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Abstract

Recently, various works that attempted to introduce rota-
tion invariance to point cloud analysis have devised point-
pair features, such as angles and distances. In these meth-
ods, however, the point-pair is only comprised of the center
point and its adjacent points in a vicinity, which may bring
information loss to the local feature representation. In this
paper, we instead connect each point densely with all other
points in a local neighborhood to compose the point-pairs.
Specifically, we present a simple but effective local feature
representation, called sorted Gram matrix(SGM), which is
not only invariant to arbitrary rotations, but also models
the pair-wise relationship of all the points in a neighbor-
hood. In more detail, we utilize vector inner product to
model distance- and angle-information between two points,
and in a local patch it naturally forms a Gram matrix. In
order to guarantee permutation invariance, we sort the cor-
relation value in Gram matrix for each point, therefore this
geometric feature names sorted Gram matrix. Furthermore,
we mathematically prove that the Gram matrix is rotation-
invariant and sufficient to model the inherent structure of a
point cloud patch. We then use SGM as features in convo-
lution, which can be readily integrated as a drop-in module
into any point-based networks. Finally, we evaluated the
proposed method on two widely used datasets, and it out-
performs previous state-of-the-arts on both shape classifi-
cation and part segmentation tasks by a large margin.

1. Introduction

In the past few years, the development of 3D computer
vision has flourished due to its wide applications, such as
robotics, AR/VR and self-driving. Point cloud, the most
common format of 3D data, has attracted more and more at-
tention, and plenty of works [19, 20, 1, 25, 13, 26, 24] have
been proposed to extract 3D features directly on points.
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Figure 1. Illustration of simplified PPFs and our improved dense-
connected version. In figure(a), the PPFs are constructed between
center point pc and neighbor point pj by distance ||xj ||(xj =
pj − pc) and angle ∠(m,xj)(m = Opc, O is a reference point,
such as mass center), which cannot fully constraint pj , letting it
freely positioned in the circle Ω, thus leads to information loss.
In figure(b), we densely connect every point-pair exhaustively and
compute each pair’s distance and angle information by an inner
product which, forms a Gram matrix, leading to a fixed local struc-
ture.

Compared to dense images, point clouds are irregular and
unstructured, thus it is necessary to design permutation
invariant feature extractors, which is handled by Point-
Net [19] using symmetric functions. Besides that, spatial
transformation, including translation and rotation, is gener-
ally common in 3D world. Therefore, the learned represen-
tation of the point cloud should also be invariant to transla-
tion and rotation [19]. While translation-invariance can be
accomplished perfectly by using weight sharing as 2D con-
volution does in an image, rotation-invariance in 3D point
cloud has not been well resolved due to its spacial complex-
ity.

In essence, rotation-invariance is crucial in some spe-
cific tasks, such as classification, part segmentation, match-
ing and shape retrieval, as in these tasks, the objects or
the whole scene can be arbitrarily rotated. Hence, it is
necessary to ensure that the learned point cloud feature is
rotation-invariant, and in particular, the local patch descrip-
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Figure 2. Illustration of rotation-invariant local feature represen-
tation. Upper figure: it shows the local feature extraction of
AECNN [31]. For the two emages of this airplane, though sharing
the same structure, their local feature is discriminative due to dif-
ferent LRF construction, thus the local feature of AECNN is not
rotation invariant. Note that, this is why AECNN needs to align
features in different LRFs. Lower figure: it shows our proposed
local feature descriptor, which is strictly rotation-invariant for two
local patches as long as their inherent structures keep the same.

tor should also be rotation invariant, i.e., two point cloud
patches that share the same inherent structure should have
the same feature representation.

To cope with the rotation issue, a straightforward method
is to feed the model with great amounts of rotation aug-
mented data. For further rotation robustness, some [19, 25]
used the STN [10] to transform input to canonical space.
Nevertheless, all these methods rely heavily on data aug-
mentation and is insufficient to ensure generalizability to
unseen rotations. Besides, these augmentation-based meth-
ods are obliged to extract features from an extremely huge
input space, leading to higher model complexity. On the
contrary, rotation-invariant methods have lower model com-
plexity.

Studies on rotation-invariant deep learning have already
been proposed in the past few years. One stream of
methods [11, 28, 31, 33] tried to construct local reference
frames(LRFs) and transfer coordinates from global to local
frame, thus are invariant to global rotations. AECNN [31]
constructs the LRF using the global origin point as refer-
ence, making its LRFs vary even for the same two local
patches, as depicted in Figure 2, so its local feature descrip-
tor is not rotation-invariant, limiting its application to other
tasks, such as object detection and matching. Other meth-
ods [11, 28] utilize priciple component analysis (PCA) to
construct the LRF, sufferring from the ambiguity of eigen
vectors.

Another intuitive way is to utilize naturally rotation-
invariant features, e.g. angles and distances, as the net-
work input. Drost et al. [7] first proposes point-pair fea-
tures (PPFs) to build rotation-invariant network, by con-
structing distance and angles between two points and their
normal vectors. Later methods [32, 23] simplified the PPFs

by removing the computationally costly normal estimation.
However, this leads to much information loss for local rep-
resentation, as depicted in Figure 1(a). ClusterNet [3] de-
fined a plane using original point as reference and sort the
projected angles among neighbors, which fully constrained
the local patch, but loses the rotation-invariance for its local
feature representation similar to AECNN [31]. For all these
PPF-based methods, although they help the network gen-
eralize to unseen rotations, their performance is relatively
lower than LRF-based methods.

For simplicity and generalizability, we follow the track
of utilizing point-pair features, and improve it by connect-
ing every pair of points exhaustively in a neighborhood to
obtain a complete local geometric representation. To this
end, we use the vector inner product between all point pairs
to model the distance and angle information, which nat-
urally forms a Gram matrix in a neighborhood. In order
to guarantee permutation-invariant, we sort the correlation
value in the Gram matrix for each point, so this geometric
feature names sorted Gram matrix. We use the SGM them-
selves as features in the convolution, which can be readily
implemented as a drop-in module in any point-based net-
work.

Main contributions are summarized as follows:

• We propose a simple and effective local feature repre-
sentation, named SGM, which not only keeps invariant
to arbitrary rotations, but also models the pairwise re-
lationship of all the points in a neighborhood.

• We pack the SGM as a drop-in module, and integrate it
into many popular point-based networks, showing the
robustness, efficiency and generalizability of the SGM.

• We illustrate that our proposed method is invariant to
rotation and achieves state-of-the-art results in both
point cloud shape classification and part segmentation
tasks.

2. Related Works
2.1. Deep Learning on Point Clouds

In recent years, 3D point cloud processing using deep
neural networks has drawn much research interest and
showed superior performance in multiple 3D tasks [19]. 3D
Shapenet [27] and Voxnet [16] introduced 3D convolutional
neural networks to volumetric data due to its similarity to
image data. However, 3D CNN results in large memory
consumption and much calculation is wasted on sparse vox-
els. PointNet [19] is the pioneer work to use raw point
cloud as input without transferring to regular 3D data. It
maps the original 3D coordinates to high-dimensional fea-
tures with MLPs, followed by a permutation-invariant pool-
ing operation to aggregate individual features to global fea-
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tures. However, PointNet neglects the crucial role of lo-
cal shape descriptors in various high-level 3D understand-
ing tasks. Several follow ups attempt to learn local features
in different ways. PointNet++ [20] used PointNet as lo-
cal feature descriptor and formed a hierarchical structure.
DGCNN [25] utilized graph and incorporated edge infor-
mation. Other works [12, 13, 26, 24] have made some ex-
ploration on adapting convolution operator to point cloud
learning. In this study, we aim to learn DNNs with rotation
invariance property.

2.2. Rotation-robust 3D Networks

One intuitive way to achieve rotation robustness is to
feed the network with great amounts of rotation-augmented
data. However, data augmentation cannot ensure general-
ization to unseen rotations and have higher model complex-
ity.

Some methods [4, 8, 21] project 3D data to a unit sphere
and perform convolutions using a spherical harmonic ba-
sis. Rasterization in these methods make them not able to
maintain consistent performance when rotated, and spher-
ical projection may be difficult to handle complex non-
convex objects. [30] proposed Spherical Voxel Convolution
to extract point-wise rotation-invariant features at spherical
voxel grids. However, it didn’t solve the information loss
problem and performance drops when testing with arbitrary
rotated point cloud.

Some methods resort to geometric features between
point pairs [5, 3, 32, 23] in pursuit of inherent rotation-
invariant property. PPF-FoldNet [5] leveraged the dif-
ference vector between point pairs and relative angle of
their normal vectors. Similar to PPF-FoldNet [5], Clus-
terNet [3] utilized distance and angle to define rotation-
invariant features. However, it used origin point as refer-
ence point to construct the projection plane and angle, re-
sulting in rotation-variant local features. RIConv [32], on
the contrary, used mass center as reference point to con-
struct rotation-invariant features by using simplified point-
pair features. These methods could achieve global rotation-
invariance in certain degrees but are far from the perfor-
mance of standard point cloud learning methods in aligned
scenarios on basic tasks such as classification and segmen-
tation.

Other methods [31, 11, 33, 28] learned rotation-
invariant representations by introducing local reference
frames (LRFs) into the networks. However, LRFs are sen-
sitive to point density changes, ambiguous and sometimes
non-unique, which limit the representational power and
generalization performance to unseen rotations. Moreover,
LRF-based methods may generate different features for the
same but rotated local patches depending on its LRF defi-
nition, as shown in Figure 2, which are deviated from the
initial motivation and thus not suitable for tasks like scene

segmentation, object detection and point cloud matching,
where locally rotated patches exist.

One common problem of all the previous works is
that they either rely on extra information or very com-
plicated design. Our work is more intuitive, straightfor-
ward and easy to integrate to various point-based networks.
Furthermore, methods above are not all rotation-invariant
with regard to local features, such as ClusterNet [3] and
AECNN [31]. Their global features are rotation invariant
while local feature are not, which constrains their applica-
tion in tasks like matching and object detection.

3. Methodology

In this section, we firstly state the rotation-invariance
problem, then revisit the concepts of point-pair features and
Gram matrix, followed by the core contribution of this pa-
per, i.e., sorted Gram matrix. Finally, the network architec-
ture is presented.

3.1. Problem Statement

We study the problem of rotation-invariant local descrip-
tors for point clouds. Given a point cloud patch with K
points, denoted as X = [x1, ..., xK ], where each xi(i =
1, ...,K) contains the 3D coordinates of a point in Eu-
clidean space, thus X ∈ R3×K . Note that, the local patch
discussed in this paper is already translated by the center
of this patch. For any given R ∈ SO(3) (special orthog-
onal group), we need to find a mapping F : R3×K 7→
RC×K , C ∈ N+, in which identical point clouds in differ-
ent orientations should be unified as a unique and consistent
representation. Mathematically, it can be formulated as fol-
lows:

F(X) = F(RX) (1)

where the F(·) is the rotation-invariant operation we pur-
suit, and the F(X) is the rotation-invariant descriptor of X .

3.2. Preliminaries

Point-Pair Features(PPFs). As illustrated in [7, 2, 9],
PPFs are antisymmetric 4D descriptors of a pair of oriented
3D points pc and pj , constructed as:

(||xj ||2, ∠(nc, xj), ∠(nj , xj), ∠(nc, nj)) (2)

where xj denotes the difference vector between points com-
puted as xj = pj − pc, nc and nj are the surface normals at
pc and pj . || · || is the Euclidean distance and ∠ is the angle
operator.

In our case, the point cloud comes as coordinates in 3D
space without surface normals, and sometimes it is diffi-
cult to compute normals especially for sparse point cloud.
In the consideration of simplicity and generalizability, we
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simplify the PPFs, similar to [32], to a short representation
without normal vectors, formulated as:

(||xj ||2, ∠(m,xj)) (3)

where xj still denotes the difference vector between pc and
pj , m is the vector between reference point O and pc, as
depicted in Figure 1(a). This simplified feature is invariant
under arbitrary rotation as the distances and angles are pre-
served between every pair of points, which has been proved
in many previous works[2, 6, 3, 32].

We use this simplified PPFs as baseline to explore the
rotation-invariant representation for a local point set, and
discover that in this way only the relationship between cen-
ter point pc and its neighbor pj is established, but the whole
geometric structure is not captured, i.e., the inherent rela-
tion among neighbors are not constrained, as illustrated in
Figure 1(a), thus leading to ambiguity (or in another term,
information loss) for a local point cloud description.

This inspired us that the point-pair relation should not
only be computed between a central reference and its neigh-
bor points, but take all points in the neighborhood into ac-
count, as depicted in Figure 1(b), encouraging us to find a
more suitable descriptor.

Gram Matrix. It is intuitive that inner-product between
two vectors comprises both distance and angle informa-
tion. If we compute the inner-product between every pair
of points in a point cloud patch, then it naturally forms a
Gram matrix. More specifically, for a given point cloud
X ∈ R3×K , the Gram matrix G of X can be defined as:

G(X) = XTX =


xT1 x1 xT1 x2 . . . xT1 xK
xT2 x1 xT2 x2 . . . xT2 xK

...
...

. . .
...

xTKx1 xTKx2 . . . xTKxK

 (4)

where each xi(i = 1, ...,K) contains the 3D coordinates of
a point in 3D space.

Obviously, G(X) is a K ×K matrix, and comprises the
geometric information of all the point pairs in a compact
way. We will first prove that the Gram matrix is rotation-
invariant, and then illustrate that this representation is suffi-
cient to model the inherent structure of a point cloud patch.

Theorem 1. Gram matrix is rotation-invariant, i.e., for
∀R ∈ SO(3), ∀X ∈ R3×K(K ∈ N+), that satisfies

G(X) = G(RX) (5)

Proof. For ∀R ∈ SO(3), ∀X ∈ R3×K , according to GM
definition in Eq.4,

G(RX) = (RX)TRX = XTRTRX = XTX (6)

soG(RX) = G(X), i.e., Gram matrix is rotation-invariant.

Then we are going to illustrate the Gram matrix is suffi-
cient to model the inherent structure of a point cloud patch.

Lemma 1. If the Gram matrix of two point clouds are
equal, then their geometrical structures are also the same,
i.e., one can be represented by the other through a rotation
or a reflection.

Proof. We derived this lemmea from [18]: For two point
cloud patches, X1, X2 ∈ R3×K , K ∈ N+, according
to [18],

minQ||X1−QX2||F ≤
δ(X1)√

2
(1−

√
1− 2||G(X1)−G(X2)||F

a2(X1)
)

(7)
where Q is a rotation or reflection matrix, δ(X1) is the

smallest singular value of X1. Since G(X1) = G(X2), it
implies minQ||X1 − QX2||F ≤ 0, so X1 = QX2, which
completes the proof.

3.3. Learning from Sorted Gram Matrix

Sorted Gram Matrix. As mentioned above, the Gram
matrix G(X) of a point cloud patch X ∈ R3×K is rotation-
invariant and sufficient to model the inherent structure of
X . In this section, we intend to use the G(X) itself as the
initial feature in a network, however, the G(X) can not be
straightly used as it is not permutation-invariant, which is
indeed required by point-based networks.

We tackle this problem by sorting the correlation value
of Gram matrix for each row in ascending or descending
order, and the sorted Gram matrix can be defined as:

SGM(X) = fsort(G(X)) =

 fsort(X1)
...

fsort(XK)

 (8)

where fsort(·) is the row-wise sorting function, Xi =
[xTi x1, x

T
i x2, ..., x

T
i xK ](i = 1, ...,K) is the correlation

value for each row.
Before implementing the SGM in a netwrok, we illus-

trate the rotation- and permutation-invariance property of
SGM firstly.

Theorem 2 (Rotation Invariance). For ∀X ∈ R3×K , the
SGM of X defined by Eq.8 is rotation-invariant.

Proof. According to theorem 1, Gram matrix is rotation-
invariant, so

SGM(RX) = fsort(G(RX)) = fsort(G(X)) (9)

so SGM(RX) = SGM(X), i.e., the SGM is rotation-
invariant.
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Figure 3. Overview of SGM ensembled in PointNet++. For simplicity, only one set abstraction with one scale is pictured.

Theorem 3 (Permutation Invariance). For ∀X ∈ R3×K ,
the SGM of X defined by Eq.8 is permutation-invariant af-
ter a symmetric function, formulated as:

A(SGM(XP )) = A(SGM(X)) (10)

where P is a K ×K column permutation matrix, and A(·)
is a symmetric function used for feature aggregation.

Proof. Let ∀X ∈ R3×K , for any K ×K column permuta-
tion matrix P ,

SGM(XP ) = fsort(G(XP ))

= fsort((XP )T (XP ))

= fsort(P
TXTXP )

= fsort(P
TG(X)P ) (11)

as fsort is a row-wise sort function and PT is a row permu-
tation matrix, thus

fsort(P
TG(X)P ) = PT fsort(G(X)P ) = PT fsort(G(X))

(12)
combine Eq.11, 12,

A(SGM(XP )) = A(PT fsort(G(X))) = A(PTSGM(X))
(13)

as the symmetric function A(·), e.g. maxpooling, has been
proved permutaion-invariant in [19], so

A(PTSGM(X)) = A(SGM(X)) (14)

namely A(SGM(X) is permutaion-invariant.

Learning from Sorted Gram Matrix. In terms of
rotation-invariant network, we can use the SGM calculated
from points’ raw Euclidean coordinates as an initial descrip-
tor for a local point cloud, and concatenate the SGM with
their high dimensional features, then feed to subsequent
convolution layers, finally aggregate the local features to

center point. More formally, without loss of generality, we
suppose a local point cloud with K points to have coordi-
nates X ∈ R3×K and features F ∈ RC×K , C ∈ N+ is the
channel number of F (note that in our case the features F
is rotaion-invariant, such as semantic features or the previ-
ous high-level feature comes from SGM). Then, the learned
rotaion- and permutaion-invariant representation f of this
local point cloud can be formulated as:

f = δ(A(MLP (Ψ))) (15)

where A(·) is a symmetric function same as in Eq. 10, δ is
an activation funcion,

Ψ = Φ(X,F ) = concat(SGM(X), F ) (16)

We name the Φ(·, ·) as the SGM Module, and Ψ ∈
R(C+K)×K is the output of it. f ∈ RCout is the final rep-
resentation of this local point cloud, where Cout is the last
channel number of the MLP .

Then the SGM Module can be readily integrated into any
point-based networks for various tasks, which is illustrated
in the following section.

3.4. Network Architecture

In this section, we will use the SGM Module in hierar-
chical networks, and illustrate the generality by implement
it on classification and segmentation tasks. We leverage a
PointNet++ [20] framework to integrate the SGM Module
into classification and segmentation task, as depicted in Fig-
ure 3. Placed in the Set Abstraction module of PointNet++,
the SGM plays the role of extracting geometrical features,
replacing the original xyz coordinates. With this tiny mod-
ification the PointNet++ obtains rotation-invariance prop-
erty, which shows the application potential of SGM Module.

4. Experiments
In this section, we first compare our methods with pre-

vious state-of-the-art methods on two different tasks: clas-
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Method Inputs Input size z/z z/SO(3) SO(3)/SO(3)

PointNet [19] pc 1024×3 89.2 16.4 75.5
PointNet++ [20] pc+normal 5000×6 91.8 18.4 77.4
DGCNN [25] pc 1024×3 92.2 20.6 81.1
Spherical CNN [8] voxel 2×64×64 88.9 76.9 86.9
SFCNN [22] pc 1024×3 91.4 84.8 90.1
PCA-RI [28] pc 1024×3 88.8 88.8 88.8
L2G-GCN [11] pc 1024×3 89.5 89.5 89.5
RICNN [32] pc 1024×3 86.5 86.4 86.4
SRINet [23] pc 1024×3 87.0 87.0 87.0
ClusterNet [3] pc 1024×3 87.1 87.1 87.1
SGMNet(ours) pc 1024×3 90.0 90.0 90.0

Table 1. Shape classification results on ModelNet40 dataset. We report the overall classification accuracy (%) under three different train/test
settings: (z/z), (z/SO(3)), and (SO(3)/SO(3)). The results are grouped, from top to bottom, by rotation-sensitive methods, rotation-
robust (but not rotation-invariant) methods, LRF-based and PPF-based rotation-invariant methods. Though our method is not the best when
compared to rotation-robust method (SFCNN [22]) in z/z and SO(3)/SO(3) cases, but maintain the same performance in all cases. And
our method outperforms both LRF- and PPF-based rotation-invariant methods significantly, especially the PPF-based methods that are also
based on angles and distances.

sification task on ModelNet40 dataset [27] (Sec. 4.1) and
part segmentation task on ShapeNet dataset [29] (Sec. 4.2).
Then, in Sec. 4.3, we conduct extensive ablation studies to
investigate crucial components of the SGMNet and lead to
some promising conclusions.

4.1. Classification

Dataset. We evaluate the classification task on Model-
Net40 [27] , which provides 12311 CAD models from 40
object categories. There are 9843 models for training and
2468 models for testing. We use a widely used version pro-
vided by PointNet [19], which contains 2048 points in each
point clouds. We uniformly sample 1024 points and nor-
malize them to a unit sphere. To note that, only the (x, y, z)
coordinates of the sampled points are used.

Implementation Details. The network is trained from
scratch with SGD optimizer on a single Tesla V100 GPU.
We trained the network for 250 epochs with a batch size
of 32, the initial learning rate is 0.001. The cosine an-
nealing learning rate strategy is adopted for the learning
rate decay. For the model architecture, we keep the same
as PointNet++ [20], and adopt its MLP settings. We use
leaky ReLU [15] as activation function. Cross-entropy loss
is used as loss function with label smoothing. During train-
ing we augment the point clouds with random scaling in
the range [0.66, 1.5] and random translation in the range
[−0.2, 0.2]. During testing, we report the best single model
result without any voting operations.

Evaluation Metric. Same as previous work [19], we
take overall classification accuracy as metric, formulated
as acc = Ncorrect/Nall, where Ncorrect denotes the cor-
rectly classified objects number, Nall denotes the total ob-
jects number.

Results. Similar to [3], we perform experiments un-
der three settings: training and testing with vertical ro-
tations (z/z), training with vertical rotations and test-
ing with arbitrary rotations (z/SO(3)), and training and
testing with arbitrary rotations (SO(3)/SO(3)). As
shown in Table 1, the results are grouped, from top
to bottom, by rotation-sensitive methods, rotation-robust
(but not rotation-invariant) methods, LRF-based and PPF-
based rotation-invariant methods. Though our method is
not the best when compared to rotation-robust method
(SFCNN [22]) in (z/z) and (SO(3)/SO(3)) cases, but
maintain the same performance in all cases. And our
method outperforms both LRF- and PPF-based rotation-
invariant methods significantly, especially the PPF-based
methods that are also based on angles and distances.

However, there still exists performance gap in (z/z) set-
ting when compared to standard (rotation-sensitive) net-
works [19, 20, 25]. We speculate that the reason for
this phenomenon is that these standard networks use some
unique information under (z/z) setting, that is, overfitting
this kind of scene.

4.2. Part Segmentation

Dataset. Part segmentation is a challenging task for fine-
grained shape analysis. We evaluate our method for this task
on ShapeNet part benchmark [29], which contains 16,881
shapes from 16 categories, annotated with 50 parts in total.
We follow the data split in [19], and randomly pick 2048
points with only coordinates xyz as the input.

Implementation Details. We keep the same model ar-
chitecture as PointNet++ [20] and concatenate the one-hot
encoding of the object label to the last feature layer. We use
ReLU [17] as activation function. Negative log likelihood
loss is minimized during training. Other training and testing

10473



Method Inputs Input size z/z z/SO(3) SO(3)/SO(3)
PointNet [19] pc 2048×3 79.3 43.0 73.9
PointNet++ [20] pc 2048×3 80.6 45.9 75.5
DGCNN [25] pc 2048×3 79.2 46.1 71.8
L2G-GCN [11] pc 2048×3 - 77.2 77.3
RICNN [32] pc 2048×3 - 75.3 75.5
SRINet [23] pc 2048×3 77 77.0 77.0
Ours pc 2048×3 79.3 79.3 79.3

Table 2. Part segmentation results on ShapeNet part dataset. We report the mIoU over all classes in three different train/test settings: (z/z),
(z/SO(3)), and (SO(3)/SO(3)). The results are grouped, from top to bottom, by rotation-sensitive methods, LRF-based and PPF-based
rotation-invariant methods. Our method outperforms other rotation-invariant methods by a large margin in all cases.

settings are kept same as in shape classification task.
Evaluation Metric. We use mean intersection-over-

union (mIoU) over all classes as the evaluation metric, same
as PointNet [19]. The mIoU can be formulated as:

mIoU =
1

C

C∑
c=1

[
1

Nc
s

Nc
s∑

s=1

(
1

Ns
p

Ns
p∑

i=1

TP s
i

TP s
i + FP s

i + FNs
i

)]

(17)
where TP s

i , FP s
i , FNs

i denote true positive, false positive,
and false negative predictions for i-th part in shape s, Ns

p

is the total part number in shape s, N c
s is the total shape

number in category c, and C is the number of categories.
Note that, if the union of groundtruth and prediction points
is empty, then count part IoU as 1.

Results. As we can see in Table 2, rotation-sensitive
methods [19, 20, 25] drop sharply in z/SO(3) case, and
our method outperforms previous rotaion-invariant meth-
ods significantly in all cases. This result aligns well with
the performance reported in the object classification task.
Visualization of our prediction and the ground truth object
parts are shown in Figure 4. We can see that the network
produces same segmentation results with arbitrary rotations
on the input point clouds. In Figure 5, we visualize the
feature of a desk under two rotations for our method and
AECNN [31]. When rotated around point O1 which is se-
lected by AECNN as reference point, the desk feature keeps
the same for both methods. However, when rotated around
another pointO2, the feature of AECNN changes distinctly,
as shown in Figure 5(b), because the LRF changes when
rotates around other points instead of the reference point.
Therefore, this confirms our argument that AECNN is not a
local rotation-invariant network.

4.3. Discussion

Effectiveness of SGM. The SGM descriptor, in essence,
is the dense connected angle and distance information
among points. We conduct an ablation experiment to ex-
plore the effectiveness of the SGM. As shown in Table 3, we
can discover that the SGM ouperforms simplified PPFs by
a large margin, showcasing that the SGM can indeed boost

Features Accurancy
distance 80.6
angle 85.2
distance+angle 86.6
SGM 90.0

Table 3. Illustration the effectiveness of SGM descriptor. Overall
classification accuracy(%) on ModelNet40 [27] is reported.

Method #params(M) z/SO(3)
PointNet++ [20] 1.74 16.0
Spherical CNN [8] 0.50 78.6
RICNN [32] 0.70 86.4
AECNN(w/o align) [31] 1.94 89.6
SGMNet(big) 1.81 90.0
SGMNet(middle) 0.67 89.6
SGMNet(small) 0.44 89.3
SGMNet(mini) 0.23 88.8

Table 4. Comparison of model complexity. Overall classification
accuracy(%) on ModelNet40 [27] under z/SO(3) setting is re-
ported. Our SGMNet is based on PointNet++ [20], and continu-
ously cut the channel to reduce model complexity.

the performance of rotation-invariant network.
Model Complexity. For networks that rely on data aug-

mentation to handle rotation issue, it requires more param-
eters to fit the enlarged input space. Models designed to be
rotation-invariant should have lower complexity, especially
for those whose local features are also rotation-invariant.

We conduct several experiments to demonstrate the
above argument, the results are shown in Table 4. We
illustrate it in two perspectives: 1). our proposed SGM
is an compact and powerful local feature descriptor, since
the performance only drops a little(0.4% to 1.2%) when
continuously cut the model channel to reduce complexity,
and SGMNet outperforms other rotation-invariant methods
even with half the parameters; 2). the designed SGM fea-
ture descriptor with invariance property to local rotations
leads to lower model complexity than those only invariant to
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airplane
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table

lamp

Figure 4. Qualitative results of the proposed method on ShapeNet dataset. From top to bottom, we show part segmentation results for
airplane, chair, table and lamp class. From left to right are ground truth and segmentation results with the input point clouds arbitrarily
rotated during testing. We can see that the network produces same segmentation results with arbitrary rotations on the input point clouds.
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Figure 5. Illustration of local rotation-invariance(RI) property: a1
and b1 are the same desk. We first rotate a1 and b1 around origin
point O1 (selected by AECNN [31] as reference point) to get a2
and b2, then rotate a2 and b2 around another arbitrary point O2 to
get a3 and b3. Color indicates norm of features. For our method,
differences between a1 and a2 (∆a1a2), a2 and a3 (∆a2a3) in
feature space are all near 0, showing perfect local RI property.
For AECNN [31], difference between b1 and b2 (∆b1b2) is still
near 0 while b2 and b3 (∆b2b3) is not. Pay attention to the clear
distinctions between 2 red ellipses in b2 and b3.

global rotations [31], and thus has wider application poten-
tial especially under computationally resource-constrained
circumstances.

Generalizability of SGM. In Table 5, we present the
results of SGM integrated as a drop-in module into some
popular point cloud analysis networks [20, 14, 25]. All

Method z/z z/SO(3) SO(3)/SO(3)
PointNet++ [20] + SGM 90.0 90.0 90.0
RSCNN [14] + SGM 88.5 88.5 88.5
DGCNN [25] + SGM 88.9 88.9 88.9

Table 5. Illustration on the generalizability of SGM descriptor
when integrated into three different point cloud analysis networks.
Overall classification accuracy(%) on ModelNet40 [27] is re-
ported.

three networks achieve decent performance on Model-
Net40 [27] and maintain the same performance under (z/z),
(z/SO(3)), and (SO(3)/SO(3)) settings, showing the gen-
eralizability of the SGM.

5. Conclusion

We propose a simple but effective rotation-invariant de-
scriptor, namely sorted Gram matrix(SGM), for local point
cloud representation. We densely connect every pair of
points in a local neighborhood to obtain the full geometri-
cal description through a Gram matrix, and mathematically
prove that it is rotation-invariant and sufficient to model the
inherent structure of the point cloud patch. Extensive exper-
iments performed on classification and segmentation tasks
with qualitative and quantitative results demonstrate the ef-
fectiveness, efficiency and generalizability of our SGM de-
scriptor.
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