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Abstract

Pose-guided virtual try-on task aims to modify the fash-
ion item based on pose transfer task. These two tasks
that belong to person image synthesis have strong corre-
lations and similarities. However, existing methods treat
them as two individual tasks and do not explore correla-
tions between them. Moreover, these two tasks are chal-
lenging due to large misalignment and occlusions, thus
most of these methods are prone to generate unclear hu-
man body structure and blurry fine-grained textures. In this
paper, we devise a structure-transformed texture-enhanced
network to generate high-quality person images and con-
struct the relationships between two tasks. It consists of
two modules: structure-transformed renderer and texture-
enhanced stylizer. The structure-transformed renderer is
introduced to transform the source person structure to the
target one, while the texture-enhanced stylizer is served to
enhance detailed textures and controllably inject the fash-
ion style founded on the structural transformation. With the
two modules, our model can generate photorealistic per-
son images in diverse poses and even with various fash-
ion styles. Extensive experiments demonstrate that our ap-
proach achieves state-of-the-art results on two tasks.

1. Introduction
Person image synthesis has drawn a great deal of at-

tention, due to various applications in the movie indus-
try, e-commerce, person re-identification, etc. There are
two critical tasks in person image synthesis: pose trans-
fer [17, 22, 15, 40, 20, 23] and pose-guided virtual try-on
[39, 5, 11, 27]. As shown in Figure 1, pose transfer task
aims to transfer person images from one pose to other poses,
and pose-guided virtual try-on task is to modify the cloth-
ing item based on pose transference. These two tasks have
strong correlations and similarities, yet existing methods
do not explore their correlations. Especially most methods
of pose-guided virtual try-on [39, 11, 27] only implicitly
model the pose transformation via learning the concatena-
tion of the target pose or human parsing map and the source
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Figure 1: The correlations between two tasks. Pose transfer
corresponds to a person’s structural transformation between
the source and the target images, while pose-guided virtual
try-on aims to modify the fashion styles based on this trans-
formation.

image. This implicit transformation is likely to result in
blurry and implausible issues when dealing with large mis-
alignment among different poses, which affects the quality
of generated results.

The key to obtaining high-quality results for these two
tasks is to generate sharp human body structure and fine-
grained textures (e.g., patterns of clothes and hairs). For the
structure generation, the target human body structure can be
obtained via a transformation from the source one, such as
from the back to the front structure in the Figure 1. Trans-
formation simulation is the primary concern of pose transfer
task. Previous methods exploit flow-based warping, obtain-
ing this transformation with promising results [8, 15, 20].
However, due to the challenge of accurate flow computa-
tion and precise warping operation, it may cause artifacts
around the structure [28, 24]. In addition to structure gener-
ation, most existing methods adopt perceptual-related con-
straints (e.g., perceptual loss [14] and adversarial loss [7]) to
guide the texture generation and ameliorate the visual qual-
ity of the results. However, these losses tend to optimize
high-level perception, which does not only focus on textures
but also includes other components such as style informa-
tion. Therefore, the texture generation cannot be supervised
effectively in the optimization process. For example, fine-
grained region reconstruction can be further improved [30].
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To address the above issues, in this paper, we propose a
structure-transformed texture-enhanced network for person
image synthesis. The proposed model comprises two key
components: structure-transformed renderer and texture-
enhanced stylizer. First, structure-transformed renderer
aims at deforming the structure, explicitly solving the con-
cern of pose alignments for pose transfer and pose-guided
virtual try-on tasks. Here, we present a cross-modality
deformable convolution to deal with this transformation,
which avoids artifacts caused by the flow-based warping
and fuses multi-modality information to better capture the
structural motions. Then, texture-enhanced stylizer is de-
signed to further enhance texture details due to the failure of
retaining fine-grained regions. Specifically, the pose-guided
high-frequency attention is introduced to enhance the high-
frequency components with spatial contextual information.
We establish a multi-modality long-range dependency to
deal well with the invisible regions in the source image.
Besides, this component enables users to manipulate fash-
ionable garments controllably, modifying fashion styles for
pose-guided virtual try-on task. Benefit from the two novel
components, our model combines pose transfer task with
pose-guided virtual try-on task, which can model the trans-
formation between the source and the target poses explicitly
and generate high-quality person images in diverse poses
and even with various fashion styles.

The proposed approach exhibits superior performance
over existing methods on the DeepFashion [16] and the
FashionTryOn dataset [39]. Furthermore, we perform abla-
tion experiments to validate the contribution of key compo-
nents in our approach. The main contributions of our paper
are summarized as:

• We propose a structure-transformed texture-enhanced
network to handle pose-guided virtual try-on task with
pose transfer task jointly. Experimental results show
the superiority of our model on generating highly pho-
torealistic and fashion-diversified results for person
image synthesis.

• We design the structure-transformed renderer based on
cross-modality deformable convolutions to process the
person’s structural transformation, which fuses multi-
modality information to capture the structural motions.

• The texture-enhanced stylizer is proposed to enhance
detailed textures and enable users to manipulate the
fashion style, avoiding blurry textures and generating
various fashion styles.

2. Related Works
2.1. Person Image Synthesis

Pose Transfer. Ma et al. [17] first define this task and
devise a two-stage GAN to produce a coarse result and

then refine it. Siarohin et al. [22] further improve the re-
sults via aligning local features with structure information.
They introduce deformable skip connections to decompose
the overall deformation by a set of local affine transforma-
tions. Zhu et al. [40] improve the transformation strategy by
proposing a pose-attentional transfer block to transform the
condition image to the target pose progressively. However,
appearance information may be lost in multiple transfer pro-
cesses. Han et al. [8] first exploit the optical flow to warp
the clothing item to the target structure at the pixel level,
and then generate the complete person image. Ren et al.
[20] further introduce an unsupervised flow estimator at the
feature level. However, the high-quality estimation of opti-
cal flow is hard to be obtained, and the flow-based warping
is prone to produce artifacts. Therefore, our model uses de-
formable convolutions instead of the flow-based warping to
transform source features.

Pose-guided Virtual Try-on. The single pose virtual
try-on has been studied a lot [9, 26, 36, 35]. Since on-
line customers have the desire to obtain multi-views of
themselves wearing the desired clothing, Zheng et al. [39]
present pose-guided virtual try-on task. They devise a pose-
guided virtual try-on model that captures the deformation
of the desired clothing and then produces the person image
with the deformed clothing and target poses. Dong et al. [5]
devise a coarse-to-fine model with the human parsing map.
Wang et al. [27] design a Tree-Block to capture details of
the image based on the multi-stage network. All the above
approaches simply learn the concatenation of target struc-
tural information (e.g., pose, parsing map) and the clothing
as the structural transformation. Different from these meth-
ods, our model contains the structure-transformed renderer
that processes the structural transformation specifically.

2.2. Deformable Convolution

Dai et al. [4] first present the deformable convolution,
which generates kernel offsets from input features to learn
information away from its regular local receptive field. De-
formable convolutions have been widely used in several de-
tection and recognition tasks, such as object detection [1]
and action recognition [32, 18]. Recently, it is also used in
other vision tasks. Yuan et al. [37] employ it with optical
flow for dynamic scene deblurring. Wang et al. [28] and
Tian et al. [24] adopt it to align the original and reference
frames for video super-resolution. Inspired by these meth-
ods, we first apply it to address the task of person image
synthesis.

2.3. Attention Mechanism

Attention mechanism has been applied to address many
tasks, such as object detection [12] and semantic segmen-
tation [33, 3]. Self attention [25] is a subset of the atten-
tion mechanism in the neural language process. Wang et al.
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Figure 2: Overview of the proposed model. The offset estimator module generates the cross-modality offsets while the
deformable alignment module applies these offsets to the deformable convolution and transforms the source image features.
Then, the texture-enhanced stylizer, which consists of the PHF attention and the controllable fashion style injection, enhances
textures and modifies the fashion style flexibly. Eventually, we obtain the synthesized person image and a corresponding
edge map. With the fashion style injection, the final person image is synthesized with the desired clothing, while keeping the
original clothing without this injection.

[29] extend it to a non-local attention module for computer
vision, encoding the long-range dependencies. There are
several methods based on the non-local module in various
tasks [13, 34]. In contrast to the general non-local module,
our texture-enhanced stylizer contains a pose-guided high-
frequency attention module that fuses multi-modality infor-
mation and enhances high-frequency visual appearances.

3. Our Approach

Given a source image S, the source pose Ps and the tar-
get pose Pt, our model aims to transfer the source image S
to the target pose Pt for pose transfer task. The pose rep-
resentation includes 18 human keypoints extracted by [2].
If injecting the fashion style C, our model can synthesize a
new person image T̂ with the target pose and the injected
fashion item, achieving pose-guided virtual try-on task.

Our network architecture is shown in Figure 2, the
structure-transformed renderer is based on the cross-
modality deformable convolution to deal with the structural
transformation. After the structure-transformed renderer,
the transformed features are fed into the texture-enhanced
stylizer. Our model comprises three stylizer blocks, each of
which contains a pose-guided high-frequency (PHF) atten-
tion module and a fashion style injection module. The PHF
attention module is designed to avoid blurry fine-grained
textures and preserve the contextual relationship simultane-
ously. Then, users can control injecting the fashion style. It
indicates that the green line in Figure 2 is optional. In the
following, we will give a detailed description of each part
of our model.

3.1. Structure-transformed Renderer

Structure-transformed renderer consists of two submod-
ules: the offset estimator module and the deformable align-
ment module. The offset estimator is responsible for learn-
ing the structural motions between the source pose and the
target pose. Here, we define these motions as the coordi-
nate offsets Θ and learn them from the source image S, the
source pose Ps, and the target pose Pt. Let fφ represent the
network with learning parameters φ. The estimating process
can be defined as:

Θ = fφ (S,Ps,Pt) (1)

Let pn mean each location in the sampling grid R of
the conventional convolution. Θ can be expressed as:
{4pn| n = 1, 2, . . . , |R |}. It fuses multi-modality infor-
mation (pose and image), which can effectively capture the
deformation between the source and the target poses.

With the cross-modality offsets Θ, the deformable align-
ment module adopts deformable convolutions to learn the
transformed features FSa from the source image S, align-
ing the source image with the target pose at the feature level.
Specifically, we obtain the source image features FS from
S via an encoder architecture and then we utilize the de-
formable convolution to learn FSa from FS. Let fdc refer
to the deformable convolution. For each position p0 on the
transformed features FSa , we have:

FSa (p0) = fdc (FS,Θ)

=
∑
pn∈R

w (pn) · FS (p0 + pn + Θ) (2)
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Figure 3: The framework of the proposed PHF attention
module, which takes the target pose features FPt and
the transformed features FSa as inputs and learns high-
frequency-aware contextual dependencies.

where w means the convolution kernel weight and pn + Θ
refers to the augmented receptive field of convolutional op-
eration. Distinguished from general deformable convolu-
tions that produce kernel offsets from the original features
to expand the receptive field, we utilize Θ to learn the struc-
tural deformation away from the regular local kernel neigh-
borhood.

3.2. Texture-enhanced Stylizer

Pose-guided High-frequency (PHF) Attention. The
PHF attention is designed to encode high-frequency-aware
contextual dependencies under the guidance of the target
pose, where high-frequency components correspond to tex-
tural information. Here, we explore the spatial contex-
tual information to reduce suffering from occlusions in the
source image and generate realistic textures. The frame-
work of this module is shown in Figure 3. To simplify the
notation, we use the first PHF attention block as an example
to describe this module in this section.

The attention process is divided into two branches. We
first calculate an affinity matrix Ap,s to keep the attention
process under the guidance of the target pose. In the no-
tation that follows, we use FPt to denote the target pose
features extracted from the target pose via an encoder ar-
chitecture. FSa equals the transformed features generated
by the structure-transformed renderer (in the other two at-
tention modules, it represents the feature generated by the
previous stylizer block). In addition, C,H and W are the
number of channels, height, and width of features, respec-
tively. Ap,s ∈ RHW×HW is defined as:

Ap,s(i, j) =
exp

(
g
(
FPt

i
)T ⊗ h (FSa

j
))

∑
j exp

(
g
(
FPt

i
)T ⊗ h (FSa

j
)) (3)

where (i,j) means the coordinate location, g(·), h(·) refer
to 1×1 convolution and the reshaping operation, ⊗ means
matrix multiplication. Both the pose and the appearance
information are considered for the affinity matrix.

In the other branch, in order to enhance high-frequency
details, we design a high-frequency-aware mask Mc:

Mc = σ (fc1 (FSa)− fc2 (FSa)) ∈ RC×H×W (4)

where fc1 and fc2 denote the dilated convolution with 1×1
kernel and Gaussian blurring with 5×5 kernel respectively,
σ refers to the Sigmoid function. Gaussian blurring fc2 can
be regarded as filtering high-frequency components of an
image. The results of fc2 are subtracted from the outcomes
of fc1 , which indicates preserving high-frequency details
and reducing the effect of low-frequency ones in all compo-
nents. After the Sigmoid function, the attention mask Mc

applies more weights to high-frequency components. Then,
the high-frequency-enhanced transformed features FSh

is
defined as:

FSh
= Mc � FSa ∈ RC×H×W (5)

where � means the element-wise multiplication.
Eventually, we obtain the high-frequency-enhanced non-

local features FSe as the output of the attention module:

FSe = f

((
Ap,s ⊗ k (FSh

)
T
)T)

⊕ FSh
∈ RC×H×W

(6)
where f(·) and k(·) refer to 1×1 convolution and the re-
shaping operation, ⊕ represents the element-wise addition.
Here, Ap,s⊗ k (FSh

)
T establishes a high-frequency-aware

non-local context under the guidance of pose information,
and then FSe is computed in a residual manner to optimize
the attention process.

Controllable Style Injection. After the PHF attention,
the fashion style (e.g., the clothing image) is injected flex-
ibly to modify fashion textures. First, we employ the TPS
transformation as [26, 39] to match the clothing with the
target pose geometrically and then learn the fashion style
features from the warped clothing with an encoder. Finally,
we fuse the fashion style features with the features outputted
from the PHF attention module via concatenation and 1×1
convolution. With the controllable style injection, users can
control whether modifying the fashion style when generat-
ing target person images.

After three stylizer blocks and upsampling layers, the
model outputs a result of 4 channels. We obtain the synthe-
sized image T̂ by splitting the 4 channels image into 3 chan-
nels RGB synthesized image and 1 channel synthesized
edge map T̂e. The synthesized edge map is a grayscale
image and illustrates the structure of the synthesized image.
We utilize it to further constrain the structure generation.
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3.3. Loss Functions

Structure loss. In order to generate body structure cor-
rectly, we introduce the structure loss based on the mean-
square error. Here, we extract the edge map from the target
image as our ground truth:

Lstructure =
∥∥∥T̂e −Te

∥∥∥2
2

(7)

where T̂e and Te refer to the synthesized edge map and the
ground truth edge map, respectively. This loss term is intro-
duced to guide the edge generation and yields an accurate
structure partition.

Following previous methods [40, 15, 20], we utilize
other loss functions as below:

Adversarial loss. We apply the generative adversarial
framework to mimic the distribution of the target images.
The discriminator D is used to distinguish the synthesized
images generated by the generator G from real images.
Therefore, the adversarial loss Ladv is defined as:

Ladv = E[logD(T)]

+ E[log(1−D(G(S,Ps,Pt, (C))]
(8)

Reconstruction loss. To constrain the synthesized im-
age similar to the target image in the pixel level, we define
the L1 loss as:

Lrec =
∥∥∥T̂−T

∥∥∥
1

(9)

Feature similarity loss. We use the cosine similarity
and the Euclidean distance to enforce the transformed fea-
tures FSa be close to the feature maps of the ground truth
target image FT:

Lfea = λ1 exp (−µ (FSa ,FT)) + λ2ρ (FSa ,FT) (10)

where µ means the cosine similarity and ρ means the Eu-
clidean distance, λ1 and λ2 mean their weights in this loss,
respectively.

Perceptual and Style loss. Except for pixel-level con-
straints, we utilize the perceptual loss and the style loss [14]
at VGG feature level to ensure perceptually plausible re-
sults. The perceptual loss can be defined as:

Lperc =
∑
i

∥∥∥φi (T̂)− φi (T)
∥∥∥
1

(11)

where φi is the activation map of the i-th layer of a vi-
sual perception (pre-trained VGG19) network. Let G be the
Gram matrix. The style loss calculates the statistic error
between the activation map as:

Lstyle =
∑
j

∥∥∥Gφj (T̂)− Gφj (T)
∥∥∥
1

(12)

Model FID↓ LPIPS↓ SSIM↑
VU-Net [6] 23.708 0.264 0.763

Def-GAN [22] 18.462 0.233 0.760
PATN [40] 20.749 0.253 0.772
GFLA [20] 11.871 0.190 0.770

Ours 9.888 0.182 0.774

Table 1: Quantitative comparison with state-of-the-art
methods on DeepFashion.

Model FID↓ LPIPS↓ SSIM↑
VTOAP [39] 21.205 0.208 0.738
VTDC [27] 9.338 0.154 0.779

Ours 6.401 0.138 0.782

Table 2: Quantitative comparison with state-of-the-art
methods on FashionTryOn.

Total loss. In summary, the total loss of our approach
can be expressed as:

Ltotal = λstructureLstructure + λadvLadv + λrecLrec

+ λfeaLfea + λpercLperc + λstyleLstyle
(13)

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. We conduct experiments on the DeepFash-
ion dataset [16] for pose transfer and the FashionTryOn
dataset [39] for pose-guided virtual try-on. The DeepFash-
ion dataset contains 52,712 high-quality model images with
a resolution of 256×256. We follow a similar procedure as
the prior work [40] to partition training data and testing data
for a fair comparison. The training set has 101,966 pairs,
and the testing set retains 8,750 pairs. The FashionTryOn
dataset [39] consists of 21,209 training pairs and 7,520 test-
ing pairs, with each comprising a clothing item image and
two model images in different poses. The image is in the
resolution of 256 × 176. Since it is a challenge to collect an
ideal dataset with different poses and different clothing, the
target image shares the same clothing item with the source
person image. Following previous methods [39, 5], we train
our model with a masked source image, where the clothing
item in the source image is not fed into the network.

Evaluation Metrics. We follow previous methods to use
Structure Similarity (SSIM) [31] as our evaluation metrics.
We also introduce Learned Perceptual Image Patch Similar-
ity (LPIPS) [38] and Frechet Inception Distance (FID) [10]
as our metrics. LPIPS calculates a weighted L2 distance
between the synthesized image and the target ground truth
image at the feature level. FID computes the Wasserstein-
2 distance between the distributions of synthesized images
and target ground truth images.
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Figure 4: Examples of qualitative comparison results with VUNet [6], Def-GAN [22], PATN [40], GFLA [20] for pose
transfer and VTOAP [39], VTDC [27] for pose-guided virtual try-on.

4.2. Implementation Details

We use PyTorch to implement our model. The encoder
architecture used in our model is similar to that in U-Net
[21]. We train our model from scratch. The ADAM opti-
mizer is used to back-propagate gradients, where we set β1
and β2 to 0.9 and 0.999. The initial learning rate of the gen-
erator is 10−4 and that of the discriminator is 10−6. The
weights for the loss terms are set to λedge = 50, λfea = 4,
λadv = 2, λrec = 3, λperc = 1, and λstyle = 400. The λ1
and λ2 in feature similarity loss are set to 1 and 0.001, re-
spectively. On the DeepFashion dataset, we train our model
without the fashion style injection while the fashion style
is injected on the FashionTryOn dataset. Due to the limi-
tations of the dataset, the injected clothing is the same as
the one in the source image at the training and the testing
phases. For the qualitative evaluation, we randomly shuf-
fle the test set and test different clothing items with diverse
source images on the FashionTryOn. We train our model
for 100 epochs with a batch size of 16.

4.3. Comparisons

We compare our model with several state-of-the-art ap-
proaches including VUNet [6], Def-GAN [22], PATN [40],
and GFLA [20] for pose transfer task. For pose-guided vir-
tual try-on, we compare our model with VTOAP [39] and
VTDC [27]. We evaluate our proposed method with both
qualitative and quantitative comparisons. The quantitative
results of pose transfer and pose-guided virtual try-on are

listed in Table 1 and 2, respectively. Figure 4 gives the typ-
ical qualitative examples of two tasks.

Quantitative results. The proposed method outper-
forms these competing methods on three metrics. For pose
transfer task, VUNet does not deal with the structure trans-
formation between the source appearance information and
the target pose, where it shows relatively weak results on
two metrics. Def-GAN and PATN introduce various strate-
gies to combine the source appearance and the target pose.
It can be seen that both of them perform better than VUNet.
Furthermore, GFLA designs the flow-based operation to
warp source image features locally, which can further cope
with complex structure transformations. Compared with
GFLA, our model has its unique advantages in dealing with
occlusions and avoiding artifacts that come from flow-based
warping. In addition to these, all these methods ignore the
significance of texture enhancement. This is the reason that
our model achieves superior results over other methods.

For pose-guided virtual try-on task, note that both
VTOAP and VTDC do not expressly handle the multi-pose
transformation. The target structure information, such as
the pose or the parsing map, is simply concatenated with
the clothing to generate the synthesized image. Both tex-
tures and structure are prone to be weakened in the gen-
eration process. Therefore, our method achieves the best
performance among these state-of-the-art pose-guided vir-
tual try-on methods. Furthermore, as depicted in Figure 5,
the human parsing maps used as input guidance in VTDC
are inclined to result in some inaccurate geometric division.
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Figure 5: Examples of the synthesized person image with
human parsing maps in VTDC (left) and ours with edge
maps (right).
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Figure 6: Examples of the qualitative results of ablation
study on the DeepFashion dataset.

Compared with the human parsing map, the edge map is
more precise in the structure division. Therefore, our model
utilizes the edge map as explicit supervision and constrains
the deformation of the pose, and thus boosts the perfor-
mance.

Qualitative results. Qualitative comparisons are visual-
ized in Figure 4. The left part is on DeepFashion, which is
the result of pose transfer. Compared with other state-of-
the-art methods, our model performs the capacity to model
textures and structure for person image synthesis where
VUNet, Def-GAN, and PATN obviously fail to generate re-
alistic textures of the face, hairs, and clothing. For exam-
ple, VUNet losses textures of polka dots on clothing in the
second row (from top to bottom). GFLA is more accurate
in generating textures. However, due to the limitations of
flow-based warping, GFLA suffers from the artifacts around
the person’s structure. Thanks to the cross-modality de-
formable convolution, our model demonstrates its strength
in preventing artifacts, which brings us a sharper body struc-

PHFA SL CDC FID ↓ LPIPS↓ SSIM ↑
ST-SL × X X 12.771 0.191 0.766
STTE X × X 11.296 0.184 0.771

ENTE-SL X X × 15.503 0.211 0.762
FLTE-SL X X × 11.054 0.188 0.767

Ours X X X 9.888 0.182 0.774
ST-SL × X X 8.240 0.156 0.757
STTE X × X 7.407 0.152 0.762

ENTE-SL X X × 14.004 0.182 0.744
FLTE-SL X X × 7.146 0.158 0.760

Ours X X X 6.401 0.138 0.782

Table 3: Evaluation results of the ablation study. The top
half is on the DeepFashion dataset and the bottom half is on
the FashionTryOn dataset. PHFA represents the PHF atten-
tion module. SL means the structure loss. CDC represents
the cross-modality deformable convolution.

ture than GFLA. Meanwhile, the PHF attention helps gener-
ate clear detailed textures, for example, the white lace gen-
erated by our model in the third row.

For pose-guided virtual try-on task, typical visual com-
parisons are shown in the right part of Figure 4. Our method
and VTDC generate vivid images while the face and body
of VTOAP are blurry. Although VTDC adds the human
parsing map as input to enhance body structure, the results
still have some regions that have structure confusions, such
as the arm in the second row. Compared with VTDC, the
proposed approach explicitly models the structural trans-
formation, tackling the displacements of body regions be-
tween different poses. Thus, the structure of ours is sharper.
Meanwhile, our model performs better on generating fine-
grained textures than others (e.g., the face in the third row
and the pants in the last row). Furthermore, we visualize
our results without editing the fashion style. The results
are generated with the same clothing as the source image,
which can be considered as the result of pose transfer task.

4.4. Ablation study

In this subsection, we investigate how each component
contributes to the proposed method. Several variants are
provided to verify the effectiveness of the structure loss,
PHF attention, and the structure-transformed renderer.

ST-SL. In this model, We eliminate the PHF attention
module of the texture-enhanced stylizer from the original
full model.

STTE. This model is our proposed model without
the structure loss. This variant has the full structure-
transformed renderer and the PHF attention module as the
proposed model.

ENTE-SL. We replace the structure-transformed ren-
derer with a typical encoder architecture. In this variant,
the input of the encoder is set to the concatenation of the
source image, the source pose, and the target pose.
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Figure 7: Visualization results of the high frequency atten-
tion mask Mc in the PHF attention module.

FLTE-SL. In this model, we replace the cross-modality
deformable convolution of the structure-transformed ren-
derer with the operation of flow-based warping.

Full model (Ours). We employ the full structure-
transformed renderer and the attention module in this model
and train it with all loss functions adopted in this paper.

Effectiveness of PHF attention. From Table 3, we can
observe that our full model outperforms ST-SL. It benefits
from the PHF attention module. Meanwhile, as depicted in
qualitative results, ablating the PHF attention module incurs
messy fine-grained details. For example, the result of ST-SL
in the second row shows irregular textures on the clothing
region due to the lack of texture enhancement, thus demon-
strates the ability of the PHF attention module to strengthen
texture details. Furthermore, the attention masks in PHF
attention are visualized in Figure 7. It can be seen that it in-
deed assigns higher weights to complex textures in clothing
and face. The regions with smooth textures (e.g., the upper
clothing in the far left result) obtain less attention.

Effectiveness of the structure loss. We employ the
structure loss to guide the structure generation. Accord-
ing to the quantitative comparison (Table 3), the full model
outperforms STTE in all metrics. Moreover, as illustrated
in Figure 6, the structure of the full model demonstrates
nature-looking better than STTE. Both quantitative and
qualitative results confirm the effectiveness of this proposed
loss.

Effectiveness of the structure-transformed renderer.
Evaluation results are illustrated in Table 3. The full model
has a better performance than ENTE-SL and FLTE-SL,
which means that the structure-transformed renderer can ef-
fectively solve the problem of the transformation between
the source and the target poses. The cross-modality de-
formable convolution also leads to a stable performance
gain. In Figure 6, we observe that the full model gener-
ates more reasonable results than ENTE-SL. Furthermore,
since the flow-based warping tends to have wrong sampling
regions, it incurs unreal textures such as the leg near the feet
in the last row (from top to bottom) of FLTE-SL.

4.5. Applications

The proposed method can ameliorate virtual fitting room
applications, where customers can try the fashion style of

Source
image

Target
pose

Style 
image

Synthesized 
image

Style 
image

Synthesized 
image

Figure 8: Examples of fashion style transfer.

the images of models. Several examples of applications are
shown in Figure 8. Another person image replaces the input
of the garment in the proposed model, and the fashion style
is extracted from this person image. Concretely, we utilize
the Style-Encoder proposed by [19] to extract the fashion
textures from the style image in Figure 8 and then inject it
back into the source image by the texture-enhanced stylizer.
In this way, users are able to select various fashion styles
from other person images to generate a new person image,
giving more options to the users.

5. Conclusion
In this paper, a novel approach is presented with the

structure-transformed renderer and the texture-enhanced
stylizer to synthesize person images, exploring correlations
between pose transfer and pose-guided virtual try-on tasks.
In contrast to existing methods, we emphasize the structure
and texture generation. Specifically, in order to eliminate
the blurry artifacts that come from the flow-based operation,
we are the first to apply the deformable convolution to cap-
ture the structural offsets between the source and the target
poses. The structure loss is proposed to constrain the struc-
ture generation. Meanwhile, the PHF attention module is
designed to enhance textures. Several experiments are con-
ducted for two tasks. The experimental results demonstrate
the effectiveness and versatility of the proposed method.
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