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Figure 2. Illustration of the proposed A-MANO. Left: the sub-
division of hand regions and anchors attached to it. Right: the
proposed twist-splay-bend frame.

the grasp by attracting fingers to its nearest point on object
surface w.r.t distance-based energy. Hasson et al. [24] ap-
plied well-designed interaction losses which are also based
on proximity metric. Although our method differs from all
of the previous methods in terms of contact heuristic, we
consider that both [1] and [24] are still strong baselines.
Thus we will compare our contact heuristic with theirs.

3. Anatomically Constrained A-MANO
The proposed A-MANO inherits from a parametric skin-

ning hand model, MANO [47], which drives an articulated
hand mesh with pose parameters θ and shape parameters
β. θ ∈ R15×3 is 15 joint rotations along the hand kine-
matic tree. And β ∈ R10 represents the PCA components
of hand shape. The main differences of A-MANO from
MANO are: 1) the restriction on the joints’ rotation axes
and angles within the twist-splay-bend frame; 2) the anchor
representation in the subdivision of hand region.

The Twist-splay-bend Frame. Fitting on 15 joint rota-
tions of MANO requires high DoFs regression which may
cause abnormal hand posture as shown in Fig. 7. Since the
human hand can be modeled in a kinematic tree, and the
majority of the joints only have one DoF about the bend
axis, we can impose constraints over the rotation about the
unwanted axes. Therefore the proposed twist-splay-bend
Cartesian coordinate frame can be assigned to each joint
along the kinematic tree. The frame’ s x, y, z axes are coax-
ial to the 3 revolute directions: twist, splay, and bend direc-
tion on the basis of hand anatomy (Fig. 2 right). Then we
can impose axial constraints in the twist and splay axes, and
impose angular constraints w.r.t the bend angle. Details of
the twist-splay-bend frame are elaborated in Supp A.1.

Anchors. Since the hand mesh of different subjects are
almost identical in the subdivision of hand region (e.g. pha-
langes), we can interpolate several representative points
(later we call it anchors) on hand mesh to largely reduce
the number of HO vertex pairs. Instead of attaching springs
from object mesh to all the affinitive vertices on hand mesh,

we only attach them on the several hand subregion centers,
as we call it anchors (Fig. 2 left). According to the statis-
tics [24, 7] on the contact frequency of different hand parts,
we first divide the full hand palm into 17 subregions: 3 for
each phalange of 5 fingers, 1 for metacarpals, and another
for carpals. Then, we interpolate up to 4 anchors for each
subregion. We ignore all the vertices on the back side of the
hand. Details of subregion division and anchors interpola-
tion are described in Supp A.2, A.3.

4. Contact Potential Field
Contact as Spring-Mass System. A single contact is
modeled as a spring-mass system which consists of a spring
and two mass points on each side (hand and object). When
the spring is at its rest position, it does not store energy,
whilst it is stretched or compressed, according to Hooke’s
Law1, it will store the elastic potential energy with the form:
1
2k|∆l|2, where k is the spring elasticity, and |∆l| is a cer-
tain “distance” metric w.r.t. the spring’s rest position.

In CPF, we define two types of spring: attractive spring
and repulsive spring. The goal of attractive spring is to pull
the hand vertex vh toward the object vertex vo based on
a given HO vertex pair affinity. And the goal of repulsive
spring is to push the vh away from vo along the vo ’s nor-
mal if the vh is in the vicinity of vo. Apart from these defi-
nitions, we should also point out that the attractive spring is
bound with a certain pair of HO vertex affinity, while the re-
pulsive spring only takes effect in the neighborhood of HO
vertex pairs at some point.

- Attractive Spring. We define the rest length of attrac-
tive spring as 0 in which the hand vertex and object vertex
are in perfect contact, and the distance metric |∆l| as Eu-
clidean distance. Given a HO affinity that includes a vertex
pair: vh

i and vo
j , the |∆latrij | is equal to

vh
i − vo

j


2
. The

potential energy of the current attractive spring is given by:

Eatr
ij =

1

2
katrij ∗

∆latrij

2

2
(1)

- Repulsive Spring. We hope that the repulsion energy
is high when vh

i is penetrating or in the vicinity of vo
j , but

gradually decays as the vh
i moves away from the object,

and finally becomes negligible at certain distance. Given a
proximate HO vertex pair: vh

i and vo
j , We define a repulsive

spring to model this behavior. Supposing that the repulsive
spring has the rest position at +∞ away along the object
normal no

j . We adopt a heuristic distance metric |∆l| =
e−|∆lrplij |−e−∞ = e−|∆lrplij |, where |∆lrplij | = (vh

i −vo
j )·no

j

is the projection of the (vh
i − vo

j ) on the object normal no
j .

Thus, the potential energy of the current repulsive spring is

Erpl
ij =

1

2
krplij ∗

�
e−|∆lrplij |�2 (2)

1https://en.wikipedia.org/wiki/Hookes_law
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Figure 4. Illustration of assigning Vertex Contact, Contact Region
and Anchor Elasticity onto object surface.

5.2. Pixel-wise Contact Recovery Module, PiCR

With the coarse meshes of hand and object in HoNet,
PiCR learns to recover the CPF by firstly paring the hand
anchors and object vertices into HO affinity pairs and then
regressing the spring elasticities that describe the affinities.
To achieve this, PiCR yields three cascaded outcomes: 1)
Vertex Contact (VC) decides which vertices on object are
in contact with hand; 2) Contact Region (CR) decides the
subregion that is most likely to contact with those vertices
in VC; 3) Anchor Elasticity (AE) represents the elasticities
of the attractive springs. With VC, CR, and AE, we can then
recover the CPF as illustrated in Fig. 4.

Vertex Contact. PiCR’ s first outcome VC ∈ RNo stands
for the contact probability of object vertices. More specifi-
cally, VC[j] is a probability that implies the j-th object ver-
tex vo

j is in contact with hand. The loss function of VC is
defined as a binary focal loss [33]:

LV C = −
NoX
j

1
img
j ∗ αj(1− fj)

γ log(fj) (5)

where fj = pj if the gt. v̂o
j belongs to any HO affinity, oth-

erwise fj = (1−pj), and the pj is the predicted probability
at VC[j]. 1img

j denotes whether the vertex vo
j is projected

inside the image. αj is inverse class frequency and γ is em-
pirically set to 2.

Contact Region. PiCR’s second outcome CR ∈ RNo×17

stands for the subregion probabilities of object vertices.
More specifically, for the j-th query, CR[j] contains 17
probabilities that indicates vo

j ’s affinity toward 17 hand
subregions. The loss function LCR is defined as a multi-
class focal loss.

LCR = −
NoX
j

1V C
j ∗ 1img

j ∗ (1−mj)
γ log(mj) (6)

where the mj =
P

(pj ∗ tj) in which pj = CR[j] ∈ R17 is
the predicted per-subregion probabilities through softmax,
and tj ∈ R17 is the gt. subregion affinity of v̂o

j as a one-hot
vector. 1V C

j denotes that the gt. VC of v̂o
j is positive.

Anchor Elasticity. PiCR’s third outcome AE∈ RNo stands

Algorithm 1: Procedure of recovering CPF
Input: Vo,Vh,VC,CR,AE
Output: Eelast: elastic energy

1 recovery anchors: A ← linear interpolation(Vh);
2 foreach j ∈ {j | j ≤ No,VC[j] > tvc} do
3 recover subregion id: r ← argmax(CR[j]);
4 foreach ai ∈ Ar (anchors in subregion r) do
5 recover elasticity: katr

ij ← AE[j];
6 Eelast +← 1

2
∗ katr

ij

∥∥ai − vo
j

∥∥2

2
;

7 foreach i ∈ {i | i ≤ Nh,
∥∥vh

i − vo
j

∥∥2

2
≤ trpl} do

8 Eelast +← 1
2
∗ krpl

ij

∣∣ exp(−(vh
i − vo

j ) · no
j )
∣∣2;

for the predicted elasticity of attractive springs katr. More
specifically, AE[j] is the elasticity katrij of an attractive
spring that connects vo

j to its affinitive anchor ai in the pre-
dicted subregion: argmax(CR[j]). The loss function LAE

is defined as a binary cross-entropy (BCE):

LAE =

NoX
j

1V C
j ∗ 1img

j ∗ BCE( katrij , k̂atrij ) (7)

where the k̂atrij is the gt. elasticity described in §4.

With the predicted VC, CR and AE, as well as the coarse
meshes Vo,Vh in HoNet, PiCR finally recovers the CPF and
collects the elastic energy Eelast as described in Algm.1.
We empirically set the probability threshold of VC: tvc =
0.8 and the distance threshold: trpl = 20mm.

PiCR’s Framework. The proposed PiCR consists of a
backbone b that extracts features from image, an encoder
p that converts image features to object vertex features, and
3 heads hvc, hcr and hae which sequentially convert those
features into VC, CR, and AE. As illustrated in Fig. 3, the
process of feature extraction in PiCR can be expressed as:

F ′ =
h
f

�
π(Vo), b(I)

�
, z(Vo)

i
; F = p(F ′) (8)

where b(·) is the hourglass networks [37], π(·) is the per-
spective camera projection, and f(·) stands for aligning
Vo ’s 2D projection π(Vo) with the image features b(I)
through bilinear sampling. Inspired from Eq.(1) in [48],
we also append the object’s root-relative z value z(Vo) at
the end of f(·) to form the pixel-wise features F ′. Next, a
PointNet [40] encoder p(·) is adopted to convert F ′ to its
point-wise features F .

The process of three PiCR’s heads can be expressed as:

VC = hvc(F); CR = hcr(VC,F); AE = hae(CR,F) (9)

where all the heads are presented as multi-layer perceptrons.
We provide implementation details in Supp D.1.
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