head regions or unannotated head regions.

In our implementation, we firstly forward the network
without backward gradient to get the predicted density map
and normalize it as attention map A, which could roughly
distinguish the head regions and background regions in both
annotated and unannotated regions.

In particular, This module receives the feature F0 and
use as an attention map A. The attention map A is used to
filter out the background features both in the non-annotated
regions Iout and the annotated region Iin. The Fin and Fout
represent the features extracted from the annotated patch
Iin and the unannotated regions Iout. Then, we use the mean
and covariance of The Fin and Fout to reduce their differ-
ences as follows:

LFDC = Lmean + Lcovar = ‖µFin − µFout‖22
+ ‖(Fin ·A− µFin)(Fin ·A− µFin)

T

− (Fout ·A− µFout)(Fout ·A− µFout)
T ‖22,

(2)

where µFin and µFout is the mean vectors of the features ex-
tracted from the annotated regions and unannotated regions,
respectively. Since the number of the features in annotated
regions is different from the number of the features in the
unannotated regions, we do not use KL divergence between
the two distributions of features.

3.5. Cross-regressor Consistency Regularization

To learn the meaningful visual features of the unan-
notated regions, we design a Cross-regressor Consistency
Regularization (CCR) module in a self-supervised manner.
It uses the consistency of crowd numbers between two dif-
ferent estimated density maps.

Given the extracted feature map F1, we feed it into two
branches, i.e. Net1 and Net2 to predict density maps gener-
ated by the different sigma. All of them use the same front-
end network to extract visual features. Here, we denote the
predicted density maps from Net1 and Net2 parameterized
by θ1 and θ2 as Mθ1 and Mθ2, respectively.

Since both Net1 and Net2 use the same images and fea-
ture F1 as inputs, the crowd number of their predicted den-
sity maps should be the same. Thus, similar to the self-
supervised style in previous work [20] [35], we also use
the consistency between their rough predictions as a kind of
weakly supervising signals. The loss term is donated as

LCCR =
1

2N

N∑
i=1

‖
∑

(M i
θ1)−

∑
(M i

θ2)‖22, (3)

where LCCR shows the consistency loss of the density maps
predicted by two networks (Net1 and Net2).

To note that, since two branches use two density maps
generated by different sigma, the pixel-wise crowd density
is different, while the total crowd number should be the
same and consistent. Thus, our designed CCR enforces the
consistency of the overall crowd number.

3.6. Implementation Details

In our implementation, the final loss function consists of
5 loss items, including two original loss items Lθ1 and Lθ2 ,
one cross loss item LCCR, as well as the mean and covari-
ance loss items Lmean and Lcovar. The coefficients of the two
original loss items equal 1, while the coefficient of the cross
loss item is 0.1. In the FDC module, we use the network
prediction as an attention map. Considering the prediction
at the beginning phase is not well trained, the coefficient of
the mean and covariance loss item increases from 0 to 0.01
during training.

The simulated annotated regions are randomly selected
and are rectangle shape. The annotated regions occur at
different locations in different images. In the experimen-
tal section, we also evaluate the model performance under
different annotated shapes such as circles and triangles.

4. Experiment
4.1. Experimental Setting

We use the PyTorch [25] platform to implement our
model with the following parameter settings: mini-batch
size (16), learning rate (1.0e-6), momentum (0.95), weight
decay (0.0005), and the number of epochs (1000). We em-
ploy the default initialization to initialize the model.

Dataset. We use the following public datasets to evalu-
ate our proposed model: the ShanghaiTech dataset [46] Part
A and Part B, the UCF-CC-50 dataset [9], the UCF-QNRF
dataset [9], the NWPU-crowd dataset [42], and The JHU-
CROWD++ dataset [35] [36].
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Method Type Ratio Part A Part B
MAE MSE MAE MSE

MCNN [46] FSL 100% 110.2 173.2 26.4 41.3
Switching-CNN [30] FSL 100% 90.4 135.0 21.6 33.4
CP-CNN [33] FSL 100% 73.4 106.4 20.1 30.1
ic-CNN [26] FSL 100% 68.5 116.2 10.7 16.0
PACNN [31] FSL 100% 62.4 102.0 7.6 11.8
BAYESIAN+ [23] FSL 100% 62.8 101.8 7.7 12.7

IRAST [21] SSL 10% 86.9 148.9 14.7 22.9
GP (ResNet-50) [34] SSL 5% 102 172 15.7 27.9
GP (VGG16) [34] SSL 5% 112 163 NA NA
AL-AC [47] AC 10% 87.9 139.5 12.7 20.4
Label-10% Images SSL 10% 98.80 165.28 15.88 26.62

Label-10% Regions PAL 10% 83.87 138.08 16.35 26.11
Ours PAL 10% 72.79 111.61 12.03 18.70

CSRNet [13] FSL 100% 68.2 115.0 10.6 16.0

Table 1. The comparison on ShanghaiTech Part A & B dataset.

Metrics. Following the common metrics in existing
works for crowd counting, we use both Mean Absolute
Error (MAE) and Mean Squared Error (MSE) to evaluate
different methods: MAE = 1

N

∑N
1 |zi − ẑi|,MSE =√

1
N

∑N
1 (zi − ẑi)2, where N is the number of test images,

zi is the actual number of people in the ith image, and ẑi is
the estimated number of people in the ith image.

4.2. Performance Comparison

We evaluate our proposed model with the following
state-of-the-art methods and our designed baselines on the
five public datasets, using the metrics MAE and MSE.

Baselines. Since this is the first work to study partial an-
notation setting in crowd counting, we compare our model
with the following methods, divided into three groups.

Fully-Supervised Learning (FSL). The first group is re-
lated to the fully-supervised learning methods. We list some
recent state-of-the-art methods for crowd counting, using all
samples as training, such as MCNN [46], Switching-CNN
[30], CSRNet [13] and so on.

Semi-Supervised Learning or Active Learning
(SSL/AL). We compare our model with the following
related semi-supervised or active learning crowd counting
methods. IRAST [21] is a self-training algorithm to
incorporate these inter-relationships to generate reliable
pseudo-labels for semi-supervised learning. ResNet50-GP
[34] is a Gaussian Process-based iterative learning mecha-
nism, using the estimation of pseudo-ground truth for the
unlabeled data. PSSW [47] is an active learning framework
for crowd counting. Besides, we also design a simple
baseline, ‘Label-10% Images’, using the full annotated
10% images to train the network (CSRNet model [13]).

Partial Annotation Learning (PAL). The third group is
under partial annotation learning. We design a simple base-
line as low bound, ‘Label-10% Regions’, using the partial
annotation (10% regions) with each image to train the CSR-

Figure 4. An Illustration of predicted density maps on Shang-
haiTech Part A&B, UCF-QNRF and NWPU-Crowd dataset.

Method Type Ratio MAE MSE

MCNN [46] FSL 100% 377.6 501.9
Switching CNN [30] FSL 100% 318.1 439.2
CP-CNN [33] FSL 100% 295.8 320.9
ic-CNN [26] FSL 100% 260.0 365.5
PACNN [31] FSL 100% 241.7 320.7
BAYESIAN+ [23] FSL 100% 229.3 308.2

AL-AC [47] AC 20% 318.7 421.6
AL-AC [47] AC 10% 351.4 448.1
Label-10% Images SSL 10% 490.11 738.32

Label-10% Regions PAL 10% 394.75 530.09
Ours PAL 10% 293.99 443.09

CSRNet [13] FSL 100% 266.1 397.5
Table 2. The experimental results on the UCF CC 50 dataset.

Net [13], using masks on the loss function.
The ‘Ratio’ column on the tables represents how many

annotated regions percentage the method uses as training
samples. The FSL methods use 100% annotated data. The
SSL methods use the 10% fully annotated images as train-
ing samples. For the PAL methods, 10% means that each
image has a 10% annotated region.

ShanghaiTech Part A & B. The experimental results
are shown on the Table 1. We can see that our model achieve
a significant performance improvement and is very close to
the fully supervised CSRNet, where the gap is less than 2
on the metric of MAE on the ShanghaiTech Part B dataset.

UCF-CC-50. We also conduct experiments on the UCF-
CC-50 dataset. On the Table 2, our proposed method even
achieves better performance than the early fully supervised
counting method such as MCNN [46] and Switching CNN
[30]. Besides, our model using only 10% annotations also
outperforms the AL-AC using 20% annotations.
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Method Type Ratio MAE MSE

MCNN [46] FSL 100% 277 426
Switching CNN [30] FSL 100% 228 445

IRAST [21] SSL 10% 135.6 233.4
GP (ResNet-50) [34] SSL 5% 160 275
GP (VGG16) [34] SSL 5% 175 291

Label-10% Images PAL 10% 188.33 304.79
Label-10% Regions PAL 10% 169.04 299.43
Ours PAL 10% 128.13 218.05

CSRNet [13] FSL 100% 119.2 211.4
Table 3. The experimental results on the UCF-QNRF dataset.

Method Type Ratio MAE MSE

MCNN [46] FSL 100% 218.53 700.61
CANNet [19] FSL 100% 93.58 489.90
SCAR [5] FSL 100% 81.57 397.92
SFCN+ [42] FSL 100% 95.46 608.32

Label-10% Images SSL 10% 221.94 1172.74

Label-10% Regions PAL 10% 203.29 1097.55
Ours PAL 10% 178.70 1080.43

CSRNet [13] FSL 100% 104.89 433.48
Table 4. The experimental results on the NWPU-Crowd dataset.

Method Type Ratio MAE MSE

MCNN [46] FSL 100% 188.9 483.4
SFCN [43] FSL 100% 77.5 297.6
BCC [24] FSL 100% 75.0 299.9
DRCN [42] FSL 100% 71.0 278.6

Label-10% Images SSL 10% 155.78 463.61

Label-10% Regions PAL 10% 148.11 409.23
Ours PAL 10% 129.65 400.47

CSRNet [13] FSL 100% 85.9 309.2
Table 5. The experimental results on the JHU-CROWD++ dataset.

UCF-QNRF. We then compare our proposed model
with other related methods on the UCF-QNRF dataset. Ta-
ble 3 shows the comparison results. Our proposed method
achieves higher performance than other SSL methods even
early fully-supervised methods such as MCNN [46] and
Switching CNN [30]. Besides, compared with the super-
vised CSRNet, the gap is less than 10 on MAE and MSE.

NWPU-Crowd and JHU-CROWD++. We also do the
comparison on the large scale and widely distributed crowd
counting NWPU-Crowd and JHU-CROWD++ datasets. On
the Table 4 and 5, our proposed model under the partial an-
notation setting could achieve better performance than early
fully-supervised method MCNN [46]. But since the large
scale and various scenes, there still exists a large gap, more
than 70 persons in each testing image, between our model
and recent fully-supervised method, such as CSRNet [13].

The experimental results on all tables show that our
proposed method under partial annotation learning set-
ting always outperforms the recent state-of-the-art semi-

Method Branch Part A Part B
MAE MSE MAE MSE

Net1 1 83.87 138.08 16.35 26.11
Net2 1 79.96 122.78 15.46 25.48
Net1&2 2 77.37 119.82 13.51 21.17
Net1&2–URC-CCR-FDC 2 72.79 111.61 12.03 18.70

Net1&2 2 77.37 119.82 13.51 21.17
Net1&2-URC 2 75.27 116.06 12.84 19.74
Net1&2-CCR 2 75.33 119.61 12.60 20.15
Net1&2-FDC 2 75.80 120.26 12.72 19.79
Net1&2–URC-CCR-FDC 2 72.79 111.61 12.03 18.70

Label-Triangle 2 83.06 123.98 14.08 22.23
Label-Circle 2 80.62 120.09 12.88 20.49
Label-Rectangle 2 72.79 111.61 12.03 18.70

Table 6. Ablation studies on the Shanghaitech Part A & B dataset.

supervised learning or active learning methods. Besides,
from Fig. 4, we can see our predicted density maps seem
like gridding since we use retrieved VQ feature vectors to
predict the final density maps.

4.3. Ablation Studies

The evaluation of the basic network architectures
To evaluate the effects of the basic network architectures,
we design the following baselines, ‘Net1’, ‘Net2’, and
‘Net1&2’. Net1 and Net2 use images with the 10% an-
notated regions (σ=15 and σ=20) to train the CSRNet[13].
Net1&2 is the multi-branch structure, which shares the en-
coder and has two or three decoders to predict the density
maps. From the first block on Table 6, the multi-branch
baselines achieve better performance than the two baselines.

The effect of Unannotated Regions Characterization
(URC). In order to evaluate the effect of our proposed URC
component, we also design a baseline named ‘Net1&2-
URC’, which adds the UCR component based on ‘Net1&2’.
Compared with the results of Net-1&2 in the second block
on Table 6, Net-1&2-URC achieves fewer errors, which in-
dicates that our proposed URC component could character-
ize the features of unannotated regions.

The effect of Cross-regressor Consistency Regular-
ization (CCR). To investigate the effect of the Cross-
regressor Consistency Regularization (CCR), we train a
multi-branch network with a CCR component, named ‘Net-
1&2-CCR’. Its results are shown in the second block on the
Table 6. We can see that it also outperforms the baseline
Net-1&2, which indicates that our proposed corss-regressor
consistency regularization could learn more useful visual
features for the final density maps prediction.

The effect of Feature Distribution Consistency (FDC)
To indicate the effect of our proposed feature distribution
consistency (FDC), we train a multi-branch network with a
CCR component, adding the FDC, named ‘Net-1&2-FDC’.
The results are shown on the second block on the Table 6. It
indicates that FDC could keep alleviates the inconsistency
between the annotated and unannotated regions.
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Figure 5. The corresponding relationship between the indices of latent vectors and the crowd counting numbers

The effort of Learned VQ Latent Vector. To investi-
gate the learned latent vectors in the memory bank, we show
the corresponding relationship between the indices of latent
vectors and the crowd counting numbers, as shown in Fig.
5. After finishing the training process, we feed the whole
training images into the trained models and use eq (2) to
generate the indices maps of the VQ vectors in Fig. 5 (b).
Then we generate the VQ density map based on the corre-
spondence between the indices of the VQ vectors and the
counting number. 1 From the Fig . 5 (c) and (d), we can
see that there is a high correlation and similar distribution
between VQ density maps and ground truth density map.
Besides, we can see that even from different images, the
similar crowd regions also share the same VQ vector index.

The effect of different shape annotations. We also use
different annotated shapes such as circles and triangles to
train the model. The third block on Table 6 shows the ex-
perimental comparison. On the ShanghaiTech Part B, the
gap between circle/triangle shape and rectangle shape is less
than 2 in both metrics. However, the gap is much larger
about more than 10 persons in each testing image on the
ShanghaiTech Part A. The reason might be the receptive
field shape used in a neural network, which is more simi-
lar to a rectangle shape. For the circle/triangle shape, some
boundary elements might be ignored after several convolu-
tional layers, which might result in the performance gap.

The effect of different loss terms. We do the ablation
studies on loss terms and the results are in Table 7. We com-
bine the highly related terms: Lθ1&Lθ1 and Lmean&Lvar.

4.4. Less or More Annotations in An Image

In our implementation, we use all images with 10% an-
notated regions to train the model. Along with this direc-
tion, for each image, we further annotate less regions i.e.
5% and more regions i.e. 50%, 80% and 90% on the Shang-
haiTech Part A and B and use them to train the model. Their
point ratio (PR) is (#Points in labelled regions

#All points ). The experimental
results are shown in the Table 7. The model trained on 5%
training data performs worse than the one trained on 10%
training data. But the gap is about 7 persons in each test-

1The implementation details are in the supplementary materials.

Lθ1
&Lθ1

LCCR Lmean&Lvar MAE MSE MAE MSE

1 0.01 0.01 73.85 116.56 12.78 20.23
1 0.1 0.01 72.79 111.61 12.03 18.70
1 1 0.01 136.08 179.01 14.83 23.19

1 0.1 0.1 73.43 113.18 13.10 20.50
1 0.1 0.01 72.79 111.61 12.03 18.70
1 0.1 0.001 73.42 115.15 12.87 20.15

Method Region Ratio PR (Part A/B) MAE MSE MAE MSE

Ours 5% 6.4%/4.0% 79.42 123.60 16.50 25.28
Ours 10% 12.2%/6.6% 72.79 111.61 12.03 18.70
Ours 50% 57.4%/33.3% 70.45 105.03 10.49 16.28
Ours 80% 86.4%/70.0% 67.69 103.71 9.55 14.51
Ours 90% 92.7%/81.2% 67.44 103.75 9.10 13.79

CSRNet 100% 100%/100% 68.20 115.00 10.60 16.00

Table 7. The results with loss weights and more annotations.

ing image on the metric MAE. The model with 90% labels
could achieve the similar performance with full supervision,
owning to the redundant and repetitive patterns.

Thus, the promising results of the model trained on 5%
data indicate there exists further improving space in the
crowd counting with partial annotations in an image.

5. Conclusion

To reduce the annotation cost and produce competitive
performance, we proposed a novel partial annotation learn-
ing setting, only annotating a patch of each image. Com-
pared with semi-supervised learning, our setting could bring
more various challenging scenes using the same even less
annotation costs. Inspired by the repetitive patterns, we also
propose a new model with three modules. With 10% an-
notated regions in each image, our proposed model always
outperforms recent methods under semi-supervised or ac-
tive learning settings on all datasets. Further, we also train
a model using only 5% annotations and the results indicate
there is a further improving space under this setting.
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