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Figure 1: Continual neural mapping learns scene properties from sequential data. By memorizing past experience within
shared weights of a single network, we eliminate the need to store the entire sets of data or learn from scratch at each time.

Abstract

Recent advances have enabled a single neural network to
serve as an implicit scene representation, establishing the
mapping function between spatial coordinates and scene
properties. In this paper, we make a further step towards
continual learning of the implicit scene representation di-
rectly from sequential observations, namely Continual Neu-
ral Mapping. The proposed problem setting bridges the gap
between batch-trained implicit neural representations and
commonly used streaming data in robotics and vision com-
munities. We introduce an experience replay approach to
tackle an exemplary task of continual neural mapping: ap-
proximating a continuous signed distance function (SDF)
from sequential depth images as a scene geometry repre-
sentation. We show for the first time that a single network
can represent scene geometry over time continually without
catastrophic forgetting, while achieving promising trade-
offs between accuracy and efficiency.

1. Introduction
Scene representations convert visual sensory data into

compact forms. Recent trends [58, 34] show that the map-
ping function y = f(x; θ) between the spatial coordinate
x and the scene property y can serve as an implicit scene
representation parameterized by a single neural network θ.
Such a new paradigm has drawn significant attention: the
neural network defined in a continuous and differentiable
function space can be trained to recover fine-grained details
at scene scale with efficient memory consumption, which
offers great benefits over alternatives.

However, batch training of the implicit neural represen-
tation is impractical and inefficient when dealing with pos-
sibly unending streams of data. To handle the sequential
observations and obtain a globally consistent representa-
tion over time, conventional approaches turn to a data fu-
sion paradigm. A discretized scene representation is pre-
defined in memory-inefficient parameter space and updated
according to perceived observations at each time. The gap
between the emerging neural representation paradigm and
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the conventional data fusion paradigm addresses a critical
issue: how we can learn an implicit neural representation
continually from sequential observations?

In this paper, we introduce a novel problem setting of
continual neural mapping. The central idea is to maintain a
continually updated neural network at each time to approx-
imate the mapping function f(·) within the environment.
Past observations (x1:t,y1:t) are marginalized out and sum-
marized into compact neural network parameters θt during
training. The neural network not only serves as a mem-
ory of sequential data, but also makes predictions of scene
properties within the entire environment. The prediction-
updating fashion leads to a self-improved mapping function
when constantly exploring the environment, which resem-
bles human-like learning scenarios from a continual learn-
ing perspective.

We instantiate the proposed continual neural mapping
problem by tackling the SDF approximation from sequen-
tial depth images. We propose an experience replay ap-
proach that distills past experience to guide the predic-
tion without catastrophic forgetting. Experimental results
demonstrate that the proposed method outperforms batch
re-training/fine-tuning baselines and obtains comparable re-
sults against state-of-the-art approaches. The key contribu-
tions of our work are summarized as follows:

- We are the first to address the problem of learning an
implicit neural scene representation continually from se-
quential data, namely continual neural mapping;

- We deal with the problem of SDF approximation from
sequential data under the proposed continual neural map-
ping setting, outperforming competitive approaches;

- We propose an experience replay method to learn scene
geometry continually without catastrophic forgetting. The
memory consumption and training time are orders of mag-
nitude less than the batch re-training baseline.

2. Related Work
The proposed continual neural mapping setting lies in

the intersection of implicit neural representation, 3D data
fusion, and continual learning. In this section, we review
the most related work in each area and highlight the major
differences over the proposed problem setting.

2.1. Implicit Neural Representation

Implicit neural representation takes a neural network
as the continuous mapping function between the spatial
coordinates and the scene properties. Shape-conditioned
representations concatenate the coordinate x and a latent
shape embedding z to represent multiple shape instances
as y = f(x, z; θ). The shape embedding z is latter
conducted in a local fashion to recover fine-grained de-
tails at scene scale [21, 45, 5]. The output properties
y infered from the shape-conditioned representations vary

across shape [43, 33, 9], appearance [39, 41, 56], and mo-
tion [38]. Another line uses neural networks to regress
the parameters of decomposed primitives directly from the
input point set as {mj} = f({xi}; θ). The regressed
primitive parameters are then grouped together as the en-
tire shape parameter space, representing the scene geom-
etry as y = ϕ({mj},x). Commonly used primitives in-
clude hyperplanes [14], Gaussian mixtures [19, 15, 16], vol-
umes [61], and local planes [8].

Recent work has investigated the mapping from spatial
coordinates to scene properties directly through MLPs as
y = f(x; θ). The high-frequency details can be preserved
well with the help of positional encoding [34], Fourier fea-
ture mapping [60], or the periodic activation [58]. We ex-
tend the implicit neural representation to a continual learn-
ing fashion, where an implicit representation can be directly
learned from sequential data without computationally ex-
pensive re-training or catastrophic forgetting.

2.2. Incremental Depth Fusion

Conventional depth fusion paradigm aims to maintain a
pre-defined output representation instead of the implicit net-
work parameters. The mapping between coordinates and
the output representation is accomplished through a de-
terministic data assignment, where the parameters of the
output representation are incrementally updated through
weighted averaging according to streaming observations.
Most commonly used representations for incremental depth
fusion include volumetric TSDF [10, 37, 40, 66, 12] and
surfel [46, 67, 22, 54, 55]. On account that the representa-
tion is defined in the continuous output range, discretization
is inevitable. Postprocessing is usually conducted to trans-
form the discrete representation into a watertight mesh [28]
or render the scene as a view-dependent dense image.

Recent advances have fostered a learning-based depth
fusion fashion. [4, 72, 11] seek to find a compact and op-
timisable feature for estimated monocular depth, where the
entire scene is represented by a set of keyframes with low-
dimensional depth codes. Further extensions utilize neural
networks to learn aggregation of learned image/depth fea-
tures in a latent space [50, 44, 20, 69, 36, 65] as the global
scene representation. RoutedFusion [64] follows the con-
ventional TSDF fusion pipeline and learns how volumetric
TSDF is updated. However, all previous approaches view
depth fusion as a deterministic learnable operation. We, on
the other hand, address the problem of knowledge fusion
as a continual learning (training) procedure, where the neu-
ral network serves as a self-improving scene representation
with parameters updated continually.

2.3. Continual Learning

The proposed continual neural mapping problem targets
the updating of network parameters at each time when new
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Figure 2: Relevant learning paradigms.

observations arrive that lead to a self-improved mapping
function. This problem setting falls into a continual learn-
ing [42] category: the streaming data are no longer iid-
sampled but highly correlated to adjacent ones. We want
to update the mapping function in the newly observed areas
while preserving an accurate mapping in previously visited
regions without forgetting.

Following [13], existing methods can be generally cat-
egorized into three kinds: regularization, parameter isola-
tion, and replay. Regularization-based methods aim to en-
force parameter consistency during the training process by
penalizing the changes of important parameters [23, 71, 6,
1] or through knowledge distallation [26, 47]. On the other
hand, parameter-isolation methods assume that different
subsets of the network parameters are attributed to different
tasks, thus leading to a flexible gating mechanism. Isolated
parameters for each sub-network can be achieved through
a dynamically expanded network [53, 24, 2, 70, 48] or
through task-specific masking [30, 29, 57]. Finally, replay-
based methods store samples or generate pseudo samples
as the memory of old knowledge. Special attention is de-
voted to different sample selection strategies [49, 52], sam-
ple generation strategies [3, 51, 68], and optimization con-
straints [27, 7]. In this paper, we propose an experience re-
play approach to tackle the proposed continual neural map-
ping problem by leveraging past experience to guide the
continual learning of new observations.

3. Continual Neural Mapping
In this section, we formalize the proposed continual neu-

ral mapping problem setting. The connections to relevant
learning paradigms are clarified afterwards.

3.1. Problem Statement

We consider a general setting within a 3D environment
W , where sequential data Dt are constantly captured. The
data Dt = {(xt

i,y
t
i)}nt consist of nt tuples of spatial co-

ordinates xt
i ∈ Ωt and the corresponding scene properties

yt
i with observed areas Ωt ⊂ W specified. The objective of

the continual neural mapping is to learn a mapping function
f(·) parameterized by a neural network θt continually from
the observed data Dt to depict the connections between the
spatial coordinates and the scene properties as:

y = f(x; θt),∀x ∈ W. (1)

Knowledge transfer. The mapping function f(·) serves as
an implicit neural representation for the 3D environment,
which can be queried at any time to predict the scene prop-
erty y given the spatial coordinate x. For previously vis-
ited areas x ∈ Ω1:t, the mapping function serves as a com-
pact memory of past observations D1:t. This is related to
backward transfer [25, 27], where the neural network not
only memorizes existing data, but also leads to better per-
formance on previously visited areas when learning from
new observations. On the other hand, for unseen areas
x ∈ W ∩ Ω1:t, the mapping function serves as a predictor.
Forward transfer may be facilitated that distills knowledge
and skills for future exploration. Consequently, continual
neural mapping alleviates the need for storing the entire
dataset D1:t while preserving the complete mapping func-
tion within the environment, guaranteeing a quick conver-
gence to new observations.
Challenges. The objectiveness of the proposed continual
neural mapping problem is to find an optimal neural net-
work that shares parameters θt across all previous tasks1 as:

argmin
θt

1

∥D1:t∥
∑
D1:t

L(f(x; θt),y) (2)

The major challenge lies in the gap between the proposed
problem setting and the conventional Empirical Risk Mini-
mization (ERM) principle [63]: the streaming data Dt lead
to constant distribution shift. As non-stationary data distri-
bution breaks the iid-sampled assumption, a learning solu-
tion is required to model the overall distribution of past ob-
servations without the need to store the entire dataset D1:t.

3.2. Connections to Relevant Learning Paradigms

Though the objectiveness in (2) is a joint optimization
of temporally seperated tasks L(f(x; θ),y), (x,y) ∈ Dt,
continual neural mapping can be understood from the per-
spectives of four relevant learning paradigms as illustrated
in Fig. 2. Clarifying our problem setting from the most rel-
evant continual learning perspective, continual neural map-
ping falls into a domain-incremental [62] continual learning
scenario: we aim to maintain a globally consistent repre-
sentation with a single network from sequential data, where
data distribution shifts and the objective remains the same.

1Task refers to a particular period of time where the data distribution is
stationary and the objective function is constant [25].
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Figure 3: We validate the issue of forgetting by estimating
per-point SDF value for the first frame with current network
parameters. The percentage of |f(x; θt)| < 0.01 declines
drastically for the fine-tuning baseline, while the proposed
method maintains a consistent accuracy level across time.

On the other hand, multi-task learning splits the train-
ing process into a set of dependent tasks and optimizes all
tasks jointly. For our continual neural mapping setting, the
task boundary is unknown, thus requiring a continual task
identifier that assigns training data to specific tasks consis-
tently over time. Meanwhile, backward transfer addresses
the problem of constant network adaptation for all tasks,
which is opposed to conventional multi-task learning that
fixes the network once the model is deployed [13]. The fine-
tuning strategy maintains a single network consecutively,
where network parameters of a new task are initialized with
that of the last task. However, as neural networks tend to be
overly plastic [35] from the ”plasticity-stability dilemma”
perspective [32], the performance of early tasks will de-
grade on current network parameters (Fig. 3), namely catas-
trophic forgetting [31]. Finally, batch re-training preserves
all previously observed data x1:t to satisfy the iid-sampled
assumption. However, batch re-training learns a new model
at each time from scratch without exploiting past experi-
ence. The linearly-growing number of training data results
in expensive memory consumption and computational cost.

4. Example: SDF Regression
In this section, we instantiate the proposed continual

neural mapping on the task of scene geometry approxima-
tion. The objective is a special case of (2) that defines the
mapping function f(·) as the SDF parameterized by a single
multilayer perceptron (MLP), representing the 3D surface
as a zero level-set M:

M = {x ∈ R3|f(x; θt) = 0}, f(·) : R3 7→ R. (3)

In a batch training setting, the problem is studied by [17,
58] and solved as an Eikonal boundary value problem. The
continuous SDF can be fit from oriented point cloud data

Continual mapping
f(x;θ)

xt Experience
replay

 
Sample buffer

Off-surface
regularizer

Figure 4: During training, newly observed data are pre-
served within a fixed size of buffer to constrain zero level-
set. Off-surface samples are guided by last network param-
eters to penalize sign deviation.

that are iid-sampled from closed surfaces. We take a step
further to tackle a more realistic and challenging case that
continually learns SDFs parameterized by a single MLP
from streaming posed depth images.

4.1. Solution

In practice, we split the energy function (2) into two
terms with equal weights as:∑

D1:t−1

L(f(x; θt),y) +
∑
Dt

L(f(x; θt),y), (4)

where the loss function L(f(x; θt),y) consists of a data
term |f(x; θ)|, an Eikonal term |∥∇xf(x; θ)∥−1|, a normal
constraint |∇xf(x; θ) − n|, and an off-surface constraint
ψ(f(x; θ)) = exp(−α · |f(x; θ)|), α≫ 1 following [58].

The split terms in (4) can be understood as a combinatory
constraint of the current observation Dt and the past expe-
rience D1:t−1. Notice that in the proposed continual neu-
ral mapping setting, the entire sequence of raw data D1:t−1

should not be preserved, we resort to an experience replay
method to model the past experience as illustrated in Fig. 4.

4.2. Experience Replay

As mentioned in Sec. 1, the maintained neural net-
work serves as a compact memory of previous observa-
tions. Hence, random coordinates with SDF values approx-
imated by the last neural network {xi, f(xi; θ

t−1)}nt can
be viewed as iid samples replayed from past experience to
regularize the current network. The replayed samples are
twofold: 1) off-surface samples to regularize the distance
sign; 2) zero level-set samples to regularize the data term
and the normal constraint.

For off-surface samples {xo, f(xo, θ
t−1)}, we back-

project the points to the camera coordinate at time t and
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Figure 5: It is obvious that sign reasoning for areas behind
the red surface may be false negative. We need to incor-
porate previous knowledge to better regularize the sign of
off-surface samples.

compare them against the depth map. As illustrated in
Fig. 5, points within the frustum that are in front of the sur-
face should be true positive, while points within the frun-
stum that are behind the surface may be false negatives.
Hence, we label samples with positive SDF approximation
f(xo; θ

t−1) > 0 or the samples that fall in front of the sur-
face within the frustum as positive, and label samples that
fall behind the surface within the frustum with negative SDF
approximation f(xo; θ

t−1) < 0 as negative. The sign regu-
larizer for off-surface samples is then defined as:

ψs(f(x; θ)) =

{
exp(−α · f(x; θ)) if positive
exp(α · f(x; θ)) if negative

(5)

For zero level-set samples xz , one intuitive solution is to
construct voxel grids and estimate the SDF value for each
vertex. The zero level-set samples can then be easily ob-
tained on the extracted triangle mesh. However, due to in-
complete observations, spurious zero level-set samples may
be generated in unseen areas. Additional maintenance of
occupancy status for each voxel grid is required to eliminate
erroneous samples, which is memory inefficient. Here, we
take a simple solution to randomly down-sample previous
observations and maintain a fixed size of buffer data [24]
to regularize the data term |f(xz; θ)|. Experimental results
show that this simple solution is effective enough to store
previous knowledge without catastrophic forgetting.

5. Experiments
In this section, we demonstrate that the proposed con-

tinual neural mapping setting succeeds in representing con-
stantly observed scene geometry with a single neural net-
work from scratch. The recovered accuracy is comparable
against competitive methods with orders of magnitude less
memory consumption.

5.1. Experimental Setup

The experiments were conducted on a desktop PC with
an Intel Core i7-8700 (12 cores @ 3.2 GHz), 32GB of
RAM, and a single NVIDIA GeForce RTX 2080Ti.

Model. We use a single 5-layer SIREN MLP [58] with 256
units in each layer as our base network model.
Baselines. Following [13, 24], the fine-tuning baseline is
initialized with the last model parameters at each time and
is naively trained for each frame; the re-training baseline is
trained with the entire sequence of data following the signed
distance function setup of SIREN [58]. To further study the
effect of the replay buffer, we also provide a re-initialization
baseline that learns from scratch with the buffer data for
each frame. Adam optimizer is adopted with a learning rate
of 0.0001. The data for each method are trained for 1500
epochs if not specified, while the first frame is trained for
10000 epochs to ensure nice initialization.
Dataset. We mainly evaluate our results quantitatively
and qualitatively on the synthetic ICL-NUIM livingroom
dataset [18]. Additional qualitative evaluation is conducted
on the real TUM dataset [59]. The entire sequence is down-
sampled due to the extremely high cost of the batch re-
training baseline. The normal is estimated and oriented to-
wards the camera location using Open3D [73].

5.2. Model Analysis

We provide an in-depth analysis of the proposed expe-
rience replay method by comparing it with the aforemen-
tioned baselines and state-of-the-art methods. We refer
readers to our supplementary video for better visualizing
the continual changes over time.
Continual neural mapping without forgetting. We first
assess the forgetting issue under the proposed continual
neural mapping setting. The objective is to establish an ac-
curate mapping between spatial coordinates and the corre-
sponding SDF value in previously visited areas. Notice that
the depth data sampled from the synthetic ICL dataset are
exactly surface samples with zero distance. We calculate
the mean distance of each frame xt using the learned net-
work parameters θt at each time. As illustrated in Fig. 6, the
proposed method achieves comparable accuracy against the
batch re-training baseline while eliminating the catastrophic
forgetting issue compared to the fine-tuning baseline.

A similar conclusion can be drawn from the 2D visual-
ization of the SDF approximation. As illustrated in Fig. 7,
the fine-tuning baseline quickly forgets the geometry of pre-
viously visited areas, while the proposed method maintains
a gradually improved SDF approximation during the explo-
ration of the mobile sensor.
Effective solution of experience replay. We further study
the role of experience replay in our continual neural map-
ping setup. Revisiting Sec. 4.2, past experience is used to
initialize the network weight, regularize the sign of free
space, and constrain the zero level-set. We find that these
three issues are essential to the problem of SDF regression
from sequential data, guaranteeing past knowledge transfer
for accurate SDF approximation.
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Figure 6: The accuracy heatmap with overall mean/std. (m) of each method on the ICL dataset. The heatmap value at (m,n)
is the mean SDF approximation of all points from frame m using nth network parameters. Noticeably, the proposed method
maintains consistent accuracy for all frames, while the fine-tuning baseline suffers from catastrophic forgetting severely.
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Figure 7: Top view visualization on the ICL dataset of SDF approximation from frame 100 to 800. Fine-tuning baseline (top)
suffers from catastrophic forgetting, while ours (bottom) recover the scene geometry continually from sequential data.

We first study the effect of network initialization by com-
paring it against the re-initialization baseline. As illustrated
in Fig. 8, the knowledge distillation through weight initial-
ization leads to faster convergence and better results when
a new frame arrives. Fig. 9 displays that the performance
of re-initialization baseline deteriorates significantly due to
the lack of parameter initialization from previous network
parameters. It is noteworthy that the re-initialization base-
line cannot recover comparable high-frequency details even
after 10000 epochs of training.

On the other hand, the guided sign regularization is cru-
cial to eliminate the false negative distance field arising
from occlusion (see Fig. 5). As illustrated in Fig. 10, off-
surface samples guided by past experience serve as a re-
liable regularization to constrain the sign of the distance
function.

We can also experimentally find that the simple solution
of storing a fixed number of buffer with the same size of
each frame [24] is effective enough to serve as a replayed
experience of zero level-set observations. Fig. 6, 7 and the

Epochs

Method

Ours

Re-initialization

A
cc
u
ra
cy

Figure 8: Compared to re-initialization, parameter sharing
between frames is beneficial for knowledge distallation, re-
sulting in faster convergence with better performance.

supplementary material demonstrate that training a network
without replayed buffer leads to catastrophic forgetting.
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(a) Re-initialization (1500 epochs) (b) Re-initialization (10000 epochs) (c) Re-training (d) Ours

Figure 9: The extracted mesh using approximated SDF values. The proposed approach achieves comparable results against
the computationally expensive re-training baseline and outperforms the re-initialization baseline. High-frequency details of
the scene geometry cannot be well-recovered by re-initialization baseline even if it is trained for 10000 epochs.

Figure 10: Without the guidance of the last network, false
negative SDF approximation arising from partial occlusion
may generate spurious zero level-set surface (left). We ex-
ploit past experience to alleviate this issue (right).

Tradeoffs between accuracy and efficiency. Our method
guarantees constant training time for each frame (approxi-
mately 6 minutes for 1500 epochs) due to the fixed size of
the replayed buffer. Though an additional memory is re-
quired to store the buffer data, the training time will not
sacrifice as the batch size are equally divided and attributed
to the current data and the buffer data at each iteration.
On the contrary, batch re-training baseline will take data
from the first frame to the last frame as the entire batch
dataset, leading to linearly scaled training time arising from
the constantly augmented training data. As illustrated in

Fig. 1, when the #87 frame arrives, the batch re-training
baseline will take about 13 hours to train the entire dataset
for 1500 epochs. Hence, we obtain orders of magnitude
smaller training time with comparable accuracy when com-
pared with the batch re-training baseline. The storage of
past observations is also orders of magnitude smaller. On
the other hand, when compared to the fine-tuning and re-
initialization baselines, we achieve better accuracy by ex-
ploiting the guidance of past experience. The proposed con-
tinual neural mapping ensures the incremental network pa-
rameter updating in a globally consistent way, achieving a
nice trade-off between efficiency and accuracy when com-
pared with alternative baselines.

Comparisons against state-of-the-art. We also compare
against the state-of-the-art methods in terms of the main-
tained model size and the extracted mesh accuracy. For
RoutedFusion [64], we use a voxel size of 2cm, corre-
sponding to a grid resolution of 5123 allocated voxels. For
LIG [21], we use a part size of 25cm to meet the point den-
sity. As shown in Fig. 12, the continuous characteristic of
our signed distance function leads to spurious zero level-
set surfaces in unseen areas, hence resulting in low recon-
struction accuracy. However, if we follow the competitive
methods to reason the occupancy status of each voxel grid
according to previous observations and only extract triangle
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Figure 11: Incrementally updated geometry on the synthetic ICL (top) and real TUM (bottom) datasets. The mesh is visual-
ized with the vertex normal. We refer readers to the supplementary materials for more details.

Table 1: The parameter size of the representations and the
cloud/mesh distance error (m) of generated mesh models.

Method Mean Std. Parameters
RoutedFusion [64] 0.0403 0.0687 5123

LIG [21] 0.0106 0.0146 69,795×32
Ours 0.0584 0.2115 198,657
Ours (masked) 0.0044 0.0010 198,657

Figure 12: Error map of the extracted mesh model. The
majority of erroneous surface lie in the unseen areas (right).
By specifying voxel indices for mesh extraction according
to the observations as masked model, the accuracy of the
mesh outperforms competitives (middle).

meshes around occupied voxels, the overall accuracy out-
performs the state-of-the-art methods (Tab. 1). It should be
noted that we only maintain a single network with a size of
less than 800 KB to achieve mm level of accuracy through
continual learning. This is consistent with our average ac-
curacy of SDF approximation in Fig. 6.

The continuous nature of the implicit representation dis-
cards the necessity of voxelization, thus guaranteeing a
much compact and expressive representation. The contri-
bution of the proposed approach can also be understood
from the fusion perspective: Instead of maintaining the dis-
cretized value of SDF y, we resort to the parameter space of
a continuous signed distance function. The volumetric fu-
sion of SDF value is replaced by the incremental updating
of the network parameters that are learned continually from

sequential observations. As illustrated in Fig. 11, accurate
and smooth surfaces can be extracted from the incremen-
tally updated network on both synthetic and real datasets.

6. Conclusion
In this paper, we introduce a novel continual neural map-

ping problem, aiming to bridge the gap between the preva-
lent batch-trained implicit neural representation and the
commonly used streaming data for robotics and vision ap-
plications. We primarily aim to discern if a continual learn-
ing solution can eliminate the need for batch data preserva-
tion and re-training fashion without catastrophic forgetting
for coordinate-based MLP. The answer is positive. Dealing
with the SDF regression problem, continual neural mapping
benefits from the guidance of past experience and enables a
single network to model the scene geometry incrementally
from sequential observations. This brings great potentials to
tasks with online requirements. Besides, the general prob-
lem setting turns scene understanding into an incremental
map-centric fashion.

Exploiting the expressiveness of the neural network as
a memory for past sequential observations or a predictor
for future exploration may be the route to exciting future
work. Potential directions based on the continual neural
mapping paradigm include how to achieve faster conver-
gence for real-time applications, how to encode multiple
scene properties within a single network continually, and
how to enhance the expressiveness and the prediction qual-
ity with different network architectures and learning tech-
niques.
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