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Abstract

Point cloud registration is a key task in many compu-
tational fields. Previous correspondence matching based
methods require the inputs to have distinctive geometric
structures to fit a 3D rigid transformation according to
point-wise sparse feature matches. However, the accuracy
of transformation heavily relies on the quality of extracted
features, which are prone to errors with respect to partial-
ity and noise. In addition, they can not utilize the geomet-
ric knowledge of all the overlapping regions. On the other
hand, previous global feature based approaches can utilize
the entire point cloud for the registration, however they ig-
nore the negative effect of non-overlapping points when ag-
gregating global features. In this paper, we present OM-
Net, a global feature based iterative network for partial-
to-partial point cloud registration. We learn overlapping
masks to reject non-overlapping regions, which converts the
partial-to-partial registration to the registration of the same
shape. Moreover, the previously used data is sampled only
once from the CAD models for each object, resulting in the
same point clouds for the source and reference. We propose
a more practical manner of data generation where a CAD
model is sampled twice for the source and reference, avoid-
ing the previously prevalent over-fitting issue. Experimental
results show that our method achieves state-of-the-art per-
formance compared to traditional and deep learning based
methods. Code is available at https://github.com/megvii-
research/OMNet.

1. Introduction
Point cloud registration is a fundamental task that has

been widely used in various computational fields, e.g., aug-
mented reality [2, 6, 4], 3D reconstruction [14, 19] and au-
tonomous driving [38, 10]. It aims to predict a 3D rigid
transformation aligning two point clouds, which may be po-
tentially obscured by partiality and contaminated by noise.
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Figure 1. Our OMNet shows robustness to the various overlapping
ratios of inputs. All inputs are transformed by the same 3D rigid
transformation. Error(R) and Error(t) are isotropic errors.

Iterative Closest Point (ICP) [3] is a well-known algo-
rithm for the registration problem, where 3D transforma-
tions are estimated iteratively by singular value decomposi-
tion (SVD) given the correspondences obtained by the clos-
est point search. However, ICP easily converges to local
minima because of the non-convexity problem. For this
reason, many methods [23, 9, 28, 5, 20, 35] are proposed to
improve the matching or search larger transformation space,
and one prominent work is the Go-ICP [35], which uses a
branch-and-bound algorithm to cross the local minima. Un-
fortunately, it is much slower than the original ICP. All these
methods are sensitive to the initial positions.

Recently, several deep learning (DL) based approaches
are proposed [32, 1, 33, 27, 36, 13, 17, 37] to handle
the large rotation angles. Roughly, they could be di-
vided into two categories: correspondence matching based
methods and global feature based methods. Deep Clos-
est Point (DCP) [32] determines the correspondences from
learned features. DeepGMR [37] integrates Gaussian Mix-
ture Model (GMM) to learn pose-invariant point-to-GMM
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correspondences. However, they do not take the partiality
of inputs into consideration. PRNet [33], RPMNet [36] and
IDAM [17] are presented to mitigate this problem by using
Gumbel–Softmax [15] with Sinkhorn normalization [31] or
a convolutional neural network (CNN) to calculate match-
ing matrix. However, these methods require the inputs to
have distinctive local geometric structures to extract reli-
able sparse 3D feature points. As a result, they can not uti-
lize the geometric knowledge of the entire overlapping point
clouds. In contrast, global feature based methods overcome
this issue by aggregating global features before estimating
transformations, e.g., PointNetLK [1], PCRNet [27] and
Feature-metric Registration (FMR) [13]. However, all of
them ignore the negative effect of non-overlapping regions.

In this paper, we propose OMNet: an end-to-end iterative
network that estimates 3D rigid transformations in a coarse-
to-fine manner while preserving robustness to noise and
partiality. To avoid the negative effect of non-overlapping
points, we predict overlapping masks for the two inputs
separately at each iteration. Given the accurate overlap-
ping masks, the non-overlapping points are rejected dur-
ing the aggregation of global features, which converts the
partial-to-partial registration to the registration of the same
shape. As such, regressing rigid transformation becomes
easier given global features without interferes. This desen-
sitizes the initial position of the inputs and enhances the ro-
bustness to noise and partiality. Fig. 1 shows the robustness
of our method to the inputs with different overlapping ra-
tios. Experiments show that our approach achieves state-of-
the-art performance compared with previous algorithms.

Furthermore, ModelNet40 [34] dataset is adopted for the
registration [32, 1, 33, 27, 36, 13, 17, 37], which has been
originally applied to the task of classification and segmen-
tation. Previous works follow the data processing of Point-
Net [21], which has two problems: (1) a CAD model is
sampled only once during the point cloud generation, yield-
ing the same source and the reference points, which of-
ten causes over-fitting issues; (2) ModelNet40 dataset in-
volves some axisymmetrical categories where it is reason-
able to obtain an arbitrary angle on the symmetrical axis.
We propose a more suitable method to generate a pair of
point clouds. Specifically, the source and reference point
clouds are randomly sampled from the CAD model sepa-
rately. Meanwhile, the data of axisymmetrical categories
are removed. In summary, our main contributions are:

• We propose a global feature based registration network
OMNet, which is robust to noise and different partial
manners by learning masks to reject non-overlapping
regions. Mask prediction and transformation estima-
tion can be mutually reinforced during iteration.

• We expose the over-fitting issue and the axisymmetri-
cal categories that existed in the ModelNet40 dataset
when adopted to the registration task. In addition, we

propose a more suitable method to generate data pairs
for the registration task.

• We provide qualitative and quantitative comparisons
with other works under clean, noisy and different par-
tial datasets, showing state-of-the-art performance.

2. Related Works
Correspondence Matching based Methods. Most cor-
respondence matching based methods solve the registration
problem by alternating two steps: (1) set up correspon-
dences between the source and reference point clouds; (2)
compute the least-squares rigid transformation between the
correspondences. ICP [3] estimates correspondences using
spatial distances. Subsequent variants of ICP improve per-
formance by detecting keypoints [11, 23] or weighting cor-
respondences [12]. However, due to the non-convexity of
the first step, they are often strapped into local minima. To
address this, Go-ICP [35] uses a branch-and-bound strat-
egy to search the transformation space at the cost of a much
slower speed. Recently proposed Symmetric ICP [22] im-
proves the original ICP by designing the objective function.
Instead of using spatial distances, PFH [25] and FPFH [24]
design rotation-invariant descriptors and establish corre-
spondences from handcrafted features. To avoid computa-
tion of RANSAC [8] and nearest-neighbors, FGR [40] uses
alternating optimization techniques to accelerate iterations.

More recent DL based method DCP [32] replaces
the handcrafted feature descriptor with a CNN. Deep-
GMR [37] further estimates the points-to-components cor-
respondences in the latent GMM. In summary, the main
problem is that they require the inputs to have distinctive ge-
ometric structures, so as to promote sparse matched points.
However, not all regions are distinctive, resulting in a lim-
ited number of matches or poor distributions. In addition,
the transformation is calculated only from matched sparse
points and their local neighbors, leaving the rest of the
points untouched. In contrast, our work can use the pre-
dicted overlapping regions to aggregate global features.

Global Feature based Methods. Different from corre-
spondence matching based methods, the previous global
feature based methods compute rigid transformation from
the entire point clouds (including overlapping and non-
overlapping regions) of the two inputs without correspon-
dences. PointNetLK [1] pioneers these methods, which
adapts PointNet [21] with the Lucas &Kanade (LK) algo-
rithm [18] into a recurrent neural network. PCRNet [27]
improves the robustness against the noise by alternating
the LK algorithm with a regression network. Furthermore,
FMR [13] adds a decoder branch and optimizes the global
feature distance of the inputs. However, they all ignore the
negative effect of the non-overlapping points and fail to reg-
ister partial-to-partial inputs. Our network can deal with
partiality and shows robustness to different partial manners.

3133







RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)
Method

OS TS OS TS OS TS OS TS OS TS OS TS

ICP [3] 21.043 21.246 8.464 9.431 0.0913 0.0975 0.0467 0.0519 16.460 17.625 0.0921 0.1030
Go-ICP [35] 13.458 11.296 3.176 3.480 0.0462 0.0571 0.0149 0.0206 6.163 7.138 0.0299 0.0407
Symmetric ICP [22] 5.333 6.875 4.787 6.069 0.0572 0.0745 0.0517 0.0668 9.424 12.103 0.0992 0.1290
FGR [40] 4.741 28.865 1.110 16.168 0.0269 0.1380 0.0070 0.0774 2.152 30.192 0.0136 0.1530
PointNetLK [1] 16.429 14.888 7.467 7.603 0.0832 0.0842 0.0443 0.0464 14.324 14.742 0.0880 0.0920
DCP [32] 4.291 5.786 3.006 3.872 0.0426 0.0602 0.0291 0.0388 5.871 7.903 0.0589 0.0794
PRNet [33] 1.588 3.677 0.976 2.201 0.0146 0.0307 0.0101 0.0204 1.871 4.223 0.0201 0.0406
FMR [13] 2.740 3.456 1.448 1.736 0.0250 0.0292 0.0112 0.0138 2.793 3.281 0.0218 0.0272
IDAM [17] 4.744 7.456 1.346 4.387 0.0395 0.0604 0.0108 0.0352 2.610 8.577 0.0216 0.0698
DeepGMR [37] 13.266 21.985 6.883 11.113 0.0748 0.0936 0.0476 0.0587 13.536 20.806 0.0937 0.1171

(a
)U
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Ours 0.898 1.045 0.325 0.507 0.0078 0.0084 0.0049 0.0056 0.639 0.991 0.0099 0.0112

ICP [3] 17.236 18.458 8.610 9.335 0.0817 0.0915 0.0434 0.0505 16.824 18.194 0.0855 0.0993
Go-ICP [35] 13.572 14.162 3.416 4.190 0.0448 0.0533 0.0152 0.0206 6.688 8.286 0.0299 0.0409
Symmetric ICP [22] 6.599 7.415 5.962 6.552 0.0654 0.0759 0.0592 0.0684 11.713 13.113 0.1134 0.1315
FGR [40] 6.390 29.838 1.240 16.361 0.0375 0.1470 0.0081 0.0818 2.204 31.153 0.0156 0.1630
PointNetLK [1] 18.294 21.041 9.730 10.740 0.0917 0.1130 0.0526 0.0629 18.845 20.438 0.1042 0.1250
DCP [32] 6.754 7.683 4.366 4.747 0.0612 0.0675 0.0403 0.0427 8.566 9.764 0.0807 0.0862
PRNet [33] 2.712 6.506 1.372 3.472 0.0171 0.0388 0.0118 0.0257 2.607 6.789 0.0237 0.0510
FMR [13] 5.041 5.119 2.304 2.349 0.0383 0.0296 0.0158 0.0147 4.525 4.553 0.0314 0.0292
IDAM [17] 6.852 8.346 1.761 4.540 0.0540 0.0590 0.0138 0.0329 3.433 8.679 0.0275 0.0656
DeepGMR [37] 18.890 23.472 9.322 12.863 0.0870 0.0987 0.0559 0.0658 17.513 24.425 0.1108 0.1298(b

)U
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n
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Ours 2.079 2.514 0.619 1.004 0.0177 0.0147 0.0077 0.0078 1.241 1.949 0.0154 0.0154

ICP [3] 19.945 21.265 8.546 9.918 0.0898 0.0966 0.0482 0.0541 16.599 18.540 0.0949 0.1070
Go-ICP [35] 13.612 12.337 3.655 3.880 0.0489 0.0560 0.0174 0.0218 7.257 7.779 0.0348 0.0433
Symmetric ICP [22] 5.208 6.769 4.703 5.991 0.0518 0.0680 0.0462 0.0609 9.174 11.895 0.0897 0.1178
FGR [40] 22.347 34.035 10.309 19.188 0.1070 0.1601 0.0537 0.0942 19.934 35.775 0.1068 0.1850
PointNetLK [1] 20.131 22.399 11.864 13.716 0.0972 0.1092 0.0516 0.0601 18.552 20.250 0.1032 0.1291
DCP [32] 4.862 4.775 3.433 2.964 0.0486 0.0474 0.0340 0.0300 6.653 6.024 0.0690 0.0616
PRNet [33] 1.911 3.197 1.213 2.047 0.0180 0.0294 0.0123 0.0195 2.284 3.932 0.0245 0.0392
FMR [13] 2.898 3.551 1.747 2.178 0.0246 0.0273 0.0133 0.0155 3.398 4.200 0.0260 0.0307
IDAM [17] 5.551 6.846 2.990 3.997 0.0486 0.0563 0.0241 0.0318 5.741 7.810 0.0480 0.0629
DeepGMR [37] 17.693 20.433 8.578 10.964 0.0849 0.0944 0.0531 0.0593 16.504 20.830 0.1048 0.1183

(c
)G
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Ours 1.009 1.305 0.548 0.757 0.0089 0.0103 0.0061 0.0075 1.076 1.490 0.0123 0.0149

Table 1. Results on ModelNet40. For each metric, the left column OS denotes the results on the original once-sampled data, and the right
column TS denotes the results on our twice-sampled data. Red indicates the best performance and blue indicates the second-best result.

4. Experiments

In this section, we first describe the pre-processing for
the datasets and the implementation details of our method
in Sec. 4.1. Concurrently, the experimental settings of com-
petitors are presented in Sec. 4.2. Moreover, we show
the results for different experiments to demonstrate the ef-
fectiveness and robustness of our method in Sec. 4.3 and
Sec. 4.4. Finally, we perform ablation studies in Sec. 4.5.

4.1. Dataset and Implementation Details

ModelNet40. We use the ModelNet40 dataset to test the
effectiveness following [1, 32, 27, 33, 13, 36, 17]. The Mod-
elNet40 contains CAD models from 40 categories. Previ-
ous works use processed data from PointNet [21], which
has two issues when adopted to registration task: (1) for
each object, it only contains 2,048 points sampled from the
CAD model. However, in realistic scenes, the points in X
have no exact correspondences in Y. Training on this data
cause over-fitting issue even adding noise or resampling,

which is demonstrated by the experiment shown in our sup-
plementary; (2) it involves some axisymmetrical categories,
including bottle, bowl, cone, cup, flower pot, lamp, tent and
vase, Fig. 4 shows some examples. However, giving fixed
ground-truths to axisymmetrical data is illogical, since it is
possible to obtain arbitrary angles on the symmetrical axis
for accurate registration. Fixing the label on symmetrical
axis makes no sense. In this paper, we propose a proper
manner to generate data. Specifically, we uniformly sample
2,048 points from each CAD model 40 times with different
random seeds, then randomly choose 2 of them as X and Y.
It guarantees that we can obtain C2

40 = 780 combinations
for each object. We denote the data that points are sampled
only once from CAD models as once-sampled (OS) data,
and refer our data as twice-sampled (TS) data. Moreover,
we simply remove the axisymmetrical categories.

To evaluate the effectiveness and robustness of our net-
work, we use the official train and test splits of the first
14 categories (bottle, bowl, cone, cup, flower pot and lamp
are removed) for training and validation respectively, and
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the test split of the remaining 18 categories (tent and vase
are removed) for test. This results in 4,196 training, 1,002
validation, and 1,146 test models. Following previous
works [32, 33, 13, 36, 17], we randomly generate three Eu-
ler angle rotations within [0◦, 45◦] and translations within
[−0.5, 0.5] on each axis as the rigid transformation.

Stanford 3D Scan. We use the Stanford 3D Scan
dataset [7] to test the generalizability of our method. The
dataset has 10 real scans. The partial manner in PRNet [33]
is applied to generate partially overlapping point clouds.

7Scenes. 7Scenes [30] is a widely used registration
benchmark where data is captured by a Kinect camera in
indoor environments. Following [39, 13], multiple depth
images are projected into point clouds, then fused through
truncated signed distance function (TSDF). The dataset is
divided into 293 and 60 scans for training and test. The
partial manner in PRNet [33] is applied.

Implementation Details. Our network architecture is il-
lustrated in Fig. 2. We run N = 4 iterations during train-
ing and test. Nevertheless, the {q, t} gradients are stopped
at the beginning of each iteration to stabilize the training.
Since the masks predicted by the first iteration may be inac-
curate at the beginning of training, some overlapping points
may be misclassified and affect the sequent iterations, we
apply the masks after the second iteration. We train our net-
work with Adam [16] optimizer for 260k iterations. The
initial learning rate is 0.0001 and is multiplied by 0.1 after
220k iterations. The batch size is set to 64.

4.2. Baseline Algorithms

We compare our method to traditional methods: ICP [3],
Go-ICP [35], Symmetric ICP [22], FGR [40], as well as
recent DL based works: PointNetLK [1], DCP [32], RPM-
Net [36], FMR [13], PRNet [33], IDAM [17] and Deep-
GMR [37]. We use implementations of ICP and FGR in In-
tel Open3D [41], Symmetric ICP in PCL [26] and the others
released by their authors. Moreover, the test set is fixed by
setting random seeds. Note that the normals used in FGR
and RPMNet are calculated after data pre-processing, which
is slightly different from the implementation in RPMNet.
We use the supervised version of FMR.

Following [32, 36], we measure anisotropic errors: root
mean squared error (RMSE) and mean absolute error
(MAE) of rotation and translation, and isotropic errors:

Error(R) = ∠
(
R−1

g Rp

)
, Error(t) = ∥tg − tp∥2, (9)

where Rg and Rp denote the ground-truth and predicted
rotation matrices converted from the quaternions qg and qp

respectively. All metrics should be zero if the rigid align-
ment is perfect. The angular metrics are in units of degrees.

4.3. Evaluation on ModelNet40

To evaluate the effectiveness of different methods, we
conduct several experiments in this section. The data pre-
processing settings of the first 3 experiments are the same
as PRNet [33] and IDAM [17]. In addition, the last experi-
ment shows the robustness of our method to different partial
manners, which is used in RPMNet [36].

Unseen Shapes. In this experiment, we train models on
training set of the first 14 categories and evaluate on vali-
dation set of the same categories without noise. Note that
all points in X have exact correspondences in Y for the
OS data. We partial X and Y by randomly placing a point
in space and computing its 768 nearest neighbors respec-
tively, which is the same as used in [33, 17]. All DL based
methods are trained independently on both OS and TS data.
Table 1(a) shows the results.

We can find that ICP [3] performs poorly because of
the large difference in initial positions. Go-ICP [35] and
FGR [40] achieve better performances, which are compara-
ble to some DL based methods [1, 32, 13, 17]. Note that
the large performance gap of FGR on two different data is
caused by the calculation manner of normals. We use nor-
mals that are computed after data pre-processing, so that
normals of X and Y are different in our TS data. In ad-
dition, the results of IDAM [17] are marginally worse than
PRNet [33] because of the fixing manner of the test data,
which is used in other DL based methods. Our method
achieves very accurate registration and ranks first in all met-
rics. Example results on TS data are shown in Fig. 6(a).

Unseen Categories. We evaluate the performance on un-
seen categories without noise in this experiment. Models
are trained on the first 14 categories and tested on the other
18 categories. The data pre-processing is the same as the
first experiment. The results are summarized in Table 1(b).
We can find that the performances of all DL based methods
become marginally worse without training on the same cate-
gories. Nevertheless, traditional algorithms are not affected
so much because of the handcrafted features. Our approach
outperforms all the other methods. A qualitative compari-
son of the registration results can be found in Fig. 6(b).

Gaussian Noise. In this experiment, we add noises that
sampled from N (0, 0.012) and clipped to [−0.05, 0.05],
then repeat the first experiment (unseen shapes). Table 1(c)
shows the results. FGR is sensitive to noise, so that it per-
forms much worse than the noise-free case. All DL based
methods get worse with noises injected on the OS data. The
performances of correspondences matching based methods
(DCP, PRNet and IDAM) show an opposite tendency on
the TS data compared to the global feature based methods
(PointNetLK, FMR and ours), since the robustness of local
feature descriptor is improved by the noise augmentation
during training. Our method achieves the best performance.
Example results are shown in Fig. 6(c).
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Figure 5. We show the registration result (top left), the difference between the global features of the inputs X and Y (top right), and the
predicted masks (bottom) at each iteration. Red and blue indicate the predicted overlapping and non-overlapping regions respectively.

Method RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

ICP [3] 21.893 13.402 0.1963 0.1278 26.632 0.2679
Symmetric ICP [22] 12.576 10.987 0.1478 0.1203 21.807 0.2560
FGR [40] 46.213 30.116 0.3034 0.2141 58.968 0.4364
PointNetLK [1] 29.733 21.154 0.2670 0.1937 42.027 0.3964
DCP [32] 12.730 9.556 0.1072 0.0774 12.173 0.1586
RPMNet [36] 6.160 2.467 0.0618 0.0274 4.913 0.0589
FMR [13] 11.674 7.400 0.1364 0.0867 14.121 0.1870
Ours 4.356 1.924 0.0486 0.0223 3.834 0.0476

Table 2. Results on the twice-sampled (TS) unseen categories with
Gaussian noise using the partial manner of RPMNet.

Different Partial Manners. We notice that the previous
works [33, 36] use different partial manners. To evaluate
the effectiveness on different partial data, we also test the
performance of different algorithms on the test set used in
[36]. We retrain all DL based methods and show the results
of the most difficult situation (unseen categories with Gaus-
sian noise) in Table 2. For details about the partial manners,
please refer to our supplementary.

4.4. Evaluation on Real Data

To further evaluate the generalizability, we conduct ex-
periments on the Stanford 3D Scan and 7Scenes datasets.
Since the Stanford 3D Scan dataset only has 10 real scans,
we directly use the model trained on the ModelNet40 with-
out fine-tuning. Some qualitative examples are shown in
Fig. 9. Furthermore, we evaluate our method on the 7Scenes
indoor dataset. The point clouds are normalized into the
unit sphere. Our model is trained on 6 categories (Chess,
Fires, Heads, Office, Pumpkin and Stairs) and tested on the
other category (Redkitchen). Fig. 10 shows some examples.
For more results, please refer to our supplementary.

4.5. Ablation Studies

We perform ablation studies on the unseen shapes with
noise TS data to show the effectiveness of our components
and settings. As shown in Table 3, we denote our model that
removed the following components as Baseline (B): Mask
prediction module (M), Mask prediction Loss (ML), Fusion
layers (F) before the regression module, and Connection (C)
between mask prediction and regression modules. Besides,
we only use top-k points based on the mask prediction prob-
abilities to estimate rigid transformations. Moreover, we set
different λ in the loss function.

Model RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

B 3.216 2.751 0.0267 0.0232 5.250 0.0463
B+M 3.437 2.943 0.0349 0.0301 5.550 0.0604
B+M+ML 1.655 1.417 0.0158 0.0138 2.681 0.0274
B+M+ML+F 1.453 0.892 0.0111 0.0087 1.722 0.0171
B+M+ML+F+C 1.305 0.757 0.0103 0.0075 1.490 0.0149

Top-k, k=500 1.364 1.168 0.0127 0.0109 2.255 0.0220
Top-k, k=300 1.399 1.203 0.0161 0.0141 2.282 0.0278
Top-k, k=100 1.483 1.270 0.0180 0.0157 2.458 0.0311

λ=2.0 1.356 0.900 0.0109 0.0077 1.721 0.0154
λ=0.5 1.397 0.986 0.0116 0.0085 1.890 0.0169
λ=0.1 1.416 1.068 0.0127 0.0095 2.038 0.0189

Table 3. Ablation studies of each component and different settings.

We can see that without being supervised by the mask
prediction loss, it has no improvement based on the base-
line, which shows that the mask prediction can not be
trained unsupervised. Comparing the third to the fifth lines
with the baseline, we can find that all the components im-
prove the performance. Since we do not estimate the match-
ing candidates among the overlapping points, the top-k
points from the source and reference may not be correspon-
dent and distributed in the point clouds centrally, so that
the results of top-k models are worse than using the entire
masks. Furthermore, we adjust the λ in the loss function.
Since the data generation manner of [33, 36] constrain the
translation within [−0.5, 0.5] as we use the ℓ2 loss for the
translation, the translation loss is smaller than the quater-
nion, so that a large λ aims to form comparable terms.

5. Discussion

In this section, we conduct several experiments to better
understand how various settings affect our algorithm.

5.1. Effects of Mask

To have a better intuition about the overlapping masks,
we visualize the intermediate results in Fig. 5. We re-
shape the global feature vector of length 1,024 into a 32×32
square matrix and compute the error between the trans-
formed source X̃ and reference Y. At the first few iter-
ations, the global feature differences are large, and the in-
puts are poorly aligned given inaccurate overlapping masks.
With continuous iterating, the global feature difference be-
comes extremely small, while the alignment and predicted
overlapping masks are almost perfect.
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