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Abstract

Multi-view clustering, a long-standing and important re-
search problem, focuses on mining complementary infor-
mation from diverse views. However, existing works often
fuse multiple views’ representations or handle clustering in
a common feature space, which may result in their entan-
glement especially for visual representations. To address
this issue, we present a novel VAE-based multi-view clus-
tering framework (Multi-VAE) by learning disentangled vi-
sual representations. Concretely, we define a view-common
variable and multiple view-peculiar variables in the gen-
erative model. The prior of view-common variable obeys
approximately discrete Gumbel Softmax distribution, which
is introduced to extract the common cluster factor of multi-
ple views. Meanwhile, the prior of view-peculiar variable
follows continuous Gaussian distribution, which is used to
represent each view’s peculiar visual factors. By controlling
the mutual information capacity to disentangle the view-
common and view-peculiar representations, continuous vi-
sual information of multiple views can be separated so that
their common discrete cluster information can be effectively
mined. Experimental results demonstrate that Multi-VAE
enjoys the disentangled and explainable visual represen-
tations, while obtaining superior clustering performance
compared with state-of-the-art methods.

1. Introduction

Clustering analysis is a fundamental research topic in
many fields, such as computer vision, machine learning, and
data mining, etc. Its goal is to partition data items with sim-
ilar patterns or characteristics into the same group. With
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the unprecedented growth of deep learning, deep cluster-
ing methods [9, 37, 44, 47] overcome the shortcomings of
shallow models and make considerable progress in cluster-
ing performance. In real-world applications, however, vi-
sual data is often collected from multiple views or diverse
sources, e.g., 1) various writing styles of one digit written
by different people, 2) multiple views of an object captured
from cameras in multiple directions. Compared with single-
view clustering, accordingly, multi-view clustering (MVC)
can access to more comprehensive characteristics contained
in multi-view data and thus attracts increasing attention.

Existing MVC methods can be roughly divided into three
categories: 1) The first category is multi-view spectral clus-
tering [18, 23, 32, 33], where multiple graph structures are
constructed for clustering. 2) The second category [25, 52]
uses non-negative matrix factorization to decompose the
feature matrix and obtain cluster assignments. 3) The third
category is based on subspace clustering [21, 53], which
conducts self-representation on a subspace shared by multi-
ple views. More researches on MVC can be found in [49].

For many MVC methods, the central bottleneck is their
high complexity that makes it unrealistic for handling
large-scale data clustering tasks. Recent approaches have
achieved inspirational progress by applying deep models
[3, 7, 34, 45, 50, 55]. However, most of them learn the clus-
ter structures by exploring common representations or fus-
ing features of all views. Although complementary infor-
mation can be fetched in this way, the interference caused
by the entanglement among multiple views is also ignored.

We are inspired by two observations: 1) Cluster infor-
mation is discrete, which is an abstraction of the maximum
common visual information of all views. 2) Each view’s
peculiar visual information is often continuous, which has
different effects on clustering. For example, the observa-
tions from multiple sides of an object are conducive to bet-
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Figure 1. The framework of Multi-VAE. Inference process: zv extracts the v-th view’s peculiar visual information that is contained in
the embedding transformed by the corresponding encoder. c represents the cluster information among all views’ embeddings. Generative
process: the v-th view’s latent variable is composed of zv and c, which is fed into the corresponding decoder to generate samples.

ter describe itself. Nevertheless, the two writing styles of a
digit have no complementary effect for clustering, instead,
which may even cause interference. How to disentangle
them and learn explainable multi-view visual representa-
tions? This is an interesting but challenging problem. For-
tunately, some advancements about disentangled represen-
tation learning [1] have been made. Some generative mod-
els, such as variational autoencoders (VAE) [2] and gener-
ative adversarial networks (GAN) [4], are used to learn the
explainable representations, each unit of which corresponds
to a single factor of variation of the data. However, learning
disentangled visual representations has been rarely studied
for multi-view clustering.

In this paper, we propose a novel VAE-based framework
for multi-view clustering (dubbed Multi-VAE), which can
learn disentangled and explainable visual representations
and tackle large-scale data clustering problems. Different
from the existing multi-view clustering methods, as shown
in Figure 1, we introduce a view-common variable c and
multiple view-peculiar variables {z1, z2, . . . ,zV } in a mul-
tiple VAEs architecture. In order to learn the common visual
representation across views (i.e., cluster information), the
view-common variable c is inferred from all views’ embed-
dings. Meanwhile, each view-peculiar variable zv is only
inferred from the corresponding view’s embedding so as to
learn peculiar visual representations (like angle, styles, and
size, etc). For each view, its latent variable is made up of
c and zv and is used to generate examples. Since the clus-
ter information is discrete and peculiar visual information
is continuous, the prior distributions of c and zv we se-
lected are Gumbel Softmax distribution and Gaussian dis-

tribution, respectively. By controlling the mutual informa-
tion capacity of KL divergence between the posterior of the
latent variables and their prior during training, the common
and peculiar visual representations of multiple views can be
disentangled, which are further used for clustering.

Specifically, the contributions of this work include:

• We propose a novel multi-view VAE framework,
namely Multi-VAE, where the view-common and
view-peculiar variables are introduced to mine the dis-
crete clusters and continuous visual factors.

• Our model can disentangle all views’ common cluster
representation and each view’s peculiar visual repre-
sentations. In this way, the interference of multiple
views’ superfluous information is reduced when min-
ing their complementary information for clustering.

• Multi-VAE shows clearly superior clustering perfor-
mance compared with other methods. Moreover, its
complexity is linear to data size. To our knowledge,
this is the first attempt to implement MVC by learning
disentangle and explainable representations.

2. Related Work
Autoencoder-based Clustering. In recent years, au-

toencoder (AE) has shown impressive performance in rep-
resentation of high-dimensional data. DEC [44] is the well-
known method that utilizes AE to perform clustering. Its
improved version (IDEC) [11] introduced a reconstruction
term to address the distortion of embedded space. The con-
volutional autoencoder was applied in [9] to deal with im-
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age clustering. More clustering works based on AE can be
found in [12, 35]. The combination of variational inference
and autoencoder leads to the birth of variational autoen-
coder (VAE) [17]. The VAE-based deep clustering frame-
work is first proposed in [16], where the generative proce-
dure of data is modeled with a Gaussian mixture model [29].
The Gaussian prior is also used in subsequent VAE-based
clustering models [5, 22]. Yang et al. [48] proposed graph
embedding in a Gaussian mixture variational autoencoder.
Although there are already some VAE-based multi-view or
multi-modal learning methods, such as [8, 20, 42, 50], our
work is the first attempt to give a disentangled multi-view
VAE framework in view-common and view-peculiar repre-
sentation learning perspectives.

Multi-view Clustering. Spectral clustering [31] is a
popular traditional method. In [18], spectral clustering was
extended to perform multi-view clustering. A parameter-
free method was proposed in [33], which was an auto-
weighted multiple graph learning framework. Non-negative
matrix factorization, which is equivalent to the relaxed K-
means, is also applied in some multi-view clustering meth-
ods. For example, Liu et al. [25] explored multi-view com-
mon latent factors via matrix factorization. Zhao et al. [52]
presented a deep matrix factorization structure for multi-
view clustering. Much attention is paid to multi-view sub-
space clustering, which assumes the data of multiple views
share a common subspace. In [21], the authors took self-
representation layers to obtain subspace hierarchically and
utilized encoding layers to achieve multi-view consistency.
The work [3] simultaneously learned cluster assignments
and multi-view embeddings. Recently, multi-view cluster-
ing were discussed with more techniques, e.g., binary cod-
ing [51] and self-paced learning [36]. Deep model based
multi-view clustering [24, 40, 45, 46, 54] also attracted in-
creasing attention in recent years.

Disentangled Representation Learning. In contrast to
ordinary representation learning, disentangled representa-
tion learning aims to obtain explainable factors hidden in
data [1]. InfoGAN [4] and β-VAE [13] are two most promi-
nent methods for disentanglement in unsupervised manner.
InfoGAN can learn both discrete and continuous represen-
tations, but it suffers from unstable training and reduced di-
versity of generated samples. In β-VAE, the ELBO contains
likelihood term and KL divergence (DKL) term:

LELBO(x) = Eq(z|x) [log p(x|z)]−βDKL(q(z|x)||p(z)),
(1)

where the observed sample x is generated from the latent
variable z. People give a higher weight on the KL diver-
gence term (i.e., β > 1) to increase the pressure of the
posterior q(z|x) to match the prior p(z), which is con-
ducive to learn disentangled representations. VAE-based
frameworks to separate discrete and continuous representa-
tions were given in [6, 39]. To achieve the balance between

the reconstruction quality and disentanglement, those works
[2, 6] proposed to gradually increase the upper bound of the
KL divergence term during training.

3. The Proposed Method
Problem Statement. Given a multi-view image dataset

{x1
i ,x

2
i , . . . ,x

V
i }Ni=1, each sample has V views that con-

tain different visual information and N is the data size.
Multi-view clustering aims to group them into K clusters.

3.1. Architecture

Since our motivation is to learn disentangled representa-
tions of multiple views via VAE, we introduce independent
view-common variable c ∈ RK and view-peculiar variables
{zv ∈ RZv}Vv=1 to model the multi-view data. We consider
the following generative model (i.e., joint probability):

p(xv, zv, c) = p(xv|zv, c)p(zv, c)

= p(xv|zv, c)p(zv)p(c),
(2)

where the view-common variable c is shared by all views
and represents their cluster information. For the v-th view,
the view-peculiar variable zv represents its peculiar visual
information such as angle, size, style, etc. Without loss of
generality, cluster information should be obtained from all
views and the peculiar information should only be extracted
from the v-th view. Let {xv} denote all views’ data, i.e.,
{x1,x2, . . . ,xV }. So, the posterior of c and zv are written
as p(c|{xv}) and p(zv|xv), respectively. Considering it is
intractable to calculate the integral of posterior in VAE, we
use qϕ(c|{xv}) and qϕv (zv|xv) parameterized by ϕ and ϕv

to approximate the true posterior.
Inference Process. As shown in Figure 1, all views’ em-

beddings are concatenated for the purpose of learning their
common information in the inference process. Then, K
neurons (denoted as s = {s1, s2, . . . , sK}) are set to obtain
the view-common variable c. Concretely, in order to easily
represent the cluster assignment of a datum, we expect c is
a one-hot representation. However, discrete random vari-
ables are non-differentiable for neural networks’ parame-
ters. Its differentiable relaxation is discussed in [15, 28].
Based on this, the prior of the view-common variable we
selected is a product of independent uniform Gumbel Soft-
max distributions, i.e., p(c) = p(c1)p(c2) . . . p(cK), where
p(ck) ∼ Gumbel(0, 1). Consequently, the approximate
posterior qϕ(c|{xv}) is written as

qϕ(c|{xv}) =
K∏

k=1

qϕ(ck|{xv}). (3)

According to the Gumbel-Max reparameterization trick
[10], we can further get the following expression:

qϕ(ck|{xv}) = G(s) = exp((log sk + gk)/τ)∑K
i=1 exp((log si + gi)/τ)

, (4)
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where gk ∼ Gumbel(0, 1) and τ is the temperature parame-
ter to control the relaxation. Except for the cluster informa-
tion, we assume other visual information is continuous, and
the prior of the view-peculiar variable is standard normal
distribution, i.e., p(zv) ∼ N (0, I). qϕv (zv|xv) is parame-
terized by a factorized Gaussian:

qϕv (zv|xv) =

Zv∏
i=1

qϕv (zvi |xv). (5)

According to the reparameterization trick [17, 38], we have
the following elementwise equality:

qϕv (zvi |xv) = N (µv
i , (σ

v
i )

2) = µv
i + σv

i ϵ
v
i , (6)

where ϵvi ∼ N (0, 1). µv
i and σv

i are parameterized with
neural networks, whose input is the v-th view’s embedding.

Generative Process. Each view’s latent variable con-
tains the view-common variable c and the view-peculiar
variable zv . In the generative process, they are concate-
nated to generate examples. Further, the likelihood or de-
coder of the v-th view can be expressed as

x̂v = pθv (xv|zv, c). (7)

In the architecture, the parameters ϕ, {ϕ1, ϕ2, . . . , ϕV },
and {θ1, θ2, . . . , θV } are partially shared, which are omitted
in the subsequent derivation for convenience.

3.2. Variational Lower Bound

The objective of variational inference is to maximize the
likelihood function of the observed multi-view data. By us-
ing Jensen’s inequality, the log-likelihood of our proposed
model is formulated as

V∑
v=1

log p(xv) =

V∑
v=1

log

∫
zv

∑
c

p(xv, zv, c)dzv

≥
V∑

v=1

Eq(zv,c|{xv})

[
log

p(xv, zv, c)

q(zv, c|{xv})

]

=

V∑
v=1

LELBO(x
v),

(8)
where LELBO(x

v) is the evidence lower bound (ELBO)
of the v-th view. In variational inference, maximizing
the likelihood is equal to maximizing the ELBO. Given
p(xv, zv, c) = p(xv|zv, c)p(zv, c), each view’s ELBO can
be written as

LELBO(x
v) = Eq(zv,c|{xv}) [log p(x

v|zv, c)]

−DKL(q(z
v, c|{xv})||p(zv, c)).

(9)

We assume the view-common and view-peculiar vari-
ables are conditionally independent, i.e., q(zv, c|{xv}) =

q(zv|xv)q(c|{xv}) and the prior p(zv, c) = p(zv)p(c).
The KL divergence (DKL) can be factored into two parts:

DKL(q(z
v, c|{xv})||p(zv, c))

= Eq(zv,c|{xv})

[
log

q(zv, c|{xv})
p(zv, c)

]
= Eq(zv|xv)Eq(c|{xv})

[
log

q(zv|xv)q(c|{xv})
p(zv)p(c)

]
= Eq(zv|xv)Eq(c|{xv})

[
log

q(zv|xv)

p(zv)

]
+ Eq(zv|xv)Eq(c|{xv})

[
log

q(c|{xv})
p(c)

]
= DKL(q(z

v|xv)||p(zv)) +DKL(q(c|{xv})||p(c)).
(10)

In this way, the KL divergence terms of c and zv are
separated, which is designed for disentangling the view-
common and view-peculiar representations. For the v-th
view, the objective to be maximized becomes

LELBO(x
v) = Eq(zv,c|{xv}) [log p(x

v|zv, c)]

−DKL(q(z
v|xv)||p(zv))−DKL(q(c|{xv})||p(c)).

(11)

3.3. Learning Disentangled Representation

As analyzed in [6, 14], the KL divergence term is an up-
per bound of the mutual information between latent vari-
ables and data. For the purpose of disentangling the view-
common and view-peculiar representations of our model,
each latent variable should encode more information of
variation. Therefore, the channel capacity of KL divergence
terms in Eq. (11) should gradually increase. We define
the controlled capacities Cc and Cz for the KL divergence
terms of the view-common and view-peculiar variables, re-
spectively. The ELBO of the v-th view is formulated as

LELBO(x
v) = Eq(zv,c|{xv}) [log p(x

v|zv, c)]

− β|DKL(q(c|{xv})||p(c))− Cc|
− β|DKL(q(z

v|xv)||p(zv))− Cz|,
(12)

where β is a trade-off coefficient. In particular, when p(c) is
a uniform categorical distribution, the KL divergence about
the view-common variable is bounded:

DKL(q(c|{xv})||p(c)) =
K∑
i=1

qi log
qi
pi

=

K∑
i=1

qi log
qi

1/K

= −H(q) + logK ≤ logK,
(13)

where H is the entropy. Based on this, we let Cc = logK,
which controls the maximum capacity of the variational in-
formation encoded in c. Considering that different views
have different scale of data reconstruction loss, we further
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introduce weights on β to balance the disentanglement of
all views. For the v-th view, the weight is calculated by

βv = β
Eq(zv,c|{xv}) [log p(x

v|zv, c)]

maxv Eq(zv,c|{xv}) [log p(xv|zv, c)]
. (14)

Eventually, our total loss function contains three parts:

Lloss = −
V∑

v=1

LELBO(x
v)

=

V∑
v=1

βv|DKL(q(c|{xv})||p(c))− Cc|

+

V∑
v=1

βv|DKL(q(z
v|xv)||p(zv))− Cz|

−
V∑

v=1

Eq(zv,c|{xv}) [log p(x
v|zv, c)] ,

(15)

where the first and second terms are optimized to learn dis-
entangled view-common and view-peculiar representations.
The third term is the likelihood term, which is optimized to
maintain the reconstruction quality of VAEs.

Multi-VAE-C: Review the framework in Figure 1,
all views’ features are separated into {c, z1, z2, . . . ,zV }.
Then each couple of {c, zv} is combined to reconstruct the
features. In this way, each view’s peculiar visual infor-
mation is extracted by its view-peculiar representation (or
variable) zv . Conversely, all views’ common cluster infor-
mation is extracted by the view-common representation c.
Since c is the approximation of one-hot representation, the
clustering prediction of the i-th sample can be calculated by

yi = argmax
j

(cj) = argmax
j

(qϕ(cj |{xv
i })). (16)

Multi-VAE-CZ: Given multiple views’ visual informa-
tion may be complementary for clustering, we scale the sep-
arated representations to [0, 1] and concatenate them to form
a global latent representation (denoted as [c; {zv}]), which
is fed into K-means to obtain another clustering prediction.

Complexity Analysis. We define K,V,N as the number
of clusters, views, and data points, respectively. Let M de-
note the maximum number of neurons in autoencoders and
Z denote the maximum dimensionality of view-peculiar
variables. Generally, V,K,Z ≪ M holds. The optimiza-
tion of Multi-VAE is just to minimize Eq. (15), which is
summarized in Algorithm 1. In each iteration, the complex-
ity to generate the prior distributions for the view-common
variable is O(NK) and for the view-peculiar variables is
O(V NZ). The complexity of autoencoders of all views is
O(V NM2). Therefore, the total complexity of our method
is linear to the data size N .

Algorithm 1 : The optimization of Multi-VAE
Input: Multi-view dataset {x1

i ,x
2
i , . . . ,x

V
i }Ni=1;

Number of clusters K; Trade-off coefficient β;
Maximum controlled capacity Cz; Cc = logK.

1: Randomly initialize parameters ϕ and {ϕv, θv}Vv=1.
2: while not reaching the maximal epochs do
3: Calculate {sk}Kk=1 and {µv, δv}Vv=1 by encoders.
4: Infer qϕ(c|{xv}) and {qϕv (zv|xv)}Vv=1 by Eqs. (3)

and (5) with reparameterization tricks.
5: Generate {pθv (xv|zv, c)}Vv=1 by decoders.
6: Update ϕ and {ϕv, θv}Vv=1 by minimizing Eq. (15).
7: end while

Output: Disentangled representations c and {zv}Vv=1.

4. Experimental Setup
4.1. Datasets

MNIST [19] is a popular handwritten digital image
dataset (0-9). Fashion [43] contains 10 kinds of fashionable
products (such as T-shirt, dress, and coat, etc). COIL [30] is
another image dataset about different poses of objects (like
cup, duck and block, etc). In order to evaluate multi-view
clustering performance and disentangled visual representa-
tions, we construct Multi-MNIST, Multi-Fashion, Multi-
COIL-10 and Multi-COIL-20. For those datasets, multiple
views of each example are randomly sampled from a same
category. Specifically, in Multi-MNIST, an example with
different views implies a same digit written by different
people. In Multi-Fashion, the different fashionable designs
of one category of product denote different views. In Multi-
COIL-10 (K = 10) and Multi-COIL-20 (K = 20), the
different views of one object are various in poses but have
the same cluster information. In some scenarios, different
views of data may obey different distributions. To make
the gap of different views’ visual information larger, we
construct Digit-Product and Object-Digit-Product. Con-
cretely, in Digit-Product, view-1 is MNIST and view-2 is
Fashion. In Object-Digit-Product, view-1 is COIL, view-2
is MNIST, and view-3 is Fashion. So the multi-view visual
information is across datasets but their clusters are one-to-
one correspondence. For example, cup corresponds to digit-
0 and T-shirt; duck corresponds to digit-1 and trouser, etc.

4.2. Comparing Methods

We compare Multi-VAE against the following popular
and state-of-the-art methods. Single-view methods: K-
means [27] is a popular traditional method. DEC [44]
and IDEC [11] are AE-based methods. β-VAE [2] and
JointVAE [6] are VAE-based methods, the learned repre-
sentations of which are used to perform clustering. Multi-
view methods: BMVC [51] is binary multi-view cluster-
ing. RMSL [21] presents a reciprocal multi-layer sub-
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Datasets Multi-COIL-10 Multi-COIL-20 Object-Digit-Product
Size 720 samples, 3 views 1,440 samples, 3 views 720 samples, 3 views

Metrics ACC NMI ARI Purity ACC NMI ARI Purity ACC NMI ARI Purity

Si
ng

le
-v

ie
w K-means (1967) 0.733 0.769 0.648 0.757 0.415 0.645 0.384 0.415 0.326 0.297 0.143 0.337

DEC (2016) 0.740 0.774 0.656 0.765 0.651 0.784 0.587 0.677 0.317 0.344 0.168 0.334
IDEC (2017) 0.736 0.772 0.651 0.763 0.657 0.784 0.591 0.679 0.327 0.343 0.167 0.337

β-VAE (2018) 0.598 0.685 0.514 0.632 0.531 0.667 0.450 0.573 0.297 0.278 0.111 0.321
JointVAE (2018) 0.649 0.724 0.553 0.681 0.537 0.678 0.456 0.548 0.320 0.254 0.126 0.331

M
ul

ti-
vi

ew

BMVC (2018) 0.678 0.681 0.530 0.678 0.834 0.900 0.813 0.881 0.810 0.661 0.634 0.810
RMSL (2019) 0.964 0.925 0.921 0.964 0.665 0.763 0.587 0.691 0.950 0.917 0.906 0.953

MVC-LFA (2019) 0.860 0.868 0.799 0.871 0.801 0.852 0.738 0.802 0.926 0.880 0.849 0.926
COMIC (2019) 0.796 0.916 0.729 0.799 0.496 0.770 0.309 0.500 0.201 0.419 0.146 0.203

SAMVC (2020) 0.667 0.826 0.621 0.729 0.570 0.791 0.554 0.610 0.770 0.826 0.702 0.801
DEMVC (2021) 0.891 0.948 0.897 0.900 0.850 0.965 0.860 0.850 0.801 0.901 0.784 0.801

Multi-VAE-C (ours) 0.900 0.967 0.897 0.900 0.845 0.943 0.842 0.876 0.897 0.942 0.873 0.897
Multi-VAE-CZ (ours) 0.993 0.989 0.985 0.993 0.980 0.976 0.961 0.980 0.977 0.971 0.954 0.977

Table 1. Comparison results on small-scale datasets. The best and the second best values are highlighted in red and blue, respectively.

Datasets Multi-MNIST Mult-Fashion Digit-Product
Size 70,000 samples, 2 views 10,000 samples, 3 views 30,000 samples, 2 views

Metrics ACC NMI ARI Purity ACC NMI ARI Purity ACC NMI ARI Purity

Si
ng

le
-v

ie
w K-means (1967) 0.539 0.482 0.360 0.577 0.476 0.513 0.348 0.551 0.349 0.346 0.187 0.390

DEC (2016) 0.875 0.849 0.803 0.875 0.563 0.617 0.451 0.609 0.396 0.408 0.226 0.422
IDEC (2017) 0.884 0.868 0.826 0.884 0.569 0.625 0.461 0.615 0.402 0.442 0.233 0.433

β-VAE (2018) 0.493 0.436 0.291 0.519 0.513 0.510 0.337 0.513 0.343 0.317 0.174 0.385
JointVAE (2018) 0.641 0.614 0.490 0.651 0.393 0.368 0.246 0.415 0.471 0.435 0.289 0.479

M
ul

ti-
vi

ew

BMVC (2018) 0.893 0.902 0.856 0.897 0.779 0.756 0.682 0.782 0.548 0.442 0.379 0.570
RMSL (2019) – – – – 0.376 0.342 0.204 0.391 – – – –

MVC-LFA (2019) – – – – 0.782 0.748 0.685 0.784 – – – –
COMIC (2019) – – – – 0.578 0.642 0.436 0.608 – – – –

SAMVC (2020) – – – – 0.622 0.688 0.557 0.661 0.649 0.619 0.499 0.674
DEMVC (2021) 0.982 0.989 0.986 0.982 0.786 0.903 0.772 0.791 0.798 0.896 0.833 0.798

Multi-VAE-C (ours) 0.989 0.996 0.989 0.989 0.816 0.856 0.762 0.818 0.853 0.832 0.810 0.853
Multi-VAE-CZ (ours) 0.999 0.998 0.999 0.999 0.907 0.883 0.839 0.907 0.925 0.934 0.907 0.923

Table 2. Comparison results on large-scale datasets. “–” denotes the unknown result due to high complexity of the corresponding method.

space learning method. MVC-LFA [41] proposes late
fusion alignment maximization for multi-view clustering.
COMIC [34] performs clustering by matching cross-views.
SAMVC [36] is an auto-weighted multi-view clustering
method with self-paced learning. DEMVC [45] introduces
a collaborative training trick in deep multi-view clustering.

4.3. Implementation Details

The convolutional (Conv) and fully connected (Fc) neu-
ral networks are adopted in our Multi-VAE1. The encoder
is: Input−Conv4

32−Conv4
64−Conv4

64−Fc256. It means that
convolution kernel sizes are 4-4-4, channels are 32-64-64,
and the dimensionality of embedding is 256. The stride is
set to 2. s, µv and σv are parameterized with linear layers.
The decoders are symmetric with the encoders. All view-
peculiar variables are 10-dimensional. The temperature pa-
rameter τ we adopted is 0.67 and the activation function is

1https://github.com/SubmissionsIn/Multi-VAE

ReLU. On Multi-MNIST, Multi-Fashion, Multi-COIL-10,
and Multi-COIL-20, an encoder and a decoder are shared
for all views. We use Adam with the learning rate of 0.0005
to train the model for 500 epochs. β is set to 30. The maxi-
mum controlled capacity of view-peculiar variables is set to
5. For the comparing methods, we use open-source codes
with the settings recommended by the authors.

5. Experimental Results and Analysis

5.1. Comparison with State-of-the-Arts

We use four quantitative metrics, including clustering ac-
curacy (ACC), normalized mutual information (NMI), ad-
justed rand index (ARI), and Purity. The higher value indi-
cates better clustering performance. The results on small-
scale and large-scale datasets are reported in Tables 1 and
2, respectively, from which we obtain the following conclu-
sions: 1) In general, the performance of multi-view methods
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(a) {c,0} (b) {c,z1} (c) {c,z2}

Figure 2. View-common and view-peculiar variables represent dif-
ferent visual information.

(a) Thickness (b) Angle (c) Width (d) Height

(e) Size (f) Grayscale (g) Angle (h) Orientation

Figure 3. Disentangled view-peculiar visual representations of dif-
ferent datasets.

is better than that of single-view methods especially for the
datasets with large visual gaps (e.g., Object-Digit-Product
and Digit-Product). The reason is that, intuitively, multi-
view clustering methods are designed for handling multi-
view data which can exploit richer properties to improve
the clustering performance. 2) On all datasets, our method
consistently achieves the best performance in terms of most
metrics. The intrinsic reason is that, by learning disentan-
gled visual representations, Multi-VAE reduces the inter-
ference between each view’s peculiar information and all
views’ common cluster information. Further, it becomes
more effective to discover the complementary information
and common cluster structures of multiple views. 3) The
clustering performance on the global latent representation
(Multi-VAE-CZ) is better than that on the view-common
representation (Multi-VAE-C). The principal reason is that
some visual information hidden in view-peculiar represen-
tations is complementary for multi-view clustering.

5.2. Disentangled Visual Representation Analysis

Multi-VAE can generate images by decoding the latent
variable {c, zv}. We show the samples generated by vary-
ing the view-common variable c (in form of one-hot) while
setting zv to 0. In Figure 2(a), each unit of the view-
common variable generates the standard samples of one
class, which are all views’ common characteristics and pre-

Figure 4. Learning process. The clustering performance of view-
common representation gradually enhances, and that of view-
peculiar representations is the opposite.

(a) Epoch 10 (b) Epoch 100 (c) Epoch 200 (d) Epoch 300

Figure 5. Visualization of the global latent representation [c; {zv}]
with t-SNE [26].

cisely represent their cluster information. Then, for the v-
th view, c is fixed and the continuous view-peculiar vari-
able zv is randomly sampled. As shown in Figure 2(b)
and (c), the samples belonging to the same class contain
different visual characteristics in different views. Further,
we fix each cluster representation in c and show the results
generated with traversals of certain components of view-
peculiar variable zv . In Figure 3, it is discovered that the
view-peculiar visual representations are also disentangled,
such as thickness, angle, width, and height for MNIST; size
and grayscale for Fashion; angle and orientation for COIL.
Those visual factors are continuous.

Intuitively, the negative effects are likely to occur if peo-
ple do not disentangle each view’s continuous visual fac-
tors from its cluster factor. Different from other methods
(e.g., fusion of features or learning common subspace), in
Multi-VAE, all views’ common cluster information is en-
coded in the view-common representation, and each view’s
peculiar or superfluous information is encoded in the re-
spective view-peculiar representation. Hence, our method
can learn the disentangled and explainable representations,
which is the most fundamental reason for its improvement
compared to other approaches.

5.3. Multi-view Clustering Process Analysis

The learning process on Object-Digit-Product is shown
in Figure 4. In the beginning, the view-common variable
c has no representation capability for cluster information
of multiple views. The view-common and view-peculiar
representations are mixed in latent variables, which corre-
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Variants ACC NMI ARI

Multi-VAE (vanilla VAE) 0.872 0.907 0.862
Multi-VAE (β-VAE) 0.683 0.780 0.632
Multi-VAE (Cz) 0.704 0.726 0.592
Multi-VAE (Cc) 0.902 0.959 0.880
Multi-VAE (Cc + Cz) 0.993 0.989 0.985

Table 3. Ablation study on the variants of Multi-VAE.

sponds to low clustering performance and entanglement of
representations, as shown in Figure 5(a). Gradually, the
clustering performance of view-common representation is
improved and that of view-peculiar representations is re-
duced. The global latent representations are also separated
correspondingly as shown in Figure 5 (b)–(d).

Accordingly, we can conclude the mechanism of Multi-
VAE to improve clustering performance: 1) The view-
common variable captures the common cluster informa-
tion of multiple views, which plays a major role in clus-
tering. Disentangling the view-common variable from all
latent variables facilitates the view-common representation
to learn better cluster structures. 2) Except for the clus-
ter information, each view’s peculiar visual information is
learned by its view-peculiar variable. Although the view-
peculiar visual representation has no clear cluster structures,
it may be complementary for other views. This is in accord
with the conclusion 3 obtained in Section 5.1.

5.4. Ablation Study

In this subsection, four variants are tested to exam-
ine the effect of our proposed framework: 1) Multi-VAE
(vanilla VAE) consists of multiple vanilla VAEs with the
proposed architecture. 2) Multi-VAE (β-VAE) denotes the
variant applying β-VAE without setting any controlled ca-
pacity. 3) Multi-VAE (Cz) is the model with the controlled
capacity only for view-peculiar variables. Similarly, 4)
Multi-VAE (Cc) denotes the controlled capacity is only set
for view-common variable. Multi-VAE (Cc + Cz) repre-
sents the complete framework. Table 3 shows the results
on Multi-COIL-10 and interesting validations are made as
follows. Compared with using vanilla VAE, directly im-
proving the weight of KL divergence terms (i.e., using β-
VAE) is not helpful to learn the multi-view clustering in-
formation. The worst performance comes from applying
controlled capacity only to view-peculiar variables, which
makes the model’s learning focus on the peculiar informa-
tion among multiple views. The application of controlled
capacity to view-common variable results in considerable
improvement, because the view-common variable empha-
sizes learning common cluster information of all views. The
optimal setting is both controlled capacities are adopted
during learning the disentangled representations. Hence,
the model’s different parts have distinct contributions that

(a) (b)

Figure 6. (a) Parameter sensitivity analysis of β and Cz . (b) Train-
ing loss on Object-Digit-Product.

are in accordance with our motivation.

5.5. Parameter and Convergence Analysis

The hyper-parameters of Multi-VAE include the trade-
off coefficient β and the maximum controlled capacity Cz

for view-peculiar variables. As shown in Figure 6(a), we
employ the grid search strategy and test the mean cluster-
ing performance on them. Even though most frameworks
for disentanglement are sensitive to the choice of hyper-
parameters [6], β and Cz are insensitive to the clustering
performance of our method. The possible reason is, in
the proposed multiple VAEs architecture, the inference that
comes from all views increases the robustness compared to
single-view architectures. The training loss is shown in Fig-
ure 6(b), from which we know that although different views
have large gaps in visual information, Multi-VAE has good
convergence property.

6. Conclusion
In this paper, we have presented a novel generative

model (Multi-VAE) that can learn disentangled visual rep-
resentations for multi-view clustering. In Multi-VAE,
all views’ cluster representation and each view’s specific
visual representations are disentangled by the proposed
view-common variable and view-peculiar variables, respec-
tively. Extensive experiments demonstrate that Multi-VAE
achieves state-of-the-art clustering performance. In addi-
tion, Multi-VAE has linear complexity to data size. Its
framework to learn disentangled and explainable visual rep-
resentations is instructive for multi-view learning.
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