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Abstract

Semantic segmentation is a challenging task in the ab-
sence of densely labelled data. Only relying on class activa-
tion maps (CAM) with image-level labels provides deficient
segmentation supervision. Prior works thus consider pre-
trained models to produce coarse saliency maps to guide
the generation of pseudo segmentation labels. However, the
commonly used off-line heuristic generation process cannot
fully exploit the benefits of these coarse saliency maps. Mo-
tivated by the significant inter-task correlation, we propose
a novel weakly supervised multi-task framework termed as
AuxSegNet, to leverage saliency detection and multi-label
image classification as auxiliary tasks to improve the pri-
mary task of semantic segmentation using only image-level
ground-truth labels. Inspired by their similar structured se-
mantics, we also propose to learn a cross-task global pixel-
level affinity map from the saliency and segmentation rep-
resentations. The learned cross-task affinity can be used
to refine saliency predictions and propagate CAM maps to
provide improved pseudo labels for both tasks. The mutual
boost between pseudo label updating and cross-task affin-
ity learning enables iterative improvements on segmenta-
tion performance. Extensive experiments demonstrate the
effectiveness of the proposed auxiliary learning network
structure and the cross-task affinity learning method. The
proposed approach achieves state-of-the-art weakly super-
vised segmentation performance on the challenging PAS-
CAL VOC 2012 and MS COCO benchmarks. 1

1. Introduction

Semantic segmentation plays a vital role in many appli-
cations such as scene understanding and autonomous driv-

1https://github.com/xulianuwa/AuxSegNet
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Figure 1. An illustration of the proposed approach for weakly su-
pervised semantic segmentation. Our approach jointly learns two
auxiliary tasks (i.e., multi-label image classification and saliency
detection) and a primary task (i.e., semantic segmentation) only
using image-level ground-truth labels, and performs affinity learn-
ing across two dense prediction tasks (i.e., saliency detection and
semantic segmentation). The learned affinity is then used to gen-
erate updated pseudo ground-truth (PGT) providing supervision to
learn saliency detection and semantic segmentation.

ing. It describes the process of assigning a semantic label
to each pixel of an image. Prior works have achieved great
success in the case of fully supervised semantic segmenta-
tion using Convolutional Neural Networks (CNNs). How-
ever, this has come at a high pixel-wise annotation cost.
There has been an emerging research trend in semantic seg-
mentation using less expensive annotations, such as bound-
ing boxes [14, 31], scribbles [22, 33], points and image-
level labels [28, 18, 42]. Among them, image-level labels
only indicate the presence or absence of objects in an image,
resulting in an inferior segmentation performance compared
to their fully supervised counterparts.

Most existing weakly supervised semantic segmentation
(WSSS) approaches follow a two-step pipeline, i.e., gen-
erating pseudo segmentation labels and training segmenta-
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tion models. A key element in generating pseudo segmen-
tation labels is the class activation map (CAM) [48], which
is extracted from CNNs trained on image-level labels. Al-
though CAM maps identify class-specific discriminative
image regions, those regions are quite sparse with very
coarse boundaries. In order to generate high-quality pseudo
segmentation labels, many approaches [37, 38, 17, 36] have
been presented to improve CAM maps from various as-
pects. Besides, existing methods [4, 13, 32, 47] typically
use off-the-shelf saliency maps, combined with CAM maps,
to determine reliable object and background regions. A gen-
eral pre-trained saliency model can provide coarse saliency
maps, which contain useful object localization informa-
tion, on a target dataset. However, in prior works, such
coarse off-the-shelf saliency maps are only used as fixed
binary cues in an off-line pseudo label generation process
via heuristic thresholding, they are neither directly involved
in the network training nor updated, which largely restricts
their use to further benefit the segmentation performance.

Motivated by the observation that semantic segmenta-
tion, saliency detection and image classification are highly
correlated, we propose a weakly supervised multi-task deep
network (see Figure 1), which leverages saliency detec-
tion and multi-label image classification as auxiliary tasks
to help learn the primary task of semantic segmentation.
Through the joint training of these three tasks, an online
adaptation can be achieved from pre-trained saliency maps
to our target dataset. In addition, the task of saliency detec-
tion impels the shared knowledge to emphasize the differ-
ence between foreground and background pixels, thus driv-
ing the object boundaries of the segmentation outputs to co-
incide with those of the saliency outputs. Similarly, the im-
age classification task highlights the discriminative features
which can lead to more accurate segmentation predictions.

Furthermore, we notice that, similar to these two dense
prediction tasks, i.e., semantic segmentation and saliency
detection, CAM maps also represent pixel-level semantics
albeit they are only partially activated. Therefore, we pro-
pose to learn global pixel-level pair-wise affinities from
the features of segmentation and saliency tasks to guide
the propagation of CAM activations. More specifically, two
task-specific affinity maps are first learned for the saliency
and segmentation tasks, respectively. To capture the com-
plementary information between the two affinity maps, they
are then adaptively integrated based on the learned self-
attentions to produce a cross-task affinity map. Moreover,
as we expect to learn semantic-aware and boundary-aware
affinities so as to better update pseudo labels, we impose
constraints on learning the cross-task affinities from task-
specific supervision and joint multi-objective optimization.
The learned cross-task affinity map is further utilized to
refine saliency predictions and CAM maps to provide im-
proved pseudo labels for both saliency detection and seman-

tic segmentation respectively, enabling a multi-stage cross-
task iterative learning and label updating.

In summary, the main contribution is three-fold:

• We propose an effective multi-task auxiliary deep
learning framework (i.e., AuxSegNet) for weakly
supervised semantic segmentation. The proposed
AuxSegNet leverages multi-label image classification
and saliency detection as auxiliary tasks to help learn
the primary task (i.e., semantic segmentation) using
only image-level ground-truth labels.

• We propose a novel method to learn cross-task affini-
ties to refine both task-specific representations and pre-
dictions for semantic segmentation and saliency de-
tection. The learned global pixel-level affinities can
also be used to simultaneously update semantic and
saliency pseudo labels in a joint cross-task iterative
learning framework, yielding continuous boosts of the
semantic segmentation performance.

• Our proposed method achieves state-of-the-art results
on PASCAL VOC 2012 and MS COCO datasets for
the task of weakly supervised semantic segmentation.

2. Related Work
In this section, we review recent works from two closely

related perspectives, i.e., weakly supervised semantic seg-
mentation and auxiliary learning for segmentation.
Weakly supervised semantic segmentation. Recent
WSSS approaches commonly rely on CAM maps as seeds
to generate pseudo segmentation labels. Several works fo-
cus on modifying classification objectives [36] or network
architectures [38] to improve CAM maps. A few works
mine object regions based on erasing [37, 13, 20] and accu-
mulation [17] heuristics. Moreover, improved CAM maps
can be achieved by exploring sub-category information [3]
or mining cross-image semantics [10, 32, 21].

There are several methods [37, 35, 34] which also per-
form iterative refinement on pseudo segmentation labels.
Wei et al. [37] iteratively train the CAM network using im-
ages of which the discovered object parts are erased, to mine
more object regions. This still results in combined CAM
maps having coarse boundaries and non-discriminative ob-
ject parts not activated. Wang et al. [35] improve pseudo
segmentation labels by iteratively mining common object
features from superpixels. Wang et al. [34] use an affin-
ity network, which learns local pixel affinities, to refine
pseudo segmentation labels. The affinity network is itera-
tively optimized using the results from a segmentation net-
work. In contrast to these methods requiring learning an
additional single-modal affinity network to have alternat-
ing training with the segmentation network, we perform
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Figure 2. An overview of the proposed AuxSegNet. An input RGB image (a) is first passed through a backbone network to extract image
features, which are then fed to three branches for multi-label image classification (b), saliency detection (c & f) and semantic segmentation
(e & g), respectively. The proposed cross-task affinity learning module (see Figure 3) takes as inputs the segmentation and saliency feature
maps, and outputs augmented feature maps for predicting both tasks (c & e) and a cross-task affinity map (d) for task-specific prediction
refinement (f & g). The refined saliency predictions are used to update pseudo saliency labels, and the learned cross-task affinity map is
used to refine CAM maps (h) to update pseudo segmentation labels (i) to retrain the network. The network training (black solid lines) and
label updating (blue dashed lines) are performed alternatively for multiple stages (i.e., s = 1, 2, ..., S) to learn a more reliable affinity map
and produce more accurate segmentation predictions.

the cross-task affinity learning simultaneously with the pro-
posed joint multi-task auxiliary learning network.

Several other works [1, 10] also refine pseudo labels
by learning pixel affinities. However, Ahn et al. [1] only
learn pixel affinities based on the selected samples from
the sparse CAM maps. Fan et al. [10] learn pixel affin-
ity only to enhance feature representations for object esti-
mation. In contrast, the proposed method is different from
these approaches in the following aspects: it learns global
pixel affinities across different tasks; it learns the pixel-
level affinities to refine both task-specific representations
and predictions; the affinity can be progressively improved
along with more accurate saliency and segmentation results
to be achieved with updated pseudo labels on both tasks.
Auxiliary learning for segmentation. Many existing
works have shown the effectiveness of multi-task learn-
ing [40, 30], which allows the sharing of learned knowledge
across tasks to improve the performance of each individual
task. In auxiliary learning, the goal of auxiliary tasks is
to improve the performance of the primary task [41, 25].
For instance, Dai et al. [7] propose a multi-task network
for instance segmentation by jointly learning to differenti-
ate instances, estimate masks, and categorize objects. In [5],
more accurate segmentation is achieved by learning an aux-
iliary contour detection task. In these cases, ground-truth
labels are provided for both primary and auxiliary tasks.

In weakly supervised learning, the joint learning of ob-

ject detection and segmentation has been explored in [29,
16]. The joint learning of image classification and se-
mantic segmentation has been investigated in [4, 44, 2].
Zeng et al. [43] recently propose a joint learning framework
for saliency detection and weakly supervised semantic seg-
mentation, which however uses strong pixel-level saliency
ground-truth labels as supervision. In contrast, we leverage
two auxiliary tasks (i.e., image classification and saliency
detection) to facilitate the learning of the primary task of
semantic segmentation using image-level ground-truth clas-
sification labels and off-the-shelf saliency maps. We take
further advantage of multi-task features to learn cross-task
affinities, which can improve the pseudo labels for both
saliency and segmentation tasks simultaneously to achieve
progressive boosts of the segmentation performance.

3. The Proposed Approach

Overview. The overall architecture of the proposed
AuxSegNet is shown in Figure 2. An input RGB image
is first fed into a shared backbone network. The gener-
ated backbone features are then forwarded to three task-
specific branches which predict the class probabilities, a
dense saliency map, and an dense semantic segmentation
map, respectively. The proposed cross-task affinity learning
module first learns task-specific pixel-level pair-wise affini-
ties, which are used to enhance the features of the saliency
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and segmentation tasks, respectively. Then, the two task-
specific affinity maps are adaptively integrated with the
learned self-attentions as a guide to produce a global cross-
task affinity map. This affinity map is further used to re-
fine both the saliency and segmentation predictions during
training. After each training stage, the learned cross-task
affinity map is used to update the saliency and segmenta-
tion pseudo labels by refining the saliency predictions and
the CAM maps. Only image-level ground-truth labels are
required to train the proposed AuxSegNet.

3.1. Multi-Task Auxiliary Learning Framework

Auxiliary supervised image classification. The input im-
age is first passed through the multi-task backbone network
to produce a feature map F ∈ RH×W×K , where K is the
number of channels, H and W are the height and width of
the map, respectively. A Global Average Pooling (GAP)
layer is then applied on F by aggregating each channel
of F into a feature vector. After that, a fully connected
(fc) layer is performed as a classifier to produce a proba-
bility distribution of the multi-class prediction. Given the
weight matrix of the fc classifier W ∈ RK×C , with C
denoting the number of classes, the CAM map for a spe-
cific class c at a spatial location (i, j) can be formulated as
CAMc(i, j) =

∑K
k Wc

kFk(i, j) where Wc
k represents the

weights corresponding to the class c and the feature channel
k, and Fk(i, j) represents the activation from the k-th chan-
nel of F at a spatial location (i, j). The generated CAM
maps are then normalized to be between 0 and 1 for each
class c by the maximum value in the two spatial dimensions.
Auxiliary weakly supervised saliency detection with la-
bel updating. For the saliency detection branch, feature
maps from the backbone network are forwarded to two con-
secutive convolutional layers with dilated rates of 6 and 12,
respectively. The generated feature maps Fsal in are then
fed to the proposed cross-task affinity learning module to
obtain refined feature maps Fsal out and a global cross-task
affinity map ACT . Fsal in,Fsal out ∈ RH×W×D with D
denoting the number of channels. The refined feature maps
are used to predict saliency maps Psal by using a 1×1 con-
volutional layer followed by a Sigmoid layer. The predicted
saliency maps are further refined by the generated cross-
task affinity map ACT to obtain refined saliency predictions
Pref sal. Since no saliency ground-truth is provided, we
take advantage of pre-trained models which provide coarse
saliency maps Ptsal as initial pseudo labels. For the fol-
lowing training stages, we incorporate the refined saliency
predictions of the previous stage (i.e., stage s − 1) to itera-
tively perform saliency label updates to continually improve
the saliency learning as follows:

PGTs
sal =

{
Ptsal if s = 0,

CRFd(
Ps−1

ref sal+Ptsal

2 ) if s > 0,
(1)

NRQ-ORcaO
BORcN

NRQ-ORcaO
BORcN

C

Hadamard Product

Concatenation

Sum

C

SA

Figure 3. The detailed structure of the proposed cross-task affinity
learning module. It consists of two non-local blocks which respec-
tively learn task-specific saliency and segmentation affinity maps
and refine their corresponding feature maps, and a self-attention
(SA) module is designed to adaptively integrate two task-specific
affinity maps to produce a global cross-task affinity map.

where PGTs
sal denotes the saliency pseudo labels for the

sth training stage, and CRFd(·) denotes a densely con-
nected CRF following the formulation in [12] while using
the average of Ps−1

ref sal and Ptsal as a unary term.
Primary weakly supervised semantic segmentation with
label updating. The semantic segmentation decoding
branch shares the same backbone with the saliency decod-
ing branch and the image classification branch. Similar to
the saliency decoding branch, two consecutive atrous con-
volutional layers with rates of 6 and 12 are used to extract
task-specific features Fseg in ∈ RH×W×D, which are then
fed to the cross-task affinity learning module. The output
feature maps Fseg out are forwarded through a 1×1 convo-
lutional layer and a Softmax layer to predict segmentation
masks Pseg , which are further refined by the learned cross-
task affinity map to produce refined segmentation masks
Pref seg . To generate pseudo segmentation labels, we fol-
low the conventional procedures [37, 38, 17, 13, 19, 32] to
select reliable object regions from CAM maps and back-
ground regions from off-the-shelf saliency maps [12] by
hard thresholding. More specifically, to generate the pseudo
segmentation labels for the initial training stage (i.e., stage
0), we first only train the classification branch using image-
level labels to obtain the CAM maps. For the follow-
ing training stages, we generate pseudo semantic labels by
using the CAM maps refined by the cross-task affinities
learned at the previous training stage.

3.2. Cross-task Affinity Learning

Given an input image, we can obtain task-specific fea-
tures, i.e., Fsal and Fseg from the saliency and segmen-
tation branches of the proposed AuxSegNet, respectively.
These feature maps for dense prediction tasks contain rich
context information, and there are strong semantic relation-
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ships among the feature vectors in the spatial dimensions.
Such beneficial information can be used to refine CAM
maps as they share highly correlated semantic structures.
Cross-task affinity. As illustrated in Figure 3, we exploit
non-local self-attention blocks (NonLocal), which capture
the semantic correlations of spatial positions based on the
similarities between the feature vectors of any two posi-
tions, to learn task-specific pair-wise affinities for saliency
detection and semantic segmentation tasks, respectively:

[Fsal out, Asal] = NonLocal(Fsal in), (2)
[Fseg out, Aseg] = NonLocal(Fseg in). (3)

More specifically, given the saliency feature maps Fsal in ∈
RH×W×D, we first use three 1 × 1 convolutional layers to
transform it into a triplet of (Q, K, V), which are then flat-
tened in the spatial dimensions to be of size HW ×D. To
compute the pair-wise affinity, we apply the dot product be-
tween each pair of entries of Q and K and obtain saliency
affinity matrix Asal ∈ RHW×HW , with each row repre-
senting the similarity values of a spatial position and the
rest ones. We then apply the softmax operation along each
row to normalize the similarity values to be between 0 and
1. Each position of the input feature maps is then modified
by attending to all positions and taking the sum of the prod-
uct of all positions with their corresponding affinity values
associated to the given position in the feature space. The
attended feature maps with aggregated context information
are finally added to the input feature maps to form the output
feature maps Fsal out with enhanced pixel-level representa-
tion. We apply the same non-local operation on the seg-
mentation feature maps Fseg in to generate a segmentation
affinity map Aseg and enhanced segmentation feature maps
Fseg out. To learn more consistent and accurate pixel affini-
ties, we then integrate the two task-specific affinity maps
by learning a self-attention (SA) module, which consists of
two convolutional layers and a softmax layer. The gener-
ated two spatial attention maps from the SA module act as
two weight maps, which are used to aggregate the segmen-
tation and saliency affinity maps into one cross-task global
affinity map ACT ∈ RHW×HW as follows:

[W1,W2] = SA(CONCAT(Asal,Aseg)), (4)
ACT = W1 ∗Asal + W2 ∗Aseg, (5)

where CONCAT(·) denotes the concatenation operation,
and W1,W2 ∈ RHW×HW denote the learned two spa-
tial self-attention maps as weight maps for the saliency and
segmentation affinity maps, respectively.
Multi-task constraints on cross-task affinity. To enhance
the affinity learning, we consider imposing task-specific
constraints on the generated cross-task affinity map. To this
end, the generated cross-task affinity matrix is transposed
and then enforced to refine both saliency and segmentation

predictions during training as:

Pref sal(i, j) =

H∑
k

W∑
l

ACT (i, j, k, l) ·Psal(k, l), (6)

Pref seg(i, j) =

H∑
k

W∑
l

ACT (i, j, k, l) ·Pseg(k, l). (7)

Then the learning of the cross-task affinity can gain ef-
fective supervision from both saliency and segmentation
pseudo labels. Therefore, the improvements on the updated
pseudo labels can boost the affinity learning.

3.3. Training and Inference

Overall optimization objective. The overall learning ob-
jective function of AuxSegNet is the sum of the losses for
the three tasks:

LAuxSegNet = λ1 · Lcls + λ2 · Lsal + λ3 · Lseg,

Lsal = Lsal1 + Lsal2,

Lseg = Lseg1 + Lseg2,

(8)

where Lcls is a multi-label soft margin loss computed be-
tween the predicted class probabilities and the image-level
ground-truth labels to optimize the image classification net-
work branch; Lsal1 and Lsal2 are binary cross entropy
losses computed between the predicted/refined saliency
maps and the pseudo saliency label maps to optimize the
saliency detection network branch and the affinity fusion
module; Lseg1 and Lseg2 are pixel-wise cross entropy
losses calculated between the predicted/refined segmenta-
tion masks and the pseudo segmentation label maps, and
these losses optimize the segmentation branch and the affin-
ity fusion module; and λ1, λ2 and λ3 are the loss weights
for corresponding tasks.
Stage-wise training. We use a stage-wise training strat-
egy for the entire multi-task network optimization. First,
we only train the image classification branch with image-
level labels for 15 epochs. The learned network parame-
ters are then used as initialization to train the entire pro-
posed AuxSegNet. We continually train the network for
multiple stages with each training stage consisting of 10
epochs and update pseudo labels for saliency and segmen-
tation branches after each training stage.
Inference. For inference, we use the segmentation predic-
tion refined by the learned cross-task affinity map as the
final segmentation results.

4. Experiments
4.1. Experimental Settings

Datasets. To evaluate the proposed method, we conducted
experiments on PASCAL VOC 2012 [8] and MS COCO
datasets [23]. PASCAL VOC has 21 classes (including a
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Table 1. Performance comparison of WSSS methods in terms of
mIoU(%) on the PASCAL VOC 2012 val and test sets. ∗: without
post-processing. Sup.: supervision. I: image-level ground-truth.
S: off-the-shelf saliency maps. S

′
: saliency ground-truth.

Method Backbone Sup. Val Test

DSRG (CVPR18) [15] ResNet101 I+S 61.4 63.2
MCOF (CVPR18) [35] ResNet101 I+S 60.3 61.2
AffinityNet (CVPR18) [1] ResNet38 I 61.7 63.7
SeeNet (NeurIPS18) [13] ResNet101 I+S 63.1 62.8
FickleNet (CVPR19) [19] ResNet101 I+S 64.9 65.3
OAA+ (ICCV19) [17] ResNet101 I+S 65.2 66.4
Zeng et al. (ICCV19) [43] DenseNet I+S

′
63.3 64.3

CIAN (AAAI20) [10] ResNet101 I+S 64.3 65.3
Zhang et al. (AAAI20) [44] ResNet38 I 62.6 62.9
Luo et al. (AAAI20) [26] ResNet101 I 64.5 64.6
Chang et al. (CVPR20) [3] ResNet101 I 66.1 65.9
ICD (CVPR20) [9] ResNet101 I+S 67.8 68.0
Araslanov et al. (CVPR20) [2] ResNet38 I 62.7 64.3
SEAM (CVPR20) [36] ResNet38 I 64.5 65.7
Zhang et al. (ECCV20) [47] ResNet50 I+S 66.6 66.7
Sun et al. (ECCV20) [32] ResNet101 I+S 66.2 66.9
CONTA (NeurIPS20) [45] ResNet38 I 66.1 66.7
AuxSegNet∗ (Ours) ResNet38 I+S 66.1 66.1
AuxSegNet (Ours) ResNet38 I+S 69.0 68.6

Table 2. Performance comparison of WSSS methods in terms of
mIoU(%) on the MS COCO val set.

Method Backbone Sup. Val

SEC (CVPR16) [18] VGG16 I+S 22.4
DSRG (CVPR18) [15] VGG16 I+S 26.0
Wang et al. (IJCV20) [34] VGG16 I 27.7
Luo et al. (AAAI20) [26] VGG16 I 29.9
SEAM (CVPR20) [36] ResNet38 I 31.9
CONTA (NeurIPS20) [45] ResNet38 I 32.8
AuxSegNet (Ours) ResNet38 I+S 33.9

background class) for semantic segmentation. This dataset
has three subsets, i.e., training (train), validation (val) and
test with 1,464, 1,449 and 1,456 images, respectively. Fol-
lowing common practice, e.g., [6, 18], we used additional
data from [11] to construct an augmented dataset with
10,582 images for training. MS COCO contains 81 classes
(including a background class). It has 80K training im-
ages and 40K validation images. Note that only image-level
ground-truth labels from these benchmarks are used in the
training process.
Evaluation metrics. As in previous works [17, 19, 38, 15,
1, 35], we used the mean Intersection-over-Union (mIoU)
of all classes between the segmentation outputs and the
ground-truth images to evaluate the performance of our
method on the val and test sets of PASCAL VOC and the val
set of MS COCO. We also used precision, recall and mIoU
to evaluate the quality of the pseudo segmentation labels.
The results on the PASCAL VOC test set were obtained
from the official PASCAL VOC online evaluation server.
Implementation details. In our experiments, models were
implemented in PyTorch. We use ResNet38 [39, 1] as the
backbone network. For data augmentation, we used random

(a)

(b)

(c)

PASCAL VOC MS COCO

Figure 4. Qualitative segmentation results on the val sets of PAS-
CAL VOC and MS COCO. (a) Inputs. (b) Ground-truth. (c) Our
results.

scaling with a factor of ±0.3, random horizontal flipping,
and random cropping to size 321 × 321. The polynomial
learning rate decay was chosen with an initial learning rate
of 0.001 and a power of 0.9. We used the stochastic gradient
descent (SGD) optimizer to train AuxSegNet with a batch
size of 4. At inference, we use multi-scale testing and CRFs
with hyper-parameters suggested in [6] for post-processing.

4.2. Comparison with State-of-the-arts

PASCAL VOC. We compared the segmentation perfor-
mance of the proposed method with state-of-the-art WSSS
approaches. Table 1 shows that the proposed method
achieves mIoUs of 69.0% and 68.6% on the val and test sets,
respectively. Our method outperforms the recent methods
[10, 9, 32, 47] using off-the-shelf saliency maps by 4.7%,
1.2%, 2.8% and 2.4%, respectively, on the PASCAL VOC
val set. The qualitative segmentation results on PASCAL
VOC val set are shown in Figure 4 (left). Our segmentation
results are shown to adapt well to different object scales and
boundaries in various and challenging scenes.
MS COCO. To demonstrate the generalization ability of
the proposed method, we also evaluated our method on the
challenging MS COCO dataset. Table 2 shows segmenta-
tion results of recent methods on the val set. Our method
achieves an mIoU of 33.9%, which is superior to state-of-
the-art methods. Figure 4 (right) presents several exam-
ples of qualitative segmentation results, which indicate that
our proposed method performs well in different complex
scenes, such as small objects or multiple instances.

4.3. Ablative Analysis

Effect of auxiliary tasks. We compared results from the
one-branch baseline model for semantic segmentation to
several different variants: (i) baseline + cls: leveraging
multi-label image classification, (ii) baseline + sal: leverag-
ing saliency detection, and (iii) baseline + cls + sal: lever-
aging both image classification and saliency detection. Sev-
eral conclusions can be drawn from Table 3. Firstly, the
baseline performance with the single task of semantic seg-
mentation is only 56.9%. Joint learning an auxiliary task
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Table 3. Performance comparison of jointly learning different
combinations of multiple tasks in terms of mIoU(%) on PASCAL
VOC 2012 val set. Seg., Cls., and Sal. denote semantic segmen-
tation, image classification, and saliency detection, respectively.

Config
Branches

mIoU
Seg. Cls. Sal.

Baseline X 56.9
AuxSegNet (w/ seg., cls.) X X 57.6
AuxSegNet (w/ seg., sal.) X X 59.8
AuxSegNet (w/ seg., cls., sal.) X X X 60.8

Table 4. Comparison of affinity learning with different settings in
terms of mIoU(%) on PASCAL VOC 2012 val set. CT: cross-task.

Config mIoU

AuxSegNet (multi-task baseline) 60.8
+ Seg. affinity with seg. constraint 61.5
+ CT affinity with seg. constraint 62.6
+ CT affinity with seg. and sal. constraints 64.1

Table 5. Segmentation performance of the proposed AuxSeg-
Net after different training stages in terms of mIoU (%) on PAS-
CAL VOC 2012 val set. Stage 0 denotes the training stage with
the initial pseudo segmentation ground-truth without refinement.

Stage0 Stage1 Stage2 Stage3 Stage4

mIoU 64.1 65.6 66.0 66.1 66.1

of either image classification or saliency detection both im-
prove the segmentation performance significantly. In partic-
ular, learning saliency detection brings a larger performance
gain of around 3%. Furthermore, leveraging both auxil-
iary tasks yields the best mIoU of 60.8% without using any
post-processing. This indicates that these two related aux-
iliary tasks can improve the representational ability of the
network to achieve more accurate segmentation predictions
in the weakly supervised scenario.
Different settings for affinity learning. Table 4 shows ab-
lation studies on the impact of different affinity learning set-
tings on the segmentation performance. Without affinity
learning, the segmentation mIoU is only 60.8%. The per-
formance is improved to 61.5% by only learning segmen-
tation affinity to refine segmentation predictions. Learn-
ing a cross-task affinity map which integrates both segmen-
tation and saliency affinities brings a further performance
boost of 1.1%. By forcing the cross-task affinity map to
learn to refine both segmentation and saliency predictions,
our model attains a significant improvement, reaching an
mIoU of 64.1%. This demonstrates the positive effect of
the multi-task constraints on learning pixel affinities to en-
hance weakly supervised segmentation performance.

Figure 5 presents several examples of the learned cross-
task affinity maps for two selected points in each image.
The affinity map for each pixel in an image is of the image
size and it represents the similarity of this pixel to all pixels
in the image. We can observe that, in the first row, the affin-

(a) (b) (F) (G)

Figure 5. Visualization of the learned cross-task affinity maps of
two selected points in the images on PASCAL VOC train set. (a)
Inputs. (b)-(c) Two learned cross-task affinity maps for two points
marked by the green crosses. (d) Segmentation ground-truth.
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Figure 6. Evaluation of pseudo segmentation labels (PGT) for each
training stage in terms of precision(%), recall(%) and mIoU(%) on
PASCAL VOC 2012 train set.

ity map of the point labelled as “bird” highlights almost the
entire object region although this point is far from the most
discriminative object part “head”. Moreover, in the second
row, the learned affinity map for the point belonging to the
monitor activates most regions of the two monitor instances
while it does not respond to the “keyboard” region which is
similar in color in the background, and vice versa. In the
third row, the affinity maps for the “airplane” and ”person”
points both present good boundaries.
Iterative improvements. To validate the effectiveness of
the proposed iterative cross-task affinity learning, we evalu-
ated the quality of the generated pseudo segmentation la-
bels for each training stage. As shown in Figure 6, the
precision, recall and mIoU of the initial pseudo segmen-
tation labels generated by the CAM maps without refine-
ment are 85.6%, 42.9% and 40.6%, respectively. After the
first round of affinity learning, the updated pseudo labels for
Stage 1 are significantly improved by 2.2%, 8.9% and 8.6%
on these three metrics by using the refined CAM maps. An-
other round of affinity learning further boosts pseudo labels
to 88.2%, 52.2% and 49.7% on the three metrics. In the
following training stages, pseudo segmentation labels are
slightly improved, and they are saturated at Stage 3 as we
can observed that the precision starts to drop at Stage 4. As
shown in Table 5, the segmentation performance presents
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Figure 7. Visualization of CAM maps and pseudo segmentation labels with iterative improvements. (a) Inputs. (b) Initial CAM maps
without refinement. (c)-(e) Refined CAM maps used to generate pseudo segmentation labels for Stage 1 to Stage 3. (f) Initial pseudo
semantic labels for Stage 0. (g)-(i) Pseudo segmentation labels for Stage 1 to Stage 3. (j) Segmentation ground-truth. With the iterative
cross-task affinity learning, the refined CAM maps become more complete with more accurate boundaries and the generated corresponding
pseudo segmentation labels are closer to the ground-truth in terms of precision and recall.

Table 6. Segmentation results in terms of mIoU (%) using saliency
models pre-trained in supervised or weakly supervised forms on
PASCAL VOC 2012 val set. ∗ denotes ‘without post-processing’.

Pre-trained saliency models Baseline Final∗ ∆ Final
Zhang et al. (CVPR20) [46] 53.0 63.7 10.7 66.5
PoolNet (CVPR19) [24] 55.7 65.7 10.0 68.4
MINet (CVPR20) [27] 55.8 66.6 10.8 68.9
Ours with DSS [12] 56.9 66.1 9.2 69.0

consistent improvements as pseudo labels update after each
training stage. Overall, the proposed AuxSegNet attains a
reasonable improvement of 2% by using iterative label up-
dates with the learned cross-task affinity, reaching the best
mIoU of 66.1% without any post-processing.

To qualitatively evaluate the benefits of the proposed it-
erative affinity learning, Figure 7 presents several examples
of CAM maps and the corresponding generated pseudo seg-
mentation labels, and their iterative improvements along the
training stages. As shown in Figure 7 (b), the CAM maps
without affinity refinement for the initial training stage are
either over-activated for small-scale objects, sparse for mul-
tiple instances or they only focus on the local discriminative
object parts for large-scale objects. By refining CAM maps
with the cross-task affinity learned at Stage 0, Figure 7 (c)
shows that more object regions are activated for large-scale
objects and the CAM maps for small-scale objects are more
aligned to object boundaries. With more training stages, as
shown in Figure 7 (d)-(e), the refined CAM maps become
more integral with more accurate boundaries, which is at-
tributed to the more reliable affinity learned with iteratively
updated pseudo labels. The generated pseudo segmentation
labels are shown to become progressively improved in Fig-
ure 7 (f)-(i), and they are close to the ground-truth labels.
Different pre-trained saliency models. To evaluate the
sensitivity to the pre-trained saliency models, we conducted
experiments using different pre-trained saliency models,
i.e., Zhang et al. [46], PoolNet [24] used in [32, 47], and

MINet [27], in which the first and the other two are in
the weakly supervised and fully supervised forms, respec-
tively. As shown in Table 6, our method achieves compara-
ble results with these different saliency inputs, verifying the
generalization ability of our method to different pre-trained
saliency models. Moreover, with all these different pre-
trained saliency models, our method can consistently pro-
duce significant performance improvements (see ∆) over
the baseline, which further confirmed the effectiveness of
the proposed method.

5. Conclusion

In this work, we proposed to leverage auxiliary tasks
without requiring additional ground-truth annotations for
WSSS. More specifically, we proposed AuxSegNet with
a shared backbone and two auxiliary modules performing
multi-label image classification and saliency detection to
regularize the feature learning for the primary task of se-
mantic segmentation. We also proposed to learn a cross-
task pixel affinity map from saliency and segmentation fea-
ture maps. The learned cross-task affinity can be used
to refine saliency predictions and CAM maps to provide
improved pseudo labels for both tasks, which can further
guide the network to learn more reliable pixel affinities and
produce more accurate segmentation predictions. Iterative
training procedures were thus conducted and realized pro-
gressive improvements on the segmentation performance.
Extensive experiments on the challenging PASCAL VOC
2012 and MS COCO demonstrate the effectiveness of the
proposed method and establish new state-of-the-art results.
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