
IDARTS: Interactive Differentiable Architecture Search

Song Xue1,2∗, Runqi Wang1*, Baochang Zhang1,5, Tian Wang1,2†, Guodong Guo3, David Doermann4

1 Beihang University, Beijing, China
2 Jiangsu Key Laboratory of Image and Video Understanding for Social Safety,

Nanjing University of Science and Technology, Nanjing, China
3National Engineering Laboratory for Deep Learning Technology and Application;

Institute of Deep Learning, Baidu Research, Beijing, China
4University at Buffalo, USA

5Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russian Federation
{songxue, runqiwang, bczhang, wangtian}@buaa.edu.cn,

guoguodong01@baidu.com, doermann@buffalo.edu

Abstract

Differentiable Architecture Search (DARTS) improves
the efficiency of architecture search by learning the archi-
tecture and network parameters end-to-end. However, the
intrinsic relationship between the architecture’s parameters
is neglected, leading to a sub-optimal optimization process.
The reason lies in the fact that the gradient descent method
used in DARTS ignores the coupling relationship of the pa-
rameters and therefore degrades the optimization. In this
paper, we address this issue by formulating DARTS as a bi-
linear optimization problem and introducing an Interactive
Differentiable Architecture Search (IDARTS). We first de-
velop a backtracking backpropagation process, which can
decouple the relationships of different kinds of parameters
and train them in the same framework. The backtracking
method coordinates the training of different parameters that
fully explore their interaction and optimize training. We
present experiments on the CIFAR10 and ImageNet datasets
that demonstrate the efficacy of the IDARTS approach by
achieving a top-1 accuracy of 76.52% on ImageNet without
additional search cost vs. 75.8% with the state-of-the-art
PC-DARTS.

1. Introduction

The goal of Neural Architecture Search (NAS) is to au-
tomatically design neural architectures to replace traditional
manual architecture design. NAS has had a significant im-
pact on computer vision, in part by reducing this need for

*Co-first author.
†Corresponding author.

manual work. Recently, Liu et al. [18] proposed dif-
ferentiable architecture search (DARTS) as an alternative
that makes architecture search more efficient. DARTS re-
laxes the search space to be continuous and differentiable.
DARTS learns the weight of each operation with gradient
descent so that the architecture can be optimized with re-
spect to its validation set performance by gradient descent.
Despite its sophisticated design, DARTS is still subject to
a large yet redundant space of network architectures and
thus suffers from significant memory and computation over-
head. To address the problems of DARTS, researchers have
proposed alternative formulations [3, 13, 30, 2, 33, 4, 11].
Among them, PC-DARTS [30] reduces redundancy in the
network space by performing a more efficient search with-
out compromising the performance. PC-DARTS only sam-
ples a subset of channels in a super-net during the search to
reduce computation and introduces edge normalization to
stabilize the search for network connectivity by explicitly
learning an extra set of edge-selection parameters.

However, these DARTS alternatives ignore the intrinsic
relationship between different kinds of parameters, and as
a result, the selected architecture is sub-optimal due to an
insufficient training process. The reason lies in the fact that
the coupling relationship will affect the training of the net-
work architecture to its limit before it is selected or left out.
To address this issue, we introduce a bilinear model into
DARTS and develop a new backpropagation method to de-
couple the hidden relationships among variables to facilitate
the optimization process. To the best of our knowledge, few
works have formulated DARTS as a bilinear problem.

In the paper, we address these issues by formulating
DARTS as a bilinear optimization problem and devel-
oping the efficient Interactive Differentiable Architecture
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Figure 1. An overview of IDARTS. (a) α and β are coupled in IDARTS. The edge and operation (βl and αl) are coupled during the neural
architecture search. xi and xj represent node 0 and node 2, respectively. xj = αl,m · βl ·Wl,m ⊗ xi is specifically described in Eq. 2.
(b) A backtracking method is introduced to coordinate the training of different parameters, which can fully explore their interaction during
training. The dotted line results indicate that the lack of backtracking leads to the inefficient training of α, and the solid line indicates an
efficient training of IDARTS.

Search (IDARTS). Fig. 1 shows the framework of IDARTS.
Fig. 1(b) shows that the dotted line results are inefficient
compared with IDARTS shown in the solid line. t1 and
t2 mark the results where the architecture parameter α is
backtracked. IDARTS coordinates the training of differ-
ent parameters and fully explores the interaction between
them based on the backtracking method. Our method al-
lows operations to be selected only when they are suffi-
ciently trained. We evaluate our IDARTS on image clas-
sification and conduct experiments on the CIFAR10 and
ImageNet datasets. The experimental results show that
IDARTS achieves superior performance compared to exist-
ing DARTS approaches [30, 33, 4]. Our contributions are
summarized as follows:

• We provide the first attempt to formulate DARTS as a
bilinear optimization problem. IDARTS decouples the
relationship of different kinds of parameters to suffi-
ciently train them in the same framework.

• We introduce a backtracking method to coordinate the
training of different parameters. The backtracking
fully explores the potential of the parameters in the ar-
chitecture search through their interaction during the
optimization process.

• Extensive experiments demonstrate that IDARTS
achieves better performance than prior arts on the CI-
FAR10 and ImageNet datasets, with a top-1 accuracy
of 97.68% on CIFAR10 and 76.52% on ImageNet.

2. Related works

2.1. Neural Architecture Search (NAS)

NAS is one of the most promising technologies for opti-
mizing deep learning paradigms. Early NAS approaches fo-
cus on searching a network by either reinforcement learning
[41, 40, 1, 38] or evolution [23, 28, 25]. However, most of
these methods require a tremendous amount of computation
and memory resources. One-shot architecture search meth-
ods [18, 22, 29, 37, 36] have been proposed to implement
efficient architecture search, making it possible to identify
an optimal architecture within a few GPU days. Liu et al.
[18] proposed differentiable architecture search (DARTS)
that enables NAS to use gradient descent for search. As
a result, DARTS is able to identify good convolutional ar-
chitectures at a fraction of the computational cost, making
NAS broadly accessible. DARTS has achieved promising
performance by using orders of magnitude less computa-
tion, but still has some drawbacks. Liang et al. [13] pro-
posed DARTS+ to avoid collapse and improve the original
DARTS by stopping the search procedure early when cer-
tain conditions occur. PDARTS [3] presents an efficient al-
gorithm that attempts to overcome the depth gap issue be-
tween search and evaluation. This is accomplished by in-
creasing the depth of the searched architectures gradually
during the training procedure. ProxylessNAS [2] argues
that the optimization objectives of the search and evalua-
tion networks are inconsistent in DARTS. ProxylessNAS
adopts the differentiable framework and searches for archi-
tectures on the target task instead of adopting the conven-
tional proxy-based framework.
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Recently, there have been methods proposed to improve
DARTS. Fair DARTS [4] suggests that the reason for the
collapse of DARTS performance lies in an unfair advantage
of exclusive competition and lets each operation’s architec-
ture be weighed independent of others, which relaxes the
exclusive competition to be collaborative. CDARTS [33]
builds a cyclic feedback mechanism between the search and
evaluation networks to enable the evolution of the topol-
ogy to fit the final evaluation network. PC-DARTS [30] ad-
dresses the problem of high GPU memory cost by introduc-
ing a partially-connected strategy for network optimization.
They introduce edge normalization to stabilize the search
for network connectivity by explicitly learning an extra set
of edge-level parameters. However, the relationship with
the edge-level parameters is neglected, leading to an insuf-
ficient training process and a sub-optimal solution.

2.2. Bilinear Optimization

Bilinear optimization models are widely used in many
computer vision algorithms. Often, the optimization objec-
tives or models are influenced by two or more hidden factors
that interact to produce the observations [6, 31]. Bilinear
models can be embedded in CNNs [15, 14, 19, 39]. Bilin-
ear models in CNNs can be performed by iterative methods
such as the Accelerated Proximal Gradient (APG) [9] and
the iterative shrinkage-thresholding algorithm (ISTA) [32,
15]. A number of deep learning applications, such as fine-
grained categorization [16, 12], visual question answering
(VQA) [34], and person re-identification [26], attempt to
embed bilinear models into CNNs to model pairwise fea-
ture interactions and fuse multiple features with attention.
To update the parameters, they directly utilize gradient de-
scent and back-propagate the gradients of the loss.

In this paper, we formulate DARTS as a bilinear opti-
mization problem and introduce IDARTS for an efficient
search. The experimental results validate the effectiveness
of our method on CIFAR10 and ImageNet without addi-
tional search costs.

3. Interactive Differentiable Architecture
Search

3.1. Bilinear Models for DARTS

We first show how DARTS can be formulated as a bilin-
ear optimization problem. Assume that there are L edges
in a cell, and the edge between node Ni and node Nj is the
lth edge. Following [18, 30], we take the lth edge, which is
formulated as:

fl(Wl,m,xi) =
∑

ol,m∈O(l)

αl,m · ol,m(Wl,m ⊗ xi), (1)

where Wl,m denotes the kernels of the mth convolution
operation. We assume that there are M operations on one

edge. M refers to the number of all operations. xi denotes
the feature map of Ni, Ol denotes the set of operations, and
αl,m is the parameter of operation ol,m on lth edge pro-
cessed by softmax operation.

xj =
∑
i<j

{βl} · fl(xi)

=
∑
i<j

∑
ol,m∈Ol

βlαl,m · ol,m(Wl,m ⊗ xi),
(2)

where βl denotes the parameter of lth edge. The softmax is
defined on β and α to calculate the final architecture. For
each intermediate node, we will choose two edges, which
are jointly determined by α and β. In Fig. 1, we see α and
β are coupled in the inference process as shown in Eq. 2. xj

is linearly dependent on both α and β. If an improper oper-
ation is selected, it will affect the selection of the edge and
vice versa. It suggests that we should consider their rela-
tionship for better optimization. A basic bilinear optimiza-
tion problem attempts to optimize the following objective
function in the architecture search:

argmin
β,α

G(W, β, α) = argmin
β,α

(L(W, β, α) +R(β)),

(3)
where α ∈ RL×M and β ∈ RL×1 are variables to be opti-
mized, L is the number of edges, M is the number of opera-
tions at each edge, and R(·) represents the constraint about
backtracking. L(·) denotes the loss function in the original
DARTS models.

Following [18, 30], the weights of the kernels W and
the architectural parameters α, β are optimized sequentially.
The learning procedure for the architectural parameters in-
volves an optimization as:

Wt+1 = argmin
W

Ltrain(W
t, αt, βt),

αt+1 = argmin
α

Lval(W
t+1, αt, βt),

βt+1 = argmin
β

Lval(W
t+1, αt, βt),

(4)

where αt+1 and βt+1 denote the parameters of operation
and edge in the (t+1)th step, and Wt+1 denotes the kernel
of the convolution at the (t+ 1)th step.

In Eq. 4, α and β are updated independently. However, it
is improper to optimize α and β independently due to their
coupling relationship. We consider the search process of
differentiable architecture search as a bilinear optimization
problem and solve the problem using a new backtracking
method. The details will be shown in Section 3.3.

3.2. Search Space

By simplifying the architecture search to find the best
cell structure, cell-based NAS methods try to learn a scal-
able and transferable architecture. Following [18, 30], we

1165



Figure 2. A cell contains seven nodes, which are two input nodes
N−1 and N0, four intermediate nodes N1, N2, N3, N4, and one
output node.

search for normal and reduction computation cells to build
the final architecture. The reduction cells are located at 1/3
and 2/3 of the total depth of the network, and the rest of
the cells are normal cells. A normal cell uses operations
with a stride of 1 to keep the size of the input feature map
unchanged. The number of output channels is identical to
the number of input channels. A reduction cell uses oper-
ations with a stride of 2 to reduce the spatial resolution of
feature maps, and the number of output channels is twice
the number of input channels. The set of operations include
3 × 3 and 5 × 5 separable convolution, 3 × 3 and 5 × 5
dilated separable convolution, 3× 3 max pooling, 3× 3 av-
erage pooling, a zero(none), and a skip connection. A cell
(Fig. 2) is a fully-connected directed acyclic graph (DAG)
of 7 nodes. Each xi is a latent representation (e.g., a feature
map in convolutional networks). Each directed edge (i, j)
between node Ni and node Nj denotes the set of operations
Ol = {ol,1, ..., ol,M}. Following [18], there are 2 input
nodes, 4 intermediate nodes, 1 output node, and 14 edges
per cell during the search. Each cell takes the outputs of the
two previous cells as the input. The output node of a cell
is the depth-wise concatenation of all of the intermediate
nodes.

3.3. Backtracking Backpropagation

We consider the problem from a new perspective where
the β and α are coupled in Eq. 3. We note that the cal-
culation of the derivative of α should consider its coupling
relationship with β. Based on the chain rule [21] and its
notations, we have:

α̂t+1 = αt + η1(−
∂G(α)

∂α
+ η2Tr((

∂G(β)

∂β
)T

∂β

∂α
)), (5)

where η1 represents the learning rate, η2 represents the coef-
ficient of backtracking, α̂t+1 denotes the value backtracked
from αt+1. and Tr(·) represents the trace of the matrix.
Here, W is omitted for simplicity, and only structure pa-
rameters α, β are considered during the backpropagation

process. We further define:

Ĝ = (
∂G(β)

∂β
)T /α, (6)

where Ĝ is defined by considering the bilinear optimization
problem as in Eq. 3. Note that R(·) is only considered when
backtracking. Then we have:

∂G(β)

∂α
= Tr[αĜ

∂β

∂α
]. (7)

We denote Ĝ = [ĝ1, ..., ĝL]. Assuming that βl and αm are
independent when l ̸= m, αm denotes a column vector, and
α1,m denotes an element in matrix α, we have:

∂β

∂α
=


0 ... ∂βm

∂α1,m
... 0

. . .

. . .

. . .

0 ... ∂βm

∂αL,m
... 0

 , (8)

and

αĜ =


α1ĝ1 ... α1ĝl ... α1ĝL
. . .
. . .
. . .

αLĝ1 ... αLĝl ... αLĝL

 . (9)

We combine Eq. 8 and Eq. 9, and get:

αĜ
∂β

∂α
=


0 ... α1

∑L
l=1 ĝl

∂βm

∂αl,m
... 0

. . .

. . .

. . .

0 ... αL

∑L
l=1 ĝl

∂βm

∂αl,m
... 0

 . (10)

After that, the trace of Eq. 5 is then calculated by:

Tr[αtĜ
∂β

∂αm
] = αm

L∑
l=1

ĝl
∂βm

∂αl,m
. (11)

Remembering that αt+1 = αt − η1
∂G(α)
∂α , IDARTS com-

bines Eq. 5 and Eq. 11:

α̂t+1 = αt+1 + η


∑L

l=1 ĝl
∂β1

∂αl,1

.

.

.∑L
l=1 ĝl

∂βL

∂αl,L

⊙


α1

.

.

.
αL



= αt+1 + η


< Ĝ, ∂β1

∂α1
>

.

.

.

< Ĝ, ∂βL

∂αL
>

⊙


α1

.

.

.
αL


= αt+1 + ηγ ⊙ αt,

(12)
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Algorithm 1: IDARTS Interactive Differentiable
Architecture Search

Input: Training data, validation data, searching
hyper-graph, hyper-parameters K = 0, T = 25,
S = 50;

Create architectural parameters α = αl, edge level
parameters β = βl and supernet weights W

Create a mixed operation ol parameterized by αl and βl

for each edge l;
Output: The structure;
Search for an architecture for S epochs;
while (K ≤ S) do

Update parameters α and β;
if (K ≥ T ) then

According to Eq. 13, we select α that should be
backtracked;

backtracking α by Eq. 12;
end
Update weights W ;
K ← K + 1;
Find the final architecture based on the learned α and
β;

end

where ⊙ represents the Hadamard product and η = η1η2.
To simplify the calculation, ∂β

∂α can be approximated by ∆β
∆α .

Eq. 12 shows our method is actually based on a projection
function to solve the coupling problem of the bilinear opti-
mization by γ. In this method, we consider the influence of
αt and backtrack the optimized state at the (t+1)th step to
form α̂t+1. We first decide when the optimization should be
backtracked, and the update rule of the proposed IDARTS
is defined as:

α̂t+1 =

{
P (αt+1, αt) if R(β) < ζ,

αt+1 otherwise,
(13)

where P (αt+1, αt) = αt+1 + ηγ ⊙ αt. R(β) represents
the ranking of |βl| and ζ represents the threshold. We then
have:

ζ = ⌊(S − T ) · λ · L⌋, (14)

where T and S denote the beginning and ending epoch of
backtracking, λ denotes the coefficient, and L denotes the
number of edges in a cell. As shown in 14, ζ will be in-
creased during searching. By doing so, α will be back-
tracked, according to β.

4. Experiments

We use our IDARTS to automatically find CNN architec-
tures. The CNN architectures discovered by IDARTS out-
perform the state-of-the-art (SOTA) on image classification
on the ImageNet dataset [5].

4.1. Datasets

CIFAR10 [10] is a small popular dataset containing 60K
images. 50K are used for the training set, and the remain-
ing 10K are used for the test set. The images belong to 10
different categories and have a resolution of 32× 32.

ImageNet is currently the world’s largest image recog-
nition database. It consists of 1,000 categories with 1.2M
training images and 50K validation images. We follow the
general setting on the ImageNet dataset where the images
are resized to 224× 224 for training and testing.

4.2. Search and Training Settings

In our experiments, we search for architectures with
an over-parameterized network on CIFAR10 and ImageNet
and then evaluate on the corresponding datasets. Following
DARTS [18] as well as conventional architecture search ap-
proaches, we use an individual stage for architecture search,
and after the optimal architecture is obtained, we retrain the
network.

Search and Training Settings on CIFAR10. As is com-
mon practice, we first search for normal cells and reduction
cells with a small network for image classification on CI-
FAR10. In the search process, the over-parameterized net-
work is constructed with eight cells, where the 3rd and 6th
cells are reduction cells. The initial number of channels is
16. We employ the SGD optimizer with an initial learning
rate of 0.1, a momentum of 0.9, a weight decay of 3×10−4,
and a gradient clipping at 5. We use an Adam optimizer for
α and β, with a fixed learning rate of η1 = 6× 10−4, a mo-
mentum of (0.5, 0.999), and a weight decay of 10−3. We set
the weight of the backtracking to η2 = 0.04 and the hyper-
parameter λ = 0.015. We train 50 epochs using 50% of
the training set as the training data in the search phase and
50% of the training set as the validation data. Following
[3, 30], we freeze the parameters, α and β, and only allow
the network parameters to be tuned in the first 15 epochs.
We then start the training of α, β, and the network param-
eters. When the training reaches T = 25 epochs, we start
backtracking to coordinate the training of different parame-
ters and to fully explore their interaction. After the search,
we train the final architecture for 600 epochs on CIFAR10.
We set the total number of cell layers to 20, the batch size to
128, the initial learning rate to 0.025, and the initial number
of channels to 36. The rest of the settings are the same as in
the search phase.

Search and Training Settings on ImageNet. For Ima-
geNet, we search and evaluate using the same settings pro-
vided in [30]. The optimization method and search strategy
are the same as for our experiments on CIFAR10. Follow-
ing [30], the over-parameterized network starts with three
convolution layers of stride 2 to reduce the input image res-
olution from 224 × 224 to 28 × 28. We stack 6 normal
cells and 2 reduction cells to form a network. To reduce the
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Figure 3. Comparison with SOTA architectures on CIFAR10

search time and improve the search efficiency, we sample
10% of the data in the ImageNet dataset for training net-
work weights and 2.5% of the data for updating the hyper-
parameters. We perform architecture search for 50 epochs
with a batch size of 1024. The architecture parameters, α
and β, are frozen during the first 35 epochs. We then start
the training α, β, and the network parameters. When the
training reaches T = 40 epochs, we start backtracking. We
use a momentum SGD with an initial learning rate of 0.5, a
momentum of 0.9, and a weight decay of 3× 10−5. For ar-
chitecture parameters α and β, we use the Adam optimizer
with an initial learning rate η1 = 6 × 10−3, momentum
(0.5, 0.999), and weight decay 10−3. We set the weight
of the backtracking to η2 = 0.04 and the hyper-parameter
λ = 0.05. After the search, we built a large network with 14
cells and 48 initial channels and train for 250 epochs with a
batch size of 1024.

4.3. Results

4.3.1 Results on CIFAR10

On CIFAR10, we use a single NVIDIA Titan V GPU to
search for approximately 0.1 GPU days. The results and
a comparison to recent approaches are summarized in Ta-
ble 1. We observe that our IDARTS achieves superior per-
formance compared to some other manually or automati-
cally designed CNNs. For instance, IDARTS surpasses the
manually designed DenseNet-BC [8] by 1.14% (96.54%
vs. 97.68%). It is worth noting that the performance of
ProxylessNAS[2] is slightly better than our IDARTS, but
its search time is 40× larger that of IDARTS. Compared
with PC-DARTS[30], IDARTS achieves better performance
(97.43% vs. 97.68%) with a similar search time. Com-
pared with CDARTS[33], IDARTS achieves not only a bet-
ter performance(97.52% vs. 97.68%), but also has a faster

search speed (0.3 vs. 0.1 GPU days). We show the per-
formance of IDARTS and other advanced NAS methods in
Fig. 3. The red star represents IDARTS, and the remain-
der represent other advanced search methods. We clearly
see that IDARTS has the highest accuracy and the short-
est search time among all search methods other than Proxy-
lessNAS. Fig. 4 shows a detailed representation of the best
cells discovered. We observe that the network prefers to
choose separable convolutions [7] in the normal cells as it is
a key component of network construction and can increase
the size of the model.

c_{k-2} 0skip_connect

c_{k-1}

sep_conv_3x3

1sep_conv_3x3

2sep_conv_3x3

3sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}sep_conv_3x3

(a) normal

c_{k-2}

0

max_pool_3x3
1

max_pool_3x3

c_{k-1} sep_conv_3x3

dil_conv_3x3

2skip_connect
dil_conv_5x5 c_{k}

3

sep_conv_5x5

sep_conv_5x5

(b) reduction
Figure 4. The detailed structure of the best cells discovered on CI-
FAR10. (a) The normal cell found on CIFAR10. (b) The reduction
cell found on CIFAR10.

4.3.2 Results on ImageNet

On ImageNet, we use eight Tesla V100 GPUs for search,
and the total batch size is 1024. The entire search process
takes around 11.5 hours. Fig. 6 shows the detailed struc-
ture of the best cells discovered. The evaluation results of
the searched architectures are reported in Table 2. The ar-
chitectures searched on CIFAR10 and ImageNet itself are
both evaluated. IDARTS (CIFAR10) achieved 76.14% top-
1 accuracy, which demonstrates the generalization potential
of the IDARTS approach. IDARTS (ImageNet) achieved
76.52% top-1 accuracy. We compare our models with
the SOTA architectures designed manually and models ob-
tained with other NAS methods. The architectures discov-
ered by our IDARTS are better than the human-designed
ShuffleNet 2x (v2) [35] (74.9% vs. 76.52%). IDARTS
surpasses PC-DARTS[30] by 0.72% (75.8% vs. 76.52%)
which demonstrates the effectiveness of our method. We
show the IDARTS method and other advanced methods in
Fig. 5. The blue stars represent search methods that use
the architecture searched on CIFAR10, and the red and yel-
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Architecture Accuracy # Params Search Cost Search
(%) (M) (GPU days) Method

DenseNet-BC [8] 96.54 25.6 - Manual
NASNet-A [41] 97.35 3.3 1800 RL
AmoebaNet-A [24] 96.66 ± 0.06 3.2 3150 evolution
AmoebaNet-B [24] 97.45 ± 0.05 2.8 3150 evolution
PNAS [17] 96.59 ± 0.09 3.2 225 SMBO
ENAS [22] 97.11 4.6 0.5 RL
DARTS (1st order) [18] 97.00 ± 0.14 3.3 0.4 gradient
DARTS (2nd order) [18] 97.24 ± 0.09 3.3 1 gradient
SNAS (mild) [29] 97.02 2.9 1.5 gradient
ProxylessNAS [2] 97.92 3.27 4 gradient
P-DARTS [3] 97.5 3.27 0.3 gradient
SGAS [11] 97.34 ± 0.24 3.7 0.5 gradient
FairDARTS [4] 97.41 ± 0.14 3.8 0.1 gradient
PC-DARTS [30] 97.43 ± 0.07 3.27 0.1 gradient
CDARTS [33] 97.52 ± 0.04 3.8 0.3 gradient
IDARTS 97.68 4.159 0.1 gradient

Table 1. Comparison with state-of-the-art architectures on CIFAR10.

Figure 5. Comparison with SOTA architectures on ImageNet

low stars represent the methods that search directly on Im-
ageNet. We can clearly see that IDARTS (CIFAR10) has
the highest accuracy and the shortest search time, compared
with these advanced methods in blue stars.

4.4. Ablation Study

Fig. 7 illustrates the comparison of α for IDARTS and
PC-DARTS in the shallowest edge. The label of x-axis
is epoch in searching, the label of y-axis is value of α.
We freeze the hyper-parameters, α and β, in the first 15
epochs (only network parameters are updated), α remains
unchanged. As the shortage of interaction between α and
β in PC-DARTS, α and β might easily fall into the local
minima. However, we backtrack the insufficiently trained
operations on this edge to escape from the local minimal
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(a) normal

c_{k-2}
0max_pool_3x3
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max_pool_3x3

2sep_conv_3x3

3
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c_{k}dil_conv_5x5

dil_conv_5x5

(b) reduction
Figure 6. The detailed structure of the best cells discovered on Im-
ageNet. (a) The normal cell found on ImageNet. (b) The reduction
cell found on ImageNet.

to select a better operation and thus a better architecture by
considering the intrinsic relationship between α and β. Due
to the backtracking of α, the competition between different
operations is intensified in the IDARTS search process as
shown in Fig. 7. As a result, it is more conducive to choose
the most valuable operation than PC-DARTS. In Fig. 8, the
label of y-axis is Lval. We also show that the convergence
of IDARTS is similar to that of PC-DARTS. Although the
two have the same convergence rate, we can clearly see
that the final loss of IDARTS converges to a smaller value.
The main reason is that IDARTS has explored the relation-
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Architecture Accuracy(%) # Params +× Search Cost Search
top-1 top-5 (M) (M) (GPU days) Method

Inception-v1 [27] 69.8 89.9 6.6 1448 - Manual
MobileNet [7] 70.6 89.5 4.2 569 - Manual
ShuffleNet 2x (v1) [35] 73.6 89.8 ∼ 5 524 - Manual
ShuffleNet 2x (v2) [20] 74.9 - ∼ 5 591 - Manual
NASNet-A [41] 74.0 91.6 5.3 564 1800 RL
AmoebaNet-C [24] 75.7 92.4 6.4 570 3150 evolution
PNAS [17] 74.2 91.2 5.1 588 225 SMBO
DARTS (2nd order) [18] 73.2 91.3 4.7 574 4.0 gradient
SNAS (mild) [29] 72.7 90.8 4.3 522 1.5 gradient
P-DARTS [3] 75.6 92.6 4.9 557 0.3 gradient
PC-DARTS [30] 74.9 92.2 5.3 586 0.1 gradient
SGAS [11] 75.9 92.7 5.4 598 0.25 gradient
IDARTS(CIFAR10) 76.14 92.87 5.81 657 0.1 gradient
ProxylessNAS [2] 75.1 92.5 7.1 465 8.3 gradient
PC-DARTS [30] 75.8 92.7 5.3 597 3.8 gradient
FairDARTS [4] 75.6 92.6 4.3 440 3 gradient
IDARTS(ImageNet) 76.52 93.00 6.18 714 3.8 gradient

Table 2. A comparison with state-of-the-art architectures on ImageNet. IDARTS(CIFAR10) means the architecture was searched on
CIFAR10. IDARTS(ImageNet) means the architecture was searched on ImageNet directly.

Figure 7. Comparison of α values in the shallowest edge of
IDARTS and PC-DARTS on CIFAR10

.

ship between different parameters and used our backtrack-
ing method to fully train the architecture parameter α. We
theoretically derive our method under the framework of gra-
dient descent, which provides a solid foundation for the
convergence analysis of our method.

5. Conclusion
In this work, we proposed the IDARTS method for an

efficient architecture search, motivated by Bilinear Models.
IDARTS trains architecture parameters by decoupling the
relationship between different types of parameters and us-
ing the backtracking method to coordinate the training of
different parameters. The decoupling allows IDARTS to
search for the best network structure. Experiments demon-
strate the efficacy of the proposed algorithm and show that

Figure 8. Comparison of searching loss on CIFAR10 with IDARTS
and PC-DARTS

IDARTS achieves state-of-the-art performance on the Ima-
geNet dataset.
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