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Abstract

In this paper, we propose a progressive segmentation in-
ference (PSI) framework to tackle with scribble-supervised
semantic segmentation. In virtue of latent contextual depen-
dency, we encapsulate two crucial cues, contextual pattern
propagation and semantic label diffusion, to enhance and
refine pixel-level segmentation results from partially known
seeds. In contextual pattern propagation, different-granular
contextual patterns are correlated and leveraged to prop-
erly diffuse pattern information based on graphical model,
so as to increase the inference confidence of pixel label pre-
diction. Further, depending on high-confidence scores of
estimated pixels, the initial annotated seeds are progres-
sively spread over the image through dynamically learn-
ing an adaptive decision strategy. The two cues are finally
modularized to form a close-looping update process during
pixel-wise label inference. Extensive experiments demon-
strate that our proposed progressive segmentation inference
can benefit from the combination of spatial and semantic
context cues, and meantime achieve the state-of-the-art per-
formance on two public scribble segmentation datasets.

1. Introduction

Semantic segmentation is one fundamental topic in com-
puter vision. Numerous deep learning based methods have
sprung up to deal with this task [5, 6, 28, 10, 43]. They usu-
ally require a vast quantity of fully annotated samples to fa-
cilitate the training of deep neural networks. But the annota-
tion of image segmentation often suffers massive workload
because of fully flexible/irregular polygons of segmentation
regions. To bypass the dependency on high-expensive anno-
tations, weakly supervised semantic segmentation is much
desirable due to more convenient annotations. Broadly
speaking, the annotation ways mainly contain four cate-
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gories: image-level labels [9, 18, 24, 41], clicks [4], bound-
ing boxes [7, 30, 19] and scribbles [26, 34, 35, 38]. The
image-level labels and clicks only provide very limited su-
pervision information, thus making them hard to train high-
accuracy semantic segmentation models. Although bound-
ing boxes can provide more supervision information, they
tend to overlap with each other and thus result into many
disturbances from confusion labels during training. In con-
trast, the scribble annotations are more flexible to reflect the
distribution of semantic classes, and their operation is easily
controllable. Due to its potential advantages, here we focus
on the case of scribble-supervised semantic segmentation.

The scribble-supervised semantic segmentation has been
studied over the past decade. Early methods [33, 12] may
be dated to interactive segmentation which uses graphical
models to directly expand semantic labels to unlabeled re-
gions. With the popularity of deep neural networks, many
recent methods attempted to introduce deep feature learn-
ing into traditional graphical models, e.g., CRF [26] and
random-walks [37] based on scribbles [26], and gener-
ated more confident pseudo labels for those unlabeled re-
gions to guide model update. Further, due to the diffi-
culty of boundary estimation, some methods [38] employed
auxiliary networks to aid segmentation refinement, or in-
troduced topology-constrained loss functions [34, 35] to
smooth prediction results. Although these methods endeav-
ored to utilize more robust features or external information
to improve segmentation performance, the crucial problems
about what/how to infer from known seeds to unknown re-
gions especially in the deep feature pattern space are still
under studied.

To address the above problems, we propose a progres-
sive segmentation inference (PSI) framework by adaptively
diffusing contextual patterns as well as label information for
scribble-supervised semantic segmentation. Inspired by the
observation [27] that the patterns from low-level visions to
high-level semantics are mutually dependent/correlated in
spatial domain or semantic domain, we attempt to lever-
age the pattern dependency to fulfill segmentation infer-
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ence. Concretely, the designed segmentation inference con-
sists of two components: multi-granular contextual pattern
propagation (CPP) and progressive semantic label diffusion
(SLD). In CPP, pattern correlations are mined from multi-
granular contextual domain, including across different con-
volutional layers as well as across different spatial posi-
tions. Afterwards, the pixel-level feature patterns to predict
pixel labels are enhanced through the information aggrega-
tion in the multi-granular contextual domain through graph-
ical model. Attributed to the introduction of graph structure,
the advantages of CPP are two folds. On the one hand, the
contextual information from different-granular layers could
be effectively integrated to better estimate pixel labels. On
the other hand, during training the backward gradients could
be propagated to former image pixels more quickly due to
shorted connections in graph, which also makes scarce su-
pervision of top layers more effectively imposed on bottom
layers. In SLD, motivated by [17, 42], we attempt to extend
the annotated scribbles to neighboring confident areas ac-
cording to the prediction scores of the segmentation model
with CPP. To make sure more confident inference, we in-
troduce an adaptive decision strategy to choose those high-
confidence regions as pseudo ground truths, which are fur-
ther used for the next model update process. Hereby the un-
known segmentation labels could be gradually refined with
continuous extensions of high-confidence regions. The two
components are modularized and further encapsulated into
a close-looping inference process to fulfill progressive seg-
mentation prediction. The extensive experiments show that
our proposed PSI method could mutually evolve segmen-
tation model as well as labels, and meantime achieve the
state-of-the-art results in the task of scribble-supervised se-
mantic segmentation.

In summary, our contributions are three folds:
• We propose a novel progressive segmentation infer-

ence framework through context inference as well as
annotation inference for scribble-supervised semantic
segmentation.

• We develop two crucial components, multi-granular
contextual pattern propagation and progressive seman-
tic label diffusion, to form a close-looping update
progress during pixel-label inference.

• We experimentally validate the effectiveness of the
proposed two components, and report the state-of-the-
art performance.

2. Related Works
Semantic Segmentation. In the early years, the seman-

tic segmentation methods mainly employed the graphical
models such as CRF [22]. The literature [11] integrated a
conditional graphical model and location priors to produce
semantic segmentation results. [21] introduced the dense-

CRF and made it computationally efficient through the per-
mutohedral lattice [1]. With the rapid development of deep
learning, many deep segmentation networks have been de-
veloped. FCN [28] first introduced the deep networks into
semantic segmentation and achieved a great performance
boost. SegNet [3] developed an encoder-decoder structure
with deconvolution as well as unpooling layers and dropped
the fully connected layer utilized in FCN [28]. After-
wards, the contextual information excavation aroused great
attentions and many methods were developed to utilize the
contextual information priors. DeepLab [5] employed the
atrous convolution to enlarge the receptive field of the con-
volution kernels to perceive a broader contextual region
and used CRF [21] to refine the segmentation predictions.
CENet [45] exploited an end-to-end trainable neural net-
work to learn context encoding vectors. DeepLabV3+ [6]
aggregated the ASPP module and encoder-decoder struc-
ture to further enlarge the receptive field. DANet [10] uti-
lized the self-attention [36] to aggregate the global contexts
both from the spatial and the channel dimension. OCR [43]
employed HRNet [39] as the backbone and utilized a coarse
segmentation result to obtain the object regional contexts to
further refine the segmentation result. A majority of the
semantic segmentation researches attempt to employ more
contextual information, so as ours. Different from the previ-
ous methods, our method developes an effective mechanism
for the aggregation of contexts both in spatial and semantic
domains through graphical model.

Scribble-Supervised Segmentation. In the early stage,
scribble-supervised segmentation was usually addressed in
an interactive manner [33, 12] where feedback scribbles
were continuously drawn for refining the segmentation re-
sults. Methods in this stage usually converted an image to
a weighted undirected graph. With the surge of deep learn-
ing, many researches have attempted to utilize deep neu-
ral networks to address the scribble-supervised segmenta-
tion. ScribbleSup [26] first introduced deep learning into
the scribble-supervised segmentation. A full annotation
map was first generated using the weakly annotated scrib-
bles and a CRF model [21]. Afterwards, the optimization
of the neural network and the CRF energy function were
alternately implemented to refine the segmentation results.
RAWKS [37] embedded a deep segmentation network and a
learnable label-propagator to progressively update the seg-
mentation network and the propagated dense annotations.
Our proposed PSI also jointly updates the segmentation net-
work and the annotation maps, but our annotations are grad-
ually expanded to the unlabeled regions according to a dy-
namically learned strategy. BPG [38] developed a percep-
tion refinement network to utilize more information from
the encoder especially from the larger resolution feature
maps. BPG also specifically designed an auxiliary network
to refine the edge details which was trained under extra

15355



Figure 1. Illustration of our proposed progressive segmentation inference method. (a) The overall framework. (b) A detailed example of our
proposed CPP module. (c) Detailed structure of our proposed SLD module. Our method mainly consists of two components: the contextual
pattern propagation (CPP) module and the semantic label diffusion (SLD) module. In CPP, multi-scale contextual patterns are propagated
through graphical model both in spatial and semantic domains to form the enhanced aggregation pattern. In SLD, a dynamic decision
network is designed to adaptively diffuse semantic labels to unlabeled regions according to distributions of the estimated confidence maps.
CPP and SLD are finally modularized into a close-looping to progressively update the segmentation network and the supervisions.

edge information. Our proposed PSI also attempts to cap-
ture more internal information like [47] but we aggregate
different-granular contextual patterns in spatial and seman-
tic domains, and we don’t resolve to either larger resolu-
tions nor other extra information. Other researches [34, 35]
focused on designing topology-constrained loss functions
to constrain the network learning with only scribble anno-
tations. In contrast, our proposed PSI mainly devotes to
design novel network structures to perform effective infer-
ence of the segmentation results as well as the annotations,
and we only use the simple cross entropy and L1 penalties
to train our networks.

3. Progressive Segmentation Inference

3.1. Overview

The framework of our proposed progressive segmenta-
tion inference is depicted in Fig. 1. Given a set of train-
ing samples with weakly-annotated scribbles, our aim is to
learn a more robust segmentation model. Due to the limited
label information of scribbles, there usually lacks sufficient
guidance to train an excellent segmentation model. To cir-
cumvent this problem, on the one hand, internal/self-priors
of images (such as contextual pattern correlations or topo-
logical structure information) need to be fully excavated for
learning. On the other hand, label information is supposed
to be inferred and diffused from the annotated scribbles to
unlabeled pixels, so as to furnish serviceable annotations as
much as possible. To this end, we encapsulate two crucial
cues, contextual pattern propagation (CPP) and semantic la-
bel diffusion (SLD), to enhance and refine pixel-level seg-
mentation results from weakly-annotated scribbles.

Given an input image I , we suppose the scribble annota-
tion region as R0, and the corresponding labels as yR0

aka
initial seeds. We attempt to infer confident supervision la-
bels from the initial region R0 to the whole image RI by
mining internal contextual cues from I . First we encode the
input image I with some popular convolutional neural net-
works (CNN) such as ResNet [15], and generate multi-scale
feature maps {X(i)}|Li=1, where the superscript (i) denotes
the layer index, X(i) denotes higher-level semantic feature
map with a bigger i. The segmentation region Rt (at the
initial t = 0) would be expanded with the progressive evo-
lution processes. In each stage, we leverage CPP to deeply
exploit the internal contextual pattern relevance of the in-
put image I based on graph topological structure, and ag-
gregate the contextual patterns in semantic and spatial do-
mains. Suppose the expected target size of the enhanced
feature map is equal to the scale of the k-layer’s feature
map and call it the k-th destination layer. The enhanced fea-
ture map can be derived as X̃(k) ← CPP(X(1),X(2), · · · ).
The details of CPP will be introduced in Section 3.2. Once
the enhanced contextual pattern X̃(k) obtained, we can pre-
dict a confidence map M through one regression function
(e.g. a convolutional network layer). The confidence map
M together with the previous seed yRt

are fed into the SLD
stage to infer the new seed region denoted as yRt+1

. To bet-
ter predict the new seeds, we specifically design a dynamic
strategy network to adaptively expand the supervision areas
according to the distribution of confidence scores in the es-
timated segmentation maps. More details about SLD could
be found in Section 3.3. Therefore, the new seed yRt+1

may be used as the supervision information to guide the
next training process and further continue to grow the seeds.
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CPP and SLD are finally modularized and further encapsu-
lated into a close-looping inference process to optimize the
segmentation network as well as segmentation labels.

3.2. Contextual Pattern Propagation

The goal of the CPP module is to further exploit inter-
nal contextual pattern relevance of the input image both in
semantic and spatial domains by modeling the topological
structure of patterns with graph, enhancing pattern repre-
sentations with image’s self-priors. In semantic domain, the
contextual patterns from low-level detailed feature layers to
high-level semantic feature layers are captured; In spatial
domain, the contextual patterns in the certain layer are ag-
gregated locally. Specifically, we model the CPP aggrega-
tion process by a graph G = (V,A,X ) defined on multi-
granularity feature layers, where V,A,X are the node set,
adjacency matrix and node attributes/features respectively.
For simplification, below we take a local subgraph around
one node to illustrate the CPP module.

Suppose we want to derive the pattern at one spatial po-
sition of the destination layer k, where this spatial position
corresponds to one node denoted as v

(k)
i ∈ V . Given the

destination node v
(k)
i , we can construct multi-granular ad-

jacent relations across different feature levels. The neighbor
node set w.r.t v(k)i is denoted as N (k)

i , which also contains
the self-node v

(k)
i . According to the neighbor node set, we

can construct the corresponding adjacency matrix A
(k)
i and

the attribute matrix X
(k)
i . The pattern aggregation can be

formulated as:
x̃
(k)
i = fagg(X

(k)
i ,A

(k)
i ,Θp), (1)

where x̃
(k)
i is the enhanced patterns w.r.t the destination

node, Θp is the model parameter to be learnt. Next, we in-
troduce the construction of the adjacency matrix A

(k)
i and

the aggregation function fagg.
To determine the neighbor nodes w.r.t the destination

node, we define an operator p(l)(·) as:

p(l)(i) =

⌊
i

2Sk−Sl
⌋, if Sk > Sl,

i · 2Sl−Sk , otherwise.
(2)

where the operator ⌊·⌋ means rounding down. Sk is the
scale of the destination layer X(k), Sl is the scale of
the aggregation layer X(l). For instance, given X(k) ∈
RCk×Hk×Wk and X(l) ∈ RCl×2Hk×2Wk , then the scale of
the destination layer k is considered as 1 and the scale of
the aggregation layer l is 2. We then define the adjacency
nodes set N (k)

i of v(k)i over all correlation layers:

N (k)
i ={Idx(l)(j) | |p(l)(i)−Idx(l)(j)| < ρ

(l)
i , l ∈ I}, (3)

where Idx(l)(j) denotes the specific position of an adja-
cency node v

(l)
j in the correlation layer X(l), ρ(l)i denotes

the radius of the contextual neighbor window in the l-th
layer, I is the set of all correlation layers indexes.

According to the neighbor node set N (k)
i , we can con-

struct the adjacency matrix A
(k)
i . To calculate the edge

weights between nodes, we introduce a relationship met-
ric ⟨·⟩ and it could be Euclidean, cosine distances or the
inner product. In this paper, we utilize the inner product as
our relationship metric, so the edge weight A(k)

i,j of the des-

tination node v
(k)
i and the adjacency node v

(l)
j is equal to

⟨x(k)
i ,x

(l)
j ⟩, then we can obtain the normalized edge weight

A
(k)
i,j ←

exp{A(k)
i,j }∑

m∈N(k)
i

exp{A(k)
i,m

}
. When k ̸= l, the contextual

patterns are aggregated in different-layer semantic domain,
low-level detaileds and high-level semantics are fused and
complementary from different-granularity; When k = l, the
contextual patterns are aggregated in spatial domain, and
spatial patterns in the same semantic layer are propagated
to enhance the node representations.

Going back to our aggregated pattern of the node v
(k)
i ,

we can now reformulate the Eqn. (1) as:

x̃
(k)
i = σ(

∑
l∈I

∑
vj∈N (k,l)

i

A
(k)
i,j · x

(l)
j ·W

(l) + b(l)), (4)

where N (k,l)
i ⊆ N (k)

i is the neighbor node set at the l-th
layer, the parameters {W(l),b(l)} are used to aggregate
contextual patterns of different-granularity feature maps
into a uniform semantic domain, and σ is one nonlinear ac-
tivation function.

Following DeepLabV3+ [6], we bilinearly upsample the
aggregation pattern x̃

(k)
i and the highest-level feature map

to the low-level feature map’s size and then concatenate
them with the corresponding low-level patterns, forming
an effective decoder module. It is clear that the advantage
of our proposed CPP module are two folds. On the one
hand, the multi-scale contextual patterns of various granu-
larity could be effectively aggregated in assistance of graph-
ical model to enhance pattern representations, promoting
the semantic labels inference. On the other hand, during
training the backward gradients could be propagated to for-
mer image pixels more quickly due to shorted connections
in graph, which also makes scarce supervision of top layers
more effectively imposed on bottom layers. Our experiment
results have shown that our proposed CPP module is able to
outperform a strong baseline and leads to satisfactory se-
mantic segmentation results.

3.3. Semantic Label Diffusion

After aggregating contextual patterns in spatial and se-
mantic domains, we can predict a confidence map M
through a segmentation network Fseg(I,Θ) with learnable
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parameters Θ = Θp∪Θs, where Θs is the parameter of seg-
mentation model. Although scribbles provide annotations
to some extent, the learned segmentation network’s perfor-
mance is still limited due to the scarcity of supervisions.
In effect, due to the intrinsic spatial consistency of natural
images, the weak supervisions can be expanded properly
according to the estimated confidence scores. To this end,
we propose a progressive semantic label diffusion process
through a differentiable dynamic decision network Fsld(·).
In the step t, diffused labels yRt+1

are obtained:

yRt+1
= Fsld(yRt

,Mt, θ) = ∪(yRt
,B(Mt, θ)), (5)

where yRt is the supervision map at the t-th step and when
t = 0 it represents for the original seeds. B(·) indicates a
binarization process with learnable parameters θ, ∪ repre-
sents the union operator. As is indicated, weak annotations
could be further enhanced through the union of the previ-
ous supervision yRt and the binarized confidence map Mt,
leading to the diffused label supervision yRt+1 which could
be further utilized for the next optimization step of the seg-
mentation network.

For a conventional method, the expansion principle is
usually heuristic which manually sets a hard threshold γ to
perform the binarization process B(·). However, the man-
ual threshold setting requires many validation trials and the
hard binarization is not differentiable. Even worse, the hard
binarization ignores the intrinsic characteristics of the im-
ages. In effect, the binarization process should be adap-
tively determined according to the property of the estimated
confidence map M . To this end, we design a strategy net-
work to dynamically generate a soft binarization map based
on the distribution of confidence scores. Supposing at the
t-th step, for each semantic class c, the supervision region
is expanded based on the current supervision region as Ωc,r

with a growing window of radius r, the mean µc and vari-
ance σ2

r of the confidence distribution are first computed by:

µc =
1

|Ωc,r|
∑

i∈Ωc,r

M(c, i), (6)

σ2
c =

1

|Ωc,r|
∑

i∈Ωc,r

(M(c, i)− µc)
2, (7)

where M(c, i) means the confidence score of the class c
at the position i. The computed mean µc and variance σ2

c

are utilized to generate a dynamic threshold γc. Note that
the growing window radius r increases as the step t. For
the presentation convenience, we drop the subscript c in the
following contents. We then design a small network with
learnable parameter θ to adaptively learn a dynamic thresh-
old γ(θ) by inputing the computed µ and σ:

γ(θ) = µ+ g(µ, σ2|θ) · σ, (8)

where the operator g means the forward process of the net-
work θ.

The hard binarization is still an obstacle to keep the net-
work θ from learnable. We then introduce a soft binariza-
tion technique and achieve a differentiable adaptive deci-
sion strategy:

B(Mt, θ) =
1

1 + exp{−k ·max(Mt − γ(θ), 0)}
, (9)

where k is a factor which we set to be 20. Another issue
comes from the union operator ∪ in the Eqn. 5 and here we
employ a max operator to make it differentiable.

With one step semantic label diffusion, the updated su-
pervisions could provide more accurate and adequate guid-
ance for the learning of the segmentation network, then the
confidence maps predicted in the next iteration will be pro-
moted which will further result in a new round semantic
label diffusion. Therefore, the proposed segmentation net-
work with CPP and label diffusion network with SLD could
be encapsulated into a close-looping to mutually evolve the
segmentation network parameters and the supervisions. Our
experimental results have shown that our proposed seman-
tic label diffusion module can progressively update the su-
pervision maps and lead to better segmentation results, be-
sides, it’s compatible with the proposed CPP module and
the combination of the two modules could further lead to
more promoted results.

4. Optimization Objective
We design two different objective functions Lseg, Lsld for

optimizations of the segmentation network Fseg with Θ and
the label diffusion network Fsld with θ, respectively. The
pixel-wise cross entropy is mainly employed as one part of
the loss functions. The cross entropy is imposed over the
labeled regionsR, formally:

Lce(p, y) = −
1

|R|
∑
i∈R

C∑
c=1

yi,c log pi,c, (10)

where yi,c denotes the ground-truth in position i for each
semantic category c, pi,c donates the predicted semantic
scores in position i for the class c and C is the total number
of the semantic categories.

For the segmentation network optimization, the update
of the parameters Θ may suffer from the sparsity of the
scribble annotations especially at the early stages. To mit-
igate the above issue, we further introduce a smoothness
penalty to constrain the network learning. For each loca-
tion, we adopt the mean L1 distance between the prediction
and its 8-neighbors. Define the smooth penalty term aver-
aged over all positions as Lp, our segmentation loss func-
tion Lseg at t-th step is defined:

Lseg = Lce(Mt, yRt
) + λ1Lp(yseg), (11)
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where Mt is the normalized semantic scores predicted by
the segmentation network, yRt is the ground-truth given at
t-th step, yseg = argmax(Mt) is the predicted label map,
and λ1 is a balance factor.

For the label diffusion network optimization, the update
of the parameters θ of SLD are constrained by two terms:

Lsld = Lce(yBt
, yR0

) + λ2Lce(yseg, yBt
), (12)

where yBt = B(Mt, θ) is the soft label map predicted by
SLD, yR0 is the initial scribble labels and λ2 = 1 is a bal-
ance factor.

We present an alternating solution to optimize the seg-
mentation network with CPP and the label diffusion net-
work with SLD. At t-th optimization step, we first fix θ and
solve for Θ. Through the segmentation network, we can ob-
tain a confidence score map Mt and a coarse segmentation
mask yseg, then Θ is updated by Lseg with the given ground-
truth yRt . Next, we fix Θ and solve for θ. With the output
from the segmentation network, the soft binarization map
yB can be estimated by SLD, then Lsld is used to update
the label diffusion network. Eventually, the two networks
are modularized to form a close-looping update process,
achieving sufficient pattern excavation and label inference.

5. Experiment

5.1. Experimental setup

The proposed method is evaluated on the PASCAL VOC
2012 Semantic segmentation dataset [8] and the PASCAL
Context dataset [29]. The PASCAL VOC 2012 dataset con-
tains in total 20 foreground classes and one background
class. We train our network on the extended training set
following [13] which includes 10582 training images and
evaluate the performance on the validation set which con-
tains 1449 fully annotated images. Additionally, we con-
duct experiments on the PASCAL Context dataset (4998
training images, as well as 5105 validation images with 59
classes and one background class) to verify the performance
of our approach. All scribble supervisions during training
are from [26]. We adopt the mean Intersection-over-Union
(mIoU) score as our evaluation metric. All experiments are
implemented in the Pytorch Framework [31]. Unless oth-
erwise specified, all ablation studies are conducted on the
PASCAL VOC 2012 dataset [8].

5.2. Implementation details

We adopt the ResNet101-based DeepLabV3+[6] as
the backbone and the output stride is 16. We re-train
deeplabV3+ with scribble supervisions and take it as our
baseline. We take the output feature maps generated by the
Conv2 - Conv5 Blocks as the aggregation maps and we set

Method Supervision Backbone mIoU

SEC [20] I VGG16 50.7
AugFeed [32] I VGG16 54.3

STC [40] I VGG16 49.8
AffinityNet [2] I ResNet38 58.4

GAIN [24] I VGG16 55.3
MDC [41] I VGG16 60.4

SeeNet [16] I VGG16 61.1
FickleNet [23] I ResNet101 61.2

SSNet [44] I VGG16 57.1
OAA [18] I VGG16 63.1
ICD [9] I VGG16 64.0

BoxSup [7] B VGG16 62.0
WSSL [30] B VGG16 60.6

SDI [19] B VGG16 65.7

ScribbleSup* [26] S VGG16 63.1
RAWKS [37] S ResNet101 59.5

NormalCut [34] S ResNet101 72.8
KernelCut [35] S ResNet101 73.0

BPG [38] S ResNet101 73.2

PSI(ours) S ResNet101 74.9

Table 1. Comparison with state-of-the-art methods on the PAS-
CAL VOC 2012 validation set. ‘I’ means the image level tags, ‘B’
means boxes and ‘S’ means scribbles. The symbol ‘*’ means the
segmentation predictions are post-processed by the CRF.

X(4) as the destination scale map. Each feature map is pro-
cessed by a 1 × 1 convolution before CPP to uniform the
semantic domain. The contextual neighbor radiuses ρl in
the Eqn. 3 are separately 1,1,1,4 from X(1) to X(4). We
adopt SGD optimizer with momentum = 0.9, and employ
the “poly” learning rate schedule policy with initial learn-
ing rate = 0.001, weight decay = 0.001. New convolution
layers are initialized by the kaiming normalization [14]. On
the PASCAL VOC 2012 dataset, we set the balance factor
λ1 in the Eqn. 11 to 100 while on the PASCAL Context
dataset, this value is set to 1 since there are more semantic
labels where a large balance factor will lead to over-smooth,
impacting the segmentation performance. The training im-
ages are augmented by random scaling ([0.5, 2.0]), random
flipping (p = 0.5), random rotating ([−10, 10]), and are
randomly cropped into size 512 × 512. We run 200 train-
ing epochs on a single NVIDIA TitanX 1080ti GPU. When
producing the segmentation results on the validation set, we
utilize the multi-scale and flipping techniques. Note that we
do not employ CRF [21] post-processing in all experiments.

5.3. Comparison with state-of-the-art methods

PASCAL VOC 2012. We compare the segmentation
performance of our proposed PSI with other state-of-the-art
methods on the PASCAL VOC 2012 dataset [8]. The de-
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Figure 2. Evolved supervisions progressively expanded by SLD with different iteration times.

tailed results are reported in the Table 1. As can be seen,
our proposed PSI achieves the best segmentation perfor-
mance over all compared state-of-the-art weakly supervised
segmentation methods. Our method, as well as most scrib-
ble supervised methods, performs better than the image-tag
and box supervised methods due to the superiority of scrib-
ble supervision. As to other scribble supervised methods
which employ the same backbone structure, our method
is able to reach an improvement of 2.1%, 1.9% and 1.7%
over NormalCut [34], KernelCut [35] and BPG [38] with-
out CRF [21] post-processing. Note that NormalCut [34]
and KernelCut [35] specifically designed losses which re-
quire specific computation of the bilateral filtering while our
method only uses the simple cross entropy and L1 losses.
BPG [38] introduced auxiliary edge information while our
method only uses the initial scribbles. Despite the concision
of our framework, we also achieve the best result, demon-
strating the effectiveness of our proposed PSI framework.

Method Supervision mIoU(%)

ScribbleSup* [26] Scribble 36.1
RAWKS [37] Scribble 36.0
BoxSup [7] Semi 40.5
PSPNet [46] Full 47.8
DANet [10] Full 52.6
OCR [43] Full 56.2

DeepLabv3+ Scribble 37.1
PSI(ours) Scribble 43.1

Table 2. Comparison with state-of-the-art methods on the PAS-
CAL Context dataset following a pure weakly supervised setting.

PASCAL Context. We further conduct experiments on
the PASCAL Context dataset [29] to verify the generaliza-
tion capability of our proposed method. The comparison
results are reported in the Table 2. ScribbleSup [26] and
RAWKS [37] have publicly reported their results follow-
ing the pure weakly supervised setting. The results reported

by BoxSup [7] employed the fully annotated masks in the
PASCAL Context dataset as well as weakly labeled boxes
in the PASCAL VOC 2007 dataset [8]. To fairly compare
our result, we also design a baseline method which sim-
ply utilizes DeepLabV3+ [6]. As can be seen from Table
2, our proposed PSI boosts the baseline result by 6.0% to
43.1% which outperforms all weakly and semi-supervised
methods. Considering the difficulty of the PASCAL Con-
text dataset [29], the obviously non-trivial improvement il-
lustrates the robustness of our proposed PSI framework. It
could also be observed that PSI could greatly narrow the
performance gaps between the weakly supervised methods
and the fully supervised methods. All the above analyses
further verify the effectiveness of our proposed progressive
segmentation inference framework.

5.4. Ablation studies

Effectiveness of different components. We conduct ab-
lation studies to verify the effectiveness of our proposed
CPP and SLD module. The detailed results are reported
in the Table 3 and the Table 4. All the experiments are con-
ducted under the single-scale testing setting. we take re-
trained DeepLabV3+ [6] as our baseline and it can achieve
a segmentation accuracy of 66.6%. Only adding the CPP
module could lead to a performance of 70.1%, obtaining
a significant improvement of 3.5% which clearly demon-
strates the effectiveness of CPP. Besides, we adopt other
pattern aggregation modules including UP which fuses pat-
terns with the bilinear unsampling and convlutional lay-
ers as well as SF [25] which aligns patterns with Seman-
tic Flow. Our CPP module improves by 2.3%, 1.6% in
comparison to UP and SF (74.9% vs 72.6%, 73.3%). It
further indicates the effectiveness of the multi-granular pat-
tern aggregation in our CPP. If only the SLD module is im-
plemented, the result reaches 69.4% and the improvement
is 2.8%. It is obviously a non-trivial boost, indicating the
power of our proposed progressive semantic label inference
process. Appending the SLD module to the CPP module
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obtains a further performance promotion of 2.6%, showing
that our proposed CPP and SLD module are compatible and
could cooperate with each other to lead to a satisfactory per-
formance. Further applying a multi-scale testing boosts the
performance to 74.9%, setting a new state-ot-the-art.

CPP ✓ ✓ ✓
SLD ✓ ✓ ✓

Multi-scale ✓

mIoU(%) 66.6 70.1 69.4 72.9 74.9

Table 3. Comparisons of our method using different components
on the PASCAL VOC 2012 validation set.

aggregation module UP SF CPP

mIoU(%) 72.6 73.3 74.9

Table 4. Performance comparisons with different pattern aggrega-
tion modules on the PASCAL VOC 2012 validation set.

Destination Layer. In CPP, one key issue is to choose
which layer to serve the destination layer. We choose
four layers (Conv2-Conv5 from the encoder) as the can-
didate destination layer and denote them separately as
X(4),X(3),X(2),X(1). The detailed results are reported
in the Table 5. It can be seen that with the semantic level
of the destination layer increasing, the segmentation perfor-
mance keeps going up. It means that high-level semantic
information devotes more for the learning of segmentation
model, and with the supplements of low-level visions in-
formation, the feature representations are more robust. It
also indicates that the high-level semantics of the destina-
tion layer matters more for the CPP module. The X(1) vari-
ant integrates the multi-scale contextual patterns to the 8×
resolution layer while the baseline DeepLabV3+ uses a 4×
layer to aggregate the information. The consistent perfor-
mance improvement from X(1) to X(4) demonstrates that
our proposed CPP module is able to deal with the potential
appearance noise and consistently aggregate the informa-
tion at various semantic levels, making up the shortages of
contextual patterns scarcity.

k 1 2 3 4

mIoU(%) 65.33 65.58 68.84 70.09

Table 5. Performance comparisons of our method using different
destination layers on the PASCAL VOC 2012 validation set.

The number of SLD steps. In SLD, one key variant to
determine is the update step number t. To decide a proper
t, we here conduct a series of experiments where the step
number t increases from 1 to 6, as shown in the Table 6. The

segmentation accuracy raises with the SLD step increasing
in the beginning when t ranges from 1 to 3. It means that
our method is able to absorb more useful label information
for the network training to circumvent the scarcity of origi-
nal supervisions, verifying the effectiveness of the proposed
SLD module. Afterwards, the segmentation performance
saturates at t = 3, 4 and slightly drops when t = 5, 6. Since
a too large step t expands supervisions to a broad unlabeled
region, the imperfection of the depended segmentation pre-
dictions will introduce unexpectable noises, affecting the
performance. We have also displayed the evolved super-
visions progressively generated by SLD in the Fig. 2. As it
shows, with the step t increasing, the expand regions grow
and become more dependent on the confidence map of the
segmentation predictions. Based on the above results, we
adopt the middle step t = 3 to be a proper SLD step.

iter time 1 2 3 4 5 6

mIoU(%) 72.50 72.85 72.88 72.88 72.75 72.74

Table 6. Comparisons of our method using different iteration time
on the PASCAL VOC 2012 validation set.

6. Conclusion
To address scribble-supervised semantic segmentation, a

progressive segmentation inference (PSI) framework is pro-
posed. In PSI, we specifically develop two crucial modules,
contextual pattern propagation (CPP) and semantic label
diffusion (SLD) to enhance and refine pixel-level segmen-
tation results from partially known seeds. CPP effectively
integrates the patterns of multiple granularities as well as
different locations through graphical model, to aid the in-
ference of the segmentation results. In addition, SLD is de-
veloped to progressively expand the supervisions through a
dynamically learned decision strategy. CPP and SLD are fi-
nally modularized into a close-looping between the segmen-
tation network update and supervision refinement. Exten-
sive experiments have proved the effectiveness of our pro-
posed CPP and SLD modules. Meantime, our proposed PSI
achieves the state-of-the-art performances on the challeng-
ing PASCAL VOC 2012 and PASCAL Context datasets.
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[21] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In Ad-
vances in neural information processing systems, pages 109–
117, 2011. 2, 6, 7

[22] John Lafferty, Andrew McCallum, and Fernando CN Pereira.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. 2001. 2

[23] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and
Sungroh Yoon. Ficklenet: Weakly and semi-supervised se-
mantic image segmentation using stochastic inference. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5267–5276, 2019. 6

[24] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and
Yun Fu. Tell me where to look: Guided attention inference
network. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9215–9223,
2018. 1, 6

[25] Xiangtai Li, Ansheng You, Zhen Zhu, Houlong Zhao, Maoke
Yang, Kuiyuan Yang, Shaohua Tan, and Yunhai Tong. Se-
mantic flow for fast and accurate scene parsing. In European
Conference on Computer Vision, pages 775–793. Springer,
2020. 7

[26] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
Scribblesup: Scribble-supervised convolutional networks for

15362



semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3159–3167, 2016. 1, 2, 6, 7

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 1

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 1, 2

[29] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and
semantic segmentation in the wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 891–898, 2014. 6, 7

[30] George Papandreou, Liang-Chieh Chen, Kevin P Murphy,
and Alan L Yuille. Weakly-and semi-supervised learning of
a deep convolutional network for semantic image segmenta-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 1742–1750, 2015. 1, 6

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in neural information processing systems, pages
8026–8037, 2019. 6

[32] Xiaojuan Qi, Zhengzhe Liu, Jianping Shi, Hengshuang
Zhao, and Jiaya Jia. Augmented feedback in semantic seg-
mentation under image level supervision. In European con-
ference on computer vision, pages 90–105. Springer, 2016.
6

[33] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
” grabcut” interactive foreground extraction using iter-
ated graph cuts. ACM transactions on graphics (TOG),
23(3):309–314, 2004. 1, 2

[34] Meng Tang, Abdelaziz Djelouah, Federico Perazzi, Yuri
Boykov, and Christopher Schroers. Normalized cut loss for
weakly-supervised cnn segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1818–1827, 2018. 1, 3, 6, 7

[35] Meng Tang, Federico Perazzi, Abdelaziz Djelouah, Ismail
Ben Ayed, Christopher Schroers, and Yuri Boykov. On reg-
ularized losses for weakly-supervised cnn segmentation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 507–522, 2018. 1, 3, 6, 7

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2

[37] Paul Vernaza and Manmohan Chandraker. Learning random-
walk label propagation for weakly-supervised semantic seg-
mentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7158–7166,
2017. 1, 2, 6, 7

[38] Bin Wang, Guojun Qi, Sheng Tang, Tianzhu Zhang, Yunchao
Wei, Linghui Li, and Yongdong Zhang. Boundary perception
guidance: A scribble-supervised semantic segmentation ap-
proach. In IJCAI, pages 3663–3669, 2019. 1, 2, 6, 7

[39] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE transactions on
pattern analysis and machine intelligence, 2020. 2

[40] Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen,
Ming-Ming Cheng, Jiashi Feng, Yao Zhao, and Shuicheng
Yan. Stc: A simple to complex framework for weakly-
supervised semantic segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(11):2314–
2320, 2016. 6

[41] Yunchao Wei, Huaxin Xiao, Honghui Shi, Zequn Jie, Jiashi
Feng, and Thomas S Huang. Revisiting dilated convolution:
A simple approach for weakly-and semi-supervised seman-
tic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7268–
7277, 2018. 1, 6

[42] Chunyan Xu, Li Wei, Zhen Cui, Tong Zhang, and Jian Yang.
Meta-vos: Learning to adapt online target-specific segmen-
tation. IEEE Transactions on Image Processing, 30:4760–
4772, 2021. 2

[43] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
Proceedings of the European conference on computer vision
(ECCV), 2020. 1, 2, 7

[44] Yu Zeng, Yunzhi Zhuge, Huchuan Lu, and Lihe Zhang. Joint
learning of saliency detection and weakly supervised seman-
tic segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 7223–7233, 2019. 6

[45] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7151–7160, 2018. 2

[46] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 7

[47] Ling Zhou, Zhen Cui, Chunyan Xu, Zhenyu Zhang, Chaoqun
Wang, Tong Zhang, and Jian Yang. Pattern-structure diffu-
sion for multi-task learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4514–4523, 2020. 3

15363


