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Abstract

Data quantity and quality are crucial factors for data-
driven learning methods. In some target problem domains,
there are not many data samples available, which could
significantly hinder the learning process. While data from
similar domains may be leveraged to help through domain
adaptation, obtaining high-quality labeled data for those
source domains themselves could be difficult or costly. To
address such challenges on data insufficiency for classifica-
tion problem in a target domain, we propose a weak adap-
tation learning (WAL) approach that leverages unlabeled
data from a similar source domain, a low-cost weak an-
notator that produces labels based on task-specific heuris-
tics, labeling rules, or other methods (albeit with inaccu-
racy), and a small amount of labeled data in the target do-
main. Our approach first conducts a theoretical analysis on
the error bound of the trained classifier with respect to the
data quantity and the performance of the weak annotator,
and then introduces a multi-stage weak adaptation learning
method to learn an accurate classifier by lowering the error
bound. Our experiments demonstrate the effectiveness of
our approach in learning an accurate classifier with limited
labeled data in the target domain and unlabeled data in the
source domain.

1. Introduction
Machine Learning (ML) techniques, especially those

based on deep neural networks, have shown great promises
in many applications, to a large extent due to their abili-
ties in studying and memorizing the knowledge embedded
in high-quality training data [12]. Having a large number
of data samples with accurate labels could enable effec-
tive supervised learning methods for improving ML model
performance. However, it may be difficult to collect many
data samples in some problem domains or scenarios, such
as for the training of autonomous vehicles during extreme
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weather (e.g., fog, snow, hail) and natural disasters (e.g.,
mudflow), or for search and rescue robots during forest fire
and earthquake. One possible solution to such problem of
data unavailability is using data from other similar domains
to train the target domain model and then fine-tune it with
limited target domain data, i.e., through domain adaptation.
Taking the aforementioned cases as examples, while there
may not be much data in hailing weather, we could collect
data in days with heavy rain; while it may be difficult to
find images during earthquakes for large parts of America,
we could collect images in Japan, where earthquakes occur
more often in a different environment. However, obtaining
a large amount of high-quality labeled data in these source
domains could still be challenging and costly.

To address the above data insufficiency challenges across
domains, we consider leveraging low-cost weak annotators
that can automatically generate large quantity of labeled
data based on certain labeling rules/functions, task-specific
heuristics, or other methods (which may be inaccurate to
some degree). More specifically, our approach considers
the following setting for classification problems: There is
a small amount of data samples with accurate labels col-
lected for the target domain, which is called target domain
data or target data in this paper for simplicity. There is
also a large amount of unlabeled data that can be acquired
from a similar but different source domain (i.e., there ex-
ists domain discrepancy), which is called source (domain)
data in this paper. Finally, there is a weak annotator that
can produce weak (possibly inaccurate) labels on data sam-
ples. Our objective is to learn an accurate classifier for the
target domain based on the labeled target data, the initially-
unlabeled source data, and the weak annotator.

The problem we are considering here is related but dif-
ferent from Semi-Supervised Learning (SSL) [39, 9, 23]
and Unsupervised Domain Adaptation (UDA) [24, 8, 47, 7].
In the setting of SSL, the available training data consists of
two parts – one has accurate labels while the other is un-
labeled, and the two parts are drawn from the same distri-
bution in terms of training features. This is different from
our problem, where there exists domain discrepancy across
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the source and target domains. The objective of UDA is to
adapt a model to perform well in the target domain based on
labeled data in the source domain and unlabeled data in the
target domain. This is again very different from our prob-
lem, where the source domain data is initially unlabeled
and assigned with inaccurate labels by a weak annotator,
while the target domain data has labels but its quantity is
small. Another related field is Positive-unlabeled Learning
(PuL) [20, 5], an approach for sample selection. The train-
ing data of PuL also consists of two parts – positive and
negative data, and the task is to learn a binary classifier to
filter out samples that are similar to the positive data from
a large amount of negative data. However, the current PuL
approaches usually conduct experiments in a single data set
rather than multiple domains with feature discrepancy.

To solve our target problem, we first develop a theo-
retical analysis on the error bound of a trained classifier
with respect to the data quantity and the weak annotator
performance. We then propose a Weak Adaptation Learn-
ing (WAL) method to learn an accurate classifier by low-
ering the error bound. The main idea of WAL is to obtain
a cross-domain representation for both source domain and
target domain data, and then use the labeled data to estimate
the classification error/distance between the weak annotator
and the ideally optimal classifier in the target domain. Next,
all the data is re-labeled based on such estimation of weak
annotator classification error. Finally, the newly-relabeled
data is used to learn a better classifier in the target domain.

Our work makes the following contributions:

• We address the challenge of data insufficiency in do-
main adaptation with a novel weak adaptation learning
approach that leverages unlabeled source domain data,
limited number of labeled target domain data, and a weak
annotator.

• Our approach includes a theoretical analysis on the error
bound of the trained classifier and a multi-stage WAL
method that improves the classifier accuracy by lowering
such error bound.

• We compare our approach with various baselines in
experiments with domain discrepancy setting on sev-
eral digit datasets and the VisDA-C dataset, and study
the cases without domain discrepancy on the CIFAR-10
dataset. We also conduct ablation studies on the impact
from the weak annotator accuracy and the quantity of la-
beled data samples to further validate our ideas.

2. Related Work

We introduce related works in the topics about weakly-
and semi-supervised learning, and the importance of sample
quantity here. You can also find more related works about
domain adaptation in the supplementary materials.

2.1. Weakly- and Semi-Supervised Learning

Weakly Supervised Learning is a large concept that may
have multiple problem settings [51]. The problem we con-
sider in this paper is related to the incomplete supervision
setting that is often addressed by Semi-Supervised Learn-
ing (SSL) approaches. Standard SSL solves the problem
of training a model with a few labeled data and a large
amount of unlabeled data. Some of the widely-applied
methods [39, 9, 36, 2] assign pseudo labels to unlabeled
samples and then perform supervised learning. And there
are works that address the noises in the labels of those sam-
ples [31, 11, 25]. Our target problem is related to SSL with
inaccurate supervision, but is different since we consider
the feature discrepancy between the (unlabeled) source data
and the (labeled) target data – a case that occurs often in
practice but has not been sufficiently addressed.

Positive-unlabeled Learning (PuL) is usually regarded as
a sub-problem of SSL. Its goal is to learn a binary classifier
to distinguish positive and negative samples from a large
amount of unlabeled data and a few positive samples. Sev-
eral works [20, 5] can achieve great performance on select-
ing samples that are similar to the positive data, and there
are also works using samples selected by PuL to perform
other tasks [49, 26].

2.2. Importance of Sample Quantity

The training of machine learning models, especially
deep neural networks, often requires a large amount of data
samples. However, in many practical scenarios, there is not
sufficient training data to feed the learning process, degrad-
ing the model performance sharply [41, 16, 48]. Many ap-
proaches have been proposed to make up for the lack of
training samples, e.g., data re-sampling [44], data augmen-
tation [37], metric learning and meta learning [3, 4, 42, 45].
And there are works [33, 1, 3, 46] conducting theoretical
analysis on the relation between training data quantity and
model performance. These analyses are usually in the form
of bounding the prediction error of the models and provide
valuable information on how the sample quantity of train-
ing data affects the model performance. In our work, we
also perform a theoretical analysis on the error bound of the
trained model, with respect to not only the data quantity but
also the performance of the weak annotator.

3. Theoretical Analysis
3.1. Problem Definition and Formulation

We consider the task of classification, where the goal is
to predict labels for samples in the target domain. Two types
of supporting data can be accessed for training the model –
source domain data and target domain data. The source do-
main data samples are initially unlabeled and come from a
joint probability distribution Qs. They can be labeled by a
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weak annotator hw (which may be inaccurate) and denoted
as Ds = {(xs, ys)i}Ns

i=1, where Ns is the number of source
data samples. The target domain data Dt = {(xt, yt)i}Nt

i=1

consists of Nt samples collected from the target distribution
Qt. Note that Qt may be different from QS . And we use
Qs

X , Qs
Y and Qt

X , Qt
Y to represent the marginal distribu-

tions of the source and target domains, respectively. More-
over, as stated before, we consider the case where there is
only a small amount of target domain data, i.e., Nt ≪ Ns.

Our goal is to learn an accurate classifier for the target
domain. The classifier is initialized from a parameter distri-
bution H, which denotes the hypothesis parameter space of
all possible classifiers.

In the following analysis, we will define the classifica-
tion risk of a classifier and then derive its bound. Accord-
ing to the PAC-Bayesian framework [30, 10], the expected
classification risk of a classifier drawn from a distribution
Q that depends on the training data can be strictly bounded.
Let hΘ denote a learned classifier from the training data,
and its parameter Θ is drawn from Q. We consider that
the prior parameter distribution H over the hypothesis is
independent of the training data. And given a δ with the
probability ≥ 1− δ over the training data set of size m, the
expected error of hΘ can be bounded as follows [29]:

L(hΘ) ≤ L̂(hΘ) +

√
L̂(hΘ) · Ω+ Ω

Ω =
2
(
KL(Q∥H) + ln m

δ

)
m− 1

(1)

Here L(hΘ) is the expected error of h over parameter Θ,
and L̂(hΘ) is the empirical error computed from the train-
ing set (L̂(hΘ) =

1
m

∑m
i=1 L(xi, yi), where L denotes the

loss of a single training sample). In Eq. (1), KL(Q∥H)
represents the Kullback-Leibler (KL) divergence between
parameter distribution Q and H. For any two distributions
p, q, the specific form of their KL divergence is KL(p∥q) =
−E[p · ln q

p ]. In most cases of mini-batch training, the train-

ing loss L̂(hΘ) is much smaller than Ω, and thus we can get
a further bound as follows [33]:

L(hΘ) ≤ L̂(hΘ) + 4

√(
KL(Q∥H) + ln 2m

δ

)
m

(2)

Then if we denote the model parameters of h before the
training that are drawn from H as Θp, the KL divergence
can be written as KL(Q∥H) = −E[Θ · (lnΘp − lnΘ)].
As aforementioned, hΘ is trained with the training data set
from hΘp , and we consider that the training is optimized
by gradient-based method. Thus, we can formulate that
Θ = Θp + ∇(L̂(hΘp)). Here we omit the learning rate
to simplify the formula.

The PAC-Bayesian error bound is valid for any param-
eter distribution H that is independent of the training data,
and any method of optimizing Θp dependent on the train-

ing set [33]. Therefore, in order to simplify the problem,
we instantiate the bound as setting H to conform to a Gaus-
sian distribution with zero mean (µH = 0) and VarH = σ2

H
variance. This simplification is the same as previous PAC-
Bayesian works [33, 34]. We further assume that the param-
eter change of the overall model during training can also be
regarded as conforming to an empirical Gaussian distribu-
tion. This Gaussian distribution is independent of model
parameters if we regard the parameter updates induced by
gradient back-propagation as accumulated random pertur-
bations, i.e., each training sample corresponds to a small
perturbation [34]. And we denote the mean and the vari-
ance of a single training sample as follows:

µ ≜ E [∇ΘpL(x, y)]
σ2 ≜ E

[
(∇ΘpL(x, y)− µ)(∇ΘpL(x, y)− µ)T

] (3)

Then, the specific formula of KL divergence to any two
Gaussian distributions p ∼ N (µ1, σ

2
1), q ∼ N (µ2, σ

2
2) is

written as follows:

KL(p, q) = ln
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(4)

Theorem 1. For a classifier parameter distribution H ∼
N (0, σ2

H) that is independent of the training data with
size m, and a posterior parameter distribution Q learned
from the training data set, if we assume Q ∼ N (µQ, σ

2
Q)

and consider Θp, Θ as drawn from H, Q respectively
(Θ = Θp +∇(L̂(hΘp))), the KL divergence of Q and H is
bounded with symbols defined in Eq. (3) as follows:

KL(Q∥H) ≤
σ2

m + µ2

2σ2
H

(5)

The detailed proof of Theorem 1 is presented in our Supple-
mentary Materials. With the above risk definition, the risk
of h with respect to the target data distribution Qt is

Rt(h) = E(x,y)∼QtL(h(x), y) = L(hΘ)∼Qt (6)

Besides, we define the Classification Distance of two clas-
sifiers h1 and h2 under the same domain distribution P as

CD∼P(h1,h2) = Ex∼PL(h1(x),h2(x)) (7)

Moreover, the Discrepancy Distance of two domains is de-
fined as in [28]: ∀h1,h2, the discrepancy distance between
the distributions of two domains P,Q is
DD(P,Q) = sup

h1,h2∈H
|CD∼P(h1,h2)− CD∼Q(h1,h2)|

(8)
For further analysis, we also define two operators in a

parameter distribution H:

• ⊕: ∀h1,h2 ∈ H, and ∀x ∈ P, a new classifier h3 =
h1 ⊕ h2 can be acquired by conducting operator ⊕ on
h1 and h2, and h3(x) = h1(x) + h2(x).
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• ⊖: ∀h1,h2 ∈ H, and ∀x ∈ P, a new classifier h3 =
h1 ⊖ h2 can be acquired by conducting operator ⊖ on
h1 and h2, and h3(x) = h1(x)− h2(x).

3.2. Error Bound Analysis

Let hos and hot denote the ideal classifiers that perform
optimally on the source data and target data, respectively:

hos = argminh∈QR
s(h), hot = argminh∈QR

t(h)
(9)

In our approach, we design a classifier that learns the dis-
crepancy between the weak annotator and the ground truth
(details will be introduced in Section 4), and we denote it
as d drawn from Q. Thus, we can get a model that is the
product of conducting the aforementioned ⊕ operator on h
and d, i.e., h⊕d. Here h is designed for approximating the
weak labels. And for the risk of h ⊕ d, we can obtain the
following relation:
Theorem 2. For all L1 (Mean Absolute Error [17]), L2
(Mean Squared Error [14]) and their non-negative combi-
nation loss functions (Huber Loss [50], Quantile Loss [21],
etc.), the classification risk of aforementioned h⊕d can be
formulated as follows:

Rt(h⊕ d) = EQt
X
L(h⊕ d,hw ⊕ hot ⊖ hw)

≤ EQt
X
L(h,hw) + EQt

X
L(d,hot ⊖ hw)

(10)
Please refer to our Supplementary Materials for detailed
proof of Theorem 2. Then if we consider that the training
loss L̂(h) (which equals the average loss of all training sam-
ples) is hardly influenced by the sample quantity, and it is
the same for the discrepancy between two domains [27], we
can split the error bound of h⊕d into two parts, where one
part, denoted as ∆, is not influenced by the sample quantity
and the other is related to the sample quantity. According
to Eq. (2), these two parts can be written as follows (the de-
tailed derivation of inequalities starting from Eq. (10) can
be found in the Supplementary Materials):

Rt(h⊕ d) = EQt
X
L(h⊕ d,hw ⊕ hot ⊖ hw)

≤ ∆+ 4

√
KLd

Nt
+ 4

√
KLh

Ns

+ 12

√
ln 2Nt

δ

Nt
+ 8

√
ln 2Ns

δ

Ns

where ∆ = 2L̂t(h
w) + L̂t(d) + L̂s(h)

+ L̂s(h
w) +DD(Qt

X ,Qs
X)

(11)

Here KLd and KLh denote KL divergences between trained
d, h and H respectively. According to Theorem 1, this KL
divergence term is influenced by the training, especially im-
pacted by the sample quantity. We will discuss the insights
obtained from this error bound in the next section, and then

introduce our weak adaptation learning process that is in-
spired by those insights.

4. Weak Adaptation Learning Method
4.1. Observation from Error Analysis

Based on the error bound derived in Eq. (11), we can put
efforts into the following ideas in our approach to improve
the classifier performance in the target domain:
• Performance of annotator (2L̂t(h

w) + L̂s(h
w)): The

supervision provided by the weak annotator can guide
the model to better target the given task. Ideally, we
want hw to produce more accurate labels for both source
and target data, reducing 2L̂t(h

w) and L̂s(h
w) simulta-

neously. Practically though, we may just be able to make
the annotator perform better on the source domain and
cannot do much with the target domain.

• Discrepancy between domains (DD(Qt
X ,Qs

X)): De-
signing loss to quantify the discrepancy between the
source and target domains is well studied in Domain
Adaptation. In our approach, we propose a novel
inter-domain loss (called Classified-MMD) to minimize
DD(Qt

X ,Qs
X), as introduced later.

• Quantity of source and target samples (Ns, Nt): First,
the learning of d needs the supervision of the ground
truth, and thus we can only use the labeled target data to
train d. Then, in our method, h is designed to approxi-
mate the weak annotator, and therefore it may see enough
that we just use the source data to train h. However,
to further reduce KLh according to Theorem 1, we also
use target samples to train h, which increases the sample
size of training data. Moreover, since the sample quan-
tity of source data is much larger than that of target data
(i.e., Nt ≪ Ns),

√
KLd/Nt in Eq. (11) dominates over√

KLh/Ns, and in the case of δ ≤ 2/e, 12
√
ln 2Nt

δ /Nt

also strictly dominates over 8
√
ln 2Ns

δ /Ns. As the result,
the terms influenced by a few target samples dominates
the overall error risk. Therefore, directly applying h⊕d
to the target domain will still be impacted by the insuf-
ficient samples. However, note that h ⊕ d can produce
more accurate labels for the source data than the weak
annotator. Therefore, we add a final step in our learning
process that utilizes re-labeled source data and conducts
supervised learning with such augmentation.

4.2. Learning Process

In this section, we present the detailed process of our
weak adaptation learning (WAL) method, which is designed
based on the observations from the above error bound analy-
sis. The overview of our WAL process is shown in Figure 1.
The designed network consists of three parts – (Φ0,Φ1,Φ2).
Φ0 can be seen as a shared feature network for both source

8920



Data

Data 𝐿 = 𝐿𝐾𝐿
+𝛼𝐿𝑐𝑚𝑚𝑑Source domain

Target domain

Weak
annotator

Φ0
Φ1

Target domain

Distance

Data

Data

Label

𝐿 = 𝐿𝐾𝐿
+𝛼𝐿𝑐𝑚𝑚𝑑

𝐿𝑀𝑆𝐸

Source domain

Weak
annotator

Φ0
Φ1

Φ2

Stage 1: Obtain a common representation  for source and target data Stage 2: Estimate the classification distance by Φ2

Data

Data

New 
Label

𝐿 = 𝐿𝐾𝐿
+𝛼𝐿𝑐𝑚𝑚𝑑
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+𝛼𝐿𝑐𝑚𝑚𝑑Source domain

Target domain
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annotator

Φ0
Φ1

Target domain

Data

Data

New 
Label

𝐿 = 𝐿𝐾𝐿
+𝛼𝐿𝑐𝑚𝑚𝑑Source domain

Weak
annotator

Φ0
Φ1

Φ2

Stage 4: Learn the new classifier based on the new data set Stage 3: Calculate the new data set based on the classification distance
and the weak label

Figure 1. Overview of the Weak Adaptation Learning (WAL) process. The designed network architecture is divided into three components
Φ0,Φ1,Φ2 and the algorithm has four stages. First, we use a combined loss function to learn a cross-domain representation in Φ0 for
both source and target data samples. Then, in Stage 2, Φ2 estimates the classification distance between the weak annotator and the ideally
optimal one in the target domain. A new re-labeled dataset is generated in Stage 3, and then used in Stage 4 to learn the desired classifier.

and target data, using typical classification networks such
as VGG, ResNet, etc. Φ1 consists of three fully-connected
layers that follow the output of Φ0. And we denote the
combination of Φ0 and Φ1 as F1. Φ2 consists of two fully-
connected layers that follow the output of Φ0. The combi-
nation of Φ0 and Φ2 is denoted as F2. The detailed network
architecture is shown in the Supplementary Materials. The
workflow of our method is shown in Algorithm 1.

Algorithm 1 The workflow of Weak Adaptation Learning.
1: Initialize parameters of network components Φ0,Φ1,Φ2.
2: Obtain dataset D from the source and target data with the help

of weak annotator hw.
3: Train F1 = Φ1 ◦ Φ0 using D, with loss function following

equation L = LKL + αLcmmd.
4: Fix the parameters of Φ1 and use F2 = Φ2 ◦ Φ0 to fit the

distance of the optimal classifier for target data hot and the
weak annotator hw with the target data.

5: Generate a new dataset using both source and target data. The
new labels are calculated by ynew = hw(x) + Φ2(h

w(x),
Φ0(x)).

6: Initialize parameters of Φ0,Φ1,Φ2.
7: Fix Φ2 and train F1 using the new dataset. The loss function

follows L = LKL + αLcmmd.
8: Output classifier F1.

Stage 1: The first goal we step on is to obtain a common

representation for both the source and target data, which
helps us encode the inputs while mitigating the domain dis-
crepancy in the feature representation. We gather all the
unlabeled source data and the target data without their la-
bels and use weak annotator hw to assign a label for each
data sample xi and ywi = hw(xi). We denote the dataset
obtained in this way as D = {(x, yw)i}Ns+Nt

i=1 . Then we fix
Φ2 and only consider the left part of the network, which is
F1 = Φ1 ◦Φ0. It is normally trained by supervised learning
using the dataset D for ep1 training epochs, and uses the
following loss function:

L = LKL + αLcmmd (12)

In this loss function, there are two loss terms and the
hyper-parameter α is a scaling factor to balance the scale of
two loss functions (we set it as 0.0001 in our experiments).
The first term LKL is the Kullback-Leibler (KL) divergence
loss, stated as follows:

LKL = KL(y1pre∥yw)
= KL(Φ1 ◦ Φ0(x)∥hw(x))

(13)

where y1pre is the output prediction value of F1 and yw is the
corresponding weak label produced by the weak annotator
hw. The second term Lcmmd aims to mitigate the domain
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discrepancy of the source and target domain at the feature
representation level in the neural networks. Based on the
basic MMD loss introduced by [43], we further change it
into the version with data labels. We call this loss func-
tion as Classified-MMD loss (corresponding to the sub-
script cmmd), which is defined as:

Lcmmd =
1

M
·

M∑
i=1

∥ 1

|D(S,i)
X |

∑
xs∈D

(S,i)
X

F1(xs)

− 1

|D(T,i)
X |

∑
xt∈D

(T,i)
X

F1(xt)∥
(14)

where M is the number of classes, DX is the data from the
produced dataset D without labels, and D

(S,i)
X is the source

data selected from DX with argmax(yw) = i. Then, we
utilize target data with its accurate labels to continue to train
the network component F1 under the loss function LKL for
ep2 training epochs, which helps further fine-tune the fea-
ture we learned through accurate labels of the target data.

Stage 2: After finishing training in Stage 1, the next step
is to estimate the distance of the optimal classifier for tar-
get data hot and the weak annotator hw. We estimate this
distance through available target data with accurate labels.
We adopt the parameters trained from Stage 1 and train net-
work component F2 = Φ2 ◦ Φ0 using the target data Dt.
For an input data sample x, it is brought into both Φ0 and
the weak annotator as their input. And then Φ2 takes the
output feature of Φ0(x) and hw(x) as input feature (these
two features are concatenated as the input feature of Φ2).
For data sample (xt, yt) ∈ target dataset Dt, the learning of
F2 uses the following classifier discrepancy loss function:

LMSE = ∥ Φ2(h
w(xt),Φ0(xt))− (yt − hw(xt)) ∥2

(15)
The network is trained for ep3 training epochs.

Stage 3: The third step is to generate a new dataset Dnew

through the obtained network F2 above. Specifically, we
collect data x from both source data and target data, and
we re-label these data based on the weak annotator and F2

obtained from the previous steps:

Dnew = {(x, ynew)|x ∈ DX ,

ynew = hw(x) + Φ2(h
w(x),Φ0(x))}

(16)

Stage 4: In the last step, we focus on F1 = Φ1 ◦ Φ0

again. We fix the parameters of network component Φ2 and
train F1 using the new dataset Dnew obtained in Stage 3.
To avoid introducing feature bias from the previous steps,
we clean all previous network weights and re-initialize the
whole network before training. The training lasts for ep4
epochs, and the loss function for this step is L = LKL +
αLcmmd, which is the same as the function in Stage 1. Fi-
nally, we get the final model F1 as the desired classifier.

To sum up, in Stage 1, we learn the model h with the help
of the weak annotator to decrease the empirical loss L̂s(h),

and the CMMD loss will reduce the term DD(Qt
X ,Qs

X).
Stage 2 uses a new classifier d to learn the classification
distance corresponding to the term L̂t(d). The Stage 3 uses
the annotator and the learned d to give more accurate la-
bels than those given solely by the annotator. Then in Stage
4, the model is trained by the relabeled data, making both
L̂s(h) and DD(Qt

X ,Qs
X) be further decreased. The setting

of the hyper-parameters used in this section can found in the
Supplementary Materials.

5. Experimental Results
The supplementary materials can be found from

https://arxiv.org/abs/2102.07358

5.1. Dataset

The experiments are conducted on three application
scenarios, the digits recognition with domain discrepancy
(SVHN[32], MNIST[6] and USPS[15] digit datasets), ob-
ject detection with domain discrepancy (VisDA-C[35]),
and object detection without domain discrepancy (CIFAR-
10[22]). For space, we introduce details of these datasets in
the Supplementary Materials.

5.2. Training Setting

All experiments are conducted on a server with Ubuntu
18.04 LTS with NVIDIA TITAN RTX GPU cards. The
implementation is based on the Pytorch framework. The
hyper-parameter α mentioned above is set to 1e−4. We use
the standard Adam optimizer [19] for optimizing the learn-
ing. The network architectures, the learning rate for each
part of the network components, the training epoch setting,
as well as other hyper-parameters are specified in the Sup-
plementary Materials. And we get weak annotators in dif-
ferent performance by applying early stop for the training.
The implementation details of weak annotators can also be
found in the Supplementary Materials.

5.3. Baseline Experiments Setting

We conduct comparison experiments with the following
baselines. Baseline Bwa is the performance of the weak
annotator chosen in the experiments in the target domain.
Baseline Bt is training F1 only with target data. Baseline
Bf1 is a fine-tuning result. It takes the same model as F1

and first uses source domain data and weak labels generated
by the weak annotator to train it. Then it uses target domain
data to fine-tune the last three layers. Baseline Bf2 is also
a fine-tuning result. The difference is that instead of fine-
tuning the last three layers, it trains all network parameters.

As introduced before, our problem is related to the Semi-
Supervised Learning (SSL) and the Semi-Supervised Do-
main Adaptation (SSDA). For SSL, although we can replace
the unlabeled data with samples drawn from another do-
main instead of the target domain, we cannot find a good
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Method M → S(%) M → U(%) S → U(%) S → M(%)
#samples 1000 300 300 1000
Bwa 59.06 73.28 73.28 76.41
Bt 61.14 89.20 89.27 94.79
Bf1 55.68 84.58 77.24 80.41
Bf2 77.92 94.10 94.92 95.52
S+T 65.70 93.67 91.21 96.21
ENT 67.89 92.62 92.02 96.42
MME 65.92 93.07 91.32 95.64
FAN 68.48 93.78 92.38 96.51
Ours 80.00 95.99 96.36 97.24

Table 1. The accuracy of different methods on digit datasets.

way to incorporate the weak annotator into SSL methods
for fair comparison with our approach. For SSDA, we were
able to extend it to our setting for comparison. Specifically,
we add 1,000 unlabeled target samples (plus 1,000 labeled
target samples, and this setting will be changed accordingly
in digits recognition to keep consistent settings) to meet the
semi-supervised requirement, and we apply weak annotator
to produce weak labels instead of accurate ones for source
data. We compare our approach with the following SSDA
baselines: FAN [18], MME [40], ENT [13], S+T [4, 38].
Note that to the best of our knowledge, there is no previ-
ous work with exactly the same problem setting as ours.
The above changes aim at making the comparison as fair
as possible. Another thing that is worth to mention is that
most SSDA methods conduct adaptation on the ImageNet
pre-trained models, which introduces a lot of irrelevant data
information from the ImageNet dataset. Thus, we disable
the pre-training and only allow training with the available
data.

5.4. Results of Digits Recognition

We evaluate our methods on the digit recognition
datasets: SVHN (S), MNIST (M),and USPS (U). Accord-
ing to the results shown in Table 1, when the weak annotator
performs much worse than the model learned only from the
provided target data Bt (Bwa = 73.28% on M → U, 73.28%
on S → U and 76.41% on S → M), its corresponding base-
line Bf1 is also lower than Bt, and only the second fine-
tuning method Bf2 is better than or competitive with Bt.
This indicates that the feature learned from the source do-
main data and with weak labels introduce data bias, and this
bias can be mitigated when the parameters from the front
layers are fine-tuned by the target data.

Overall, we can clearly see that with 15,000 source do-
main data, limited number of labeled target domain data
(second line), and a weak annotator, our method can out-
perform all the baselines in Table 1 with 80.00% on M →
S, 95.99% on M → U, 96.36% on S → U and 97.24% on S
→ M.

5.5. Results of Object Recognition

The results of various methods on the VisDA-C dataset
are presented in Figure 2. In this task, we utilize the syn-
thetic images as the source domain dataset, and the real-
world images as the target domain dataset. And we can see
from the table that the performance of the network trained
only with the target data is merely 32.86%. Then, when
the weak annotator is provided, it can help two fine-tune
baselines Bf1 and Bf2 reach 27.67% and 35.03% respec-
tively. As for the SSDA baselines, all of them perform very
badly, and they are provided with more target samples with
no labels. The best SSDA methods FAN can only achieve
32.99%. Our method can provide a result of 40.83%, which
again exceeds all baselines above. Besides, we also provide
additional experiment results using a different weak anno-
tator in the supplementary materials.
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Figure 2. The accuracy of different methods on the VisDA-C
dataset. The number is measured in percentage.

Moreover, we also test on the scenario without domain
discrepancy using the CIFAR-10 dataset. We randomly se-
lect 10,000 data samples from the dataset as the source data
and another 1,000 samples as the target data. The result is
included in Table 2. As we can see, when the weak annota-
tor is given at 48.96% accuracy, the model trained only with
the target data can reach 30.46%, while our method nearly
doubles the performance and hits 61.71%, which exceeds
all other baselines.

5.6. Ablation Study

We also study how the quantity of target domain samples
and the performance of the weak annotator affect the over-
all performance of our method. To reduce the impact of
domain discrepancy when we study these two factors, we
conduct the ablation study on CIFAR-10.

5.6.1 Sample quantity of target samples

As presented in Figure 3, the horizontal axis indicates the
number of target domain data, and the vertical axis shows
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Method plane mobile bird cat deer dog frog horse ship truck mAP(%)
Bwa 43.18 65.68 28.13 25.93 29.00 46.15 83.91 41.76 72.12 51.06 48.96
Bt 19.08 63.39 03.03 30.16 25.77 22.60 46.11 50.85 23.61 25.74 30.46
Bf1 57.38 77.53 38.46 33.51 45.27 33.17 73.33 58.29 57.67 60.20 52.97
Bf2 44.19 80.00 38.02 41.97 47.15 24.30 78.14 55.06 89.35 38.19 53.49
Ours 65.52 82.61 39.79 48.45 57.36 43.60 67.39 65.32 70.42 78.89 61.71

Table 2. The accuracy of different methods on the CIFAR-10 dataset with 10 classes (without domain discrepancy). The number is
measured in percentage. The accuracy of each class is from column 2 to column 11. The mean precision is shown in the last column.

the performance of our model using the corresponding num-
ber of target domain samples. When keeping the weak an-
notator the same as Section 5.5 and fixing the sample quan-
tity of the source data as 10,000, the precision of the model
grows as the number of target domain data increases. And
it will gradually get saturated when there is enough target
domain data. This saturation phenomenon can be explained

as the second derivative of
√
KL/N and

√
ln 2N

δ /N for
N is positive while the first derivative is negative. And ac-
cording to the curve, we can observe that the performance
improvement when the target data is less than the source
data is relatively higher than the case when there is more
target data. The reason for this can be found in our theoret-
ical analysis, i.e., when the sample quantities of source and
target data become closer, terms impacted by the quantity
of target data will not dominate over the error bound.

Figure 3. The performance of our learned model under different
quantities of target domain samples.

5.6.2 Performance of weak annotator

Figure 4 shows the curve of how the performance of our
model changes with respect to the precision of the weak
annotator. As shown in the figure, when the weak an-
notator performs the worst with accuracy of 23.79%, our
model can reach 42.29%, which is a relatively significant
improvement. And as the precision of the weak annotator
increases, our model performs better accordingly. Interest-
ingly, the improvement curve in Figure 4 is approximately
linear, which demonstrates that it is reasonable to linearly

add the terms of the weak annotator in the error bound.

Figure 4. The performance of our learned model under different
accuracy of the weak annotator.

6. Conclusion
In this work, we present a novel approach leveraging

weak annotator to address the data insufficiency challenge
in domain adaptation, where only a small amount of data
samples is available in the target domain and the data sam-
ples in the source domain are unlabeled. Our weak adap-
tation approach includes a theoretical analysis that derives
the error bound of a trained classifier with respect to the
data quantity and the performance of the weak annotator,
and a multi-stage learning process that improves classifier
performance by lowering the error bound. Our approach
shows significant improvement over baselines on cases with
or without domain discrepancy in various data sets.
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