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Abstract

Modeling temporal visual context across frames is crit-
ical for video instance segmentation (VIS) and other video
understanding tasks. In this paper, we propose a fast on-
line VIS model termed CrossVIS. For temporal informa-
tion modeling in VIS, we present a novel crossover learn-
ing scheme that uses the instance feature in the current
frame to pixel-wisely localize the same instance in other
frames. Different from previous schemes, crossover learn-
ing does not require any additional network parameters for
feature enhancement. By integrating with the instance seg-
mentation loss, crossover learning enables efficient cross-
frame instance-to-pixel relation learning and brings cost-
free improvement during inference. Besides, a global bal-
anced instance embedding branch is proposed for better
and more stable online instance association. We con-
duct extensive experiments on three challenging VIS bench-
marks, i.e., YouTube-VIS-2019, OVIS, and YouTube-VIS-
2021 to evaluate our methods. CrossVIS achieves state-of-
the-art online VIS performance and shows a decent trade-
off between latency and accuracy. Code is available at
https://github.com/hustvl/CrossVIS.

1. Introduction
Video instance segmentation (VIS) [68] is an emerging

task in computer vision that aims to perform per-pixel la-
beling of instances within video sequences. This task pro-
vides a natural understanding of the video scenes. There-
fore achieving accurate, robust, and fast video instance
segmentation in real-world scenarios will greatly stimulate
the development of computer vision applications, e.g., au-
tonomous driving, video surveillance, and video editing.

Recently, significant progress has been witnessed in still-
image object detection and instance segmentation. How-
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Figure 1. CrossVIS can predict more accurate video instance seg-
mentation results (bottom row) compared with the baseline model
without crossover learning (top row).

ever, extending these methods to VIS remains a challenging
work. Similar to other video-based recognition tasks, such
as video object segmentation (VOS) [45, 46], video ob-
ject detection (VOD) [49] and multi-object tracking (MOT)
[16, 21, 55, 71], continuous video sequences always bring
great challenges, e.g., a huge number of frames required
to be fast recognized, heavy occlusion, object disappearing
and unconventional object-to-camera poses [18].

To conquer these challenges and obtain better perfor-
mance on these video understanding tasks (VIS, VOS,
VOD, and MOT), fully utilizing the temporal information
among video frames is critical. Previous deep learning
based methods on this topic are in four folds. (1) Pixel-level
feature aggregation enhances pixels feature of the current
frame using other frames, e.g., STM-VOS [42] and STEm-
Seg [1] aggregates pixel-level space-time feature based on
Non-local network [57] and 3D convolution, respectively.
(2) Instance-level feature aggregation enhances region, pro-
posal or instance features across frames, e.g., MaskProp [2]
propagates instance features using deformable convolution
[15] for VIS and SELSA [63] fuses instance features us-
ing spectral clustering for VOD. (3) Associating instances
using metric learning, e.g., MaskTrack R-CNN [68] intro-
duces an association head based on Mask R-CNN [24] and
SipMask-VIS [6] adds an adjunctive association head based
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on FCOS [53]. (4) Post-processing, e.g., Seq-NMS [23] and
ObjLink [44] refine video object detection results based on
dynamic programming and learnable object tubelet linking,
respectively.

In this paper, we propose a new scheme for temporal in-
formation modeling termed crossover learning. The basic
idea is to use the instance feature in the current frame to
pixel-wisely localize the same instance in other frames. Dif-
ferent from previous pixel/instance-level feature aggrega-
tion methods, crossover learning does not require additional
network blocks for feature alignment and fusion. It obtains
temporal information enhanced features without increasing
inference computation cost. Different from metric learning
based instance associating methods that require additional
metric learning losses, crossover learning is integrated with
the instance segmentation loss. Besides, it enables efficient
many-to-many relation learning across frames, i.e., the in-
stance pixel features are enforced to be close to the pixels
that belong to the same instance and far from pixels that be-
long to other instances and background. Different from the
post-processing methods, crossover learning is end-to-end
optimizable with back-propagation.

Since crossover learning is integrated with the instance
segmentation loss, it is fully compatible with the other tem-
poral information modeling strategies. In this paper, we fur-
ther improve the instance association strategy by introduc-
ing a global balanced instance embedding learning network
branch. Our main contributions are summarized as follows:

• We propose a novel crossover learning scheme that
leverages the rich contextual information inherent
in videos to strengthen the instance representation
across video frames, and weaken the background and
instance-irrelevant information in the meantime.

• We introduce a new global balanced instance embed-
ding branch to tackle the association problem in video
instance segmentation, which yields better and more
stable results than previous pair-wise identity mapping
approaches.

• We propose a fully convolutional online video instance
segmentation model CrossVIS that achieves strong
results on three challenging VIS benchmarks, i.e.,
YouTube-VIS-2019, OVIS, and YouTube-VIS-2021.
To our knowledge, CrossVIS achieves state-of-the-art
performance among all online VIS methods and strikes
a good speed-accuracy trade-off.

2. Related Work
Still-image Instance Segmentation. Instance segmenta-
tion is the task of detecting and segmenting each distinct
object of interest in a given image. Many prior works
[24, 10, 14, 27, 9, 12, 5, 58, 52, 30, 6, 31] contribute a

lot to the rapid developments in this field. Mask R-CNN
[24] adapts Faster R-CNN [48] with a parallel mask head
to predict instance masks, and leads the two-stage fashion
for a long period of time. [27, 9, 13] promote Mask R-CNN
and achieve better instance segmentation results. The suc-
cess of these two-stage models partially is due to the feature
alignment operation, i.e., RoIPool [25, 22] and RoIAlign
[24]. Recently, instance segmentation methods based on
one-stage frameworks without explicit feature alignment
operation begin to emerge [5, 4, 8, 65, 58, 59]. As a repre-
sentative, the fully convolutional CondInst [52] outperforms
several state-of-the-art methods on the COCO dataset [36],
which dynamically generates filters for mask head condi-
tioned on instances. We build our framework on top of [52]
and extend it to the VIS task.
Video Instance Segmentation (VIS). VIS requires clas-
sifying, segmenting, and tracking visual instances over all
frames in a given video. With the introduction of YouTube-
VIS-2019 dataset [68], tremendous progresses [19, 56, 37,
17] have been made in tackling this challenging task. As a
representative method, MaskTrack R-CNN [68] extends the
two-stage instance segmentation model Mask R-CNN with
a pair-wise identity branch to solve the instance associa-
tion sub-task in VIS. SipMask-VIS [6] follows the similar
pipeline based on the one-stage FCOS [53] and YOLACT
[5, 4] frameworks. [38] separates all sub-tasks in VIS prob-
lem and designs specific networks for each of them, all
networks are trained independently and combined during
inference to generate the final predictions. MaskProp [2]
introduces a novel mask propagation branch on the multi-
stage framework [9] that propagates instance masks from
one frame to another. As an offline method, MaskProp
achieves accurate predictions but suffers from high latency.
[32] introduces a modified variational auto-encoder to solve
the VIS task. STEm-Seg [1] treats the video clip as 3D
spatial-temporal volume and segments objects in a bottom-
up fashion. [29] adopts recurrent graph neural networks for
VIS task. CompFeat [20] refines features at both frame-
level and object-level with temporal and spatial context in-
formation. VisTR [60] naturally adopts DETR [7] for VIS
task in a query-based end-to-end fashion.

Recently, more challenging benchmarks such as OVIS
[47] and YouTube-VIS-2021 [67] are proposed to further
promote the advancement of this field. CrossVIS is evalu-
ated on three VIS benchmarks and shows competitive per-
formances. We hope CrossVIS can serve as a strong base-
line to facilitate future research.

3. Method
Our goal is to leverage the rich contextual information

across different video frames for a more robust instance
representation in video instance segmentation (VIS). To
this end, we take inspiration from [28, 52, 59] and pro-
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Figure 2. Overview of CrossVIS in the training phase. Two frames at time t and t + δ are fed into an fully convolutional network (FCN)
to generate dynamic filters θx,y(t) & θx′,y′(t+ δ) and mask feature maps F̃x,y(t) & F̃x′,y′(t+ δ). Red lines indicate the dynamic filters
and mask feature maps in frame t, blue lines indicate the same in frame t+ δ. Solid lines indicate the still-image prediction process, dotted
lines indicate the proposed crossover learning scheme. The four “~” from top to bottom in the figure correspond to the mask generation
process formulated in Eq. (4), Eq. (7), Eq. (6), and Eq. (5), respectively. Classification, localization as well as global balanced instance
embedding branches are omitted in the figure for clarification.

pose CrossVIS (see Fig. 2) that consists of two key compo-
nents tailor-made for VIS task: (1) the crossover learning
scheme for more accurate video-based instance representa-
tion learning, and (2) the global balanced instance embed-
ding branch for better online instance association.

3.1. Mask Generation for Still-image

For still-image instance segmentation, we leverage the
dynamic conditional convolutions [28, 52]. Specifically, our
method generates the instance mask Mx,y at location (x, y)

by convolving an instance-agnostic feature map F̃x,y from
the mask branch and a set of instance-specific dynamic fil-
ters θx,y produced by the controller head. Formally:

F̃x,y = Concat
(
Fmask;Ox,y

)
, (1)

Mx,y = MaskHead
(
F̃x,y;θx,y

)
, (2)

where F̃x,y is the combination of mask feature map Fmask
and relative coordinates Ox,y . Fmask is produced via
the mask branch attached on FPN [34] {P3, P4, P5} level
features. The relative coordinates Ox,y provide a strong
localization cue for predicting the instance mask. The
MaskHead consists of 3 conv-layers with dynamic filters
θx,y conditioned on the instance located at (x, y) as convo-
lution kernels. The last layer has 1 output channel and uses
sigmoid function for instance mask predictions.

3.2. Crossover Learning

Intuition of Crossover Learning. Still-image instance
segmentation needs two types of information [52]: (1) ap-
pearance information to categorize objects, which is given
by the dynamic filter θx,y in our model; and (2) location
information to distinguish multiple objects belonging to the
same category, which is represented by the relative coordi-
nates Ox,y . In the aforementioned still-image instance seg-
mentation model (see Sec. 3.1), for each instance, we have
a one-to-one correspondence between the appearance infor-
mation and location information: given a θx,y , there exists
one and only one Ox,y as the corresponding location in-
formation belonging to the same instance. Meanwhile, the
connection between different instances is isolated.

However, in terms of the VIS task, given a sampled
frame-pair from one video, the same instance may appear in
different locations of two different sampled frames. There-
fore it is possible to use the appearance information from
one sampled frame to represent the same instance in two
different sampled frames, guided by different location infor-
mation. We can utilize the appearance information θx,y(t)
from one sampled frame t to incorporate the location infor-
mation Ox,y(t + δ) of the same instance in another sam-
pled frame t+ δ. By this kind of across frame mapping, we
expect the learned instance appearance information can be
enhanced and more robust, meanwhile, the background and
instance-irrelevant information is weakened.
Formulation of Crossover Learning. Specifically, for a
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given video, we denote a detected instance i at time t (or
frame t) as:

Ii(t) = (ci(t),θx,y(t), ei(t)), (3)

where ci(t) is the instance category, θx,y(t) is the dynamic
filter for MaskHead, and ei(t) is the instance embedding
for online association. Without loss of generality, we as-
sume that an instance Ii exists in both frame t (denoted as
Ii(t)) as well as frame t+ δ (denoted as Ii(t+ δ)).

Within each frame, following the setup and notation in
Sec. 3.1, at time t, the instance mask of Ii(t) located at
(x, y) can be represented as:

Mx,y(t) = MaskHead
(
F̃x,y(t);θx,y(t)

)
. (4)

At time t + δ, the instance move from location (x, y) to
location (x′, y′). So the instance mask of Ii(t + δ) can be
represented as:

Mx′,y′(t+ δ) = MaskHead
(
F̃x′,y′(t+ δ);θx′,y′(t+ δ)

)
,

(5)
Our crossover learning scheme establishes a connection

between the dynamic filter from one frame and the mask
feature map from another frame. Specifically, we expect
the dynamic filter θx,y(t) of Ii(t) can produce the mask of
Ii(t+ δ) by convolving its mask feature map F̃x′,y′(t+ δ):

M×
x′,y′(t+ δ) = MaskHead

(
F̃x′,y′(t+ δ);θx,y(t)

)
, (6)

where M× with a superscript “×” denotes the instance
mask produced by crossover learning. Similarly, we expect
the dynamic filter θx′,y′(t+ δ) of Ii(t+ δ) can produce the
mask of Ii(t) by convolving its mask feature map F̃x,y(t):

M×
x,y(t) = MaskHead

(
F̃x,y(t);θx′,y′(t+ δ)

)
. (7)

Following [52], during training, the predicted instance
masks Mx,y(t), Mx′,y′(t+ δ), M×

x′,y′(t+ δ) and M×
x,y(t)

are all optimized by the dice loss [41]:

Ldice (M,M∗) = 1−
2
∑HW
i MiM

∗
i∑HW

i (Mi)
2
+
∑HW
i (M∗i )

2
(8)

where M is the predicted mask and M∗ is the ground truth
mask, i denotes the ith pixel. During inference, the instance
mask generation process keeps the same as [52], with no
crossover involved.
Advantages of Crossover Learning. For a given in-
stance Ii(t), its appearance information θx,y(t) can learn
two kinds of representations: a within-frame one in frame
t, and an across-frame one in frame t+ δ. At time t+ δ, the
instance Ii(t+δ) may have a different appearance and be in

-th sampled
reference frames

distribution

-th sampled
reference frames

distribution

Shift

Shift

is independent of 
sampled reference frames

Figure 3. An illustration of pair-wise local embeddings (Fig. 3,
left) used in [68, 6], and the proposed instance proxies (Fig. 3,
right). For pair-wise local embeddings, {eN (k)} is the set of allN
instance embeddings from k-th sampled reference frames, while in
the k′-th sampling, the sampled instance identities will change to
{eN′(k′)}, causing a distribution shift. Even if the same instance
Ii is happened to be sampled in both k-th and k′-th samplings, the
corresponding embedding {ei(k)} may also shift to {ei(k

′)} due
to occlusion, changing of background and scale variation, etc. In
contrast, {wM} is a set of learnable instance-wise weights of the
model and independent of sampled reference frames. Therefore
{wM} produces a global, definite convergence status.

a different context compared with the same instance Ii(t) at
time t. Meanwhile, the background may also changed. The
crossover learning enables dynamic filter θx,y(t) to identify
the same instance representation at both time t and t + δ,
regardless of the background and instance-irrelevant infor-
mation. In this way, we can largely overcome the appear-
ance inconsistency as well as background clutters problems
in videos, leveraging the rich contextual information across
video frames to get a more accurate and robust instance rep-
resentation.

3.3. Learning Global Balanced Embeddings for
Instance Association

Another crucial sub-task in VIS is the instance associ-
ation, i.e., learning instance embeddings where instances
of the same identity are close to each other in the feature
space, while instances that belong to different identities are
far apart. These embeddings are used for online inference.

In previous tracking-by-detection VIS methods [68, 6],
the instance embedding is trained in a pair-wise and local
manner. Specifically, given a key frame at time t + δ and
a reference frame at time t, assuming there is a detected
candidate instance Ii in the key frame as the training sam-
ple, and N already identified instances (given by ground
truth label during training) in the reference frame as targets.
Then, Ii can only be assigned to one of the N identities if
it is one of the already identified instances or a new identity
if it is a new instance. The probability of assigning label n
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to Ii is defined as:

pi(n) =



exp (e>i en)

1 +
∑N
j=1 exp (e

>
i ej)

if n ∈ [1, N ],

1

1 +
∑N
j=1 exp (e

>
i ej)

otherwise,

(9)

where ei and en denote the instance embedding of Ii from
the key frame and In from the reference frame, respectively.
pi(n) is optimized by cross-entropy loss:

LCE = − log(pi(n)). (10)

However, this approach suffers from the following issues
(see Fig 3, left) [50, 43]: the feature space where ei and
{eN} := {e1, e2, . . . , eN} live in is defined by the sam-
pled frames, and the decision boundary is closely related
to the instance embeddings {eN} from the reference frame.
Therefore, the optimization and instance association pro-
cesses highly depend on stochastic frame sampling, which
probably lead to unstable learning and slow convergence.
We also observe a relatively large fluctuation in AP when
using pair-wise embeddings (see σAP in Tab. 7).

To remedy these problems and get a globally definite
convergence status for instance embeddings, we train our
model as a M -class classification problem where M equals
to the number of all different identities in the whole train-
ing set. We then employ a set of learnable instance-wise
weights {wM} := {w1,w2, . . . ,wM} as proxies of in-
stances (see Fig 3, right) to replace the embeddings of in-
stances {eN} defined by the sampled frame pair directly
[40, 11, 61]. In this way, the probability of assigning label
n to Ii is reformulated as:

pi(n) =
exp (e>i wn)∑M
j=1 exp (e

>
i wj)

. (11)

pi(n) is also optimized by cross-entropy loss:

LCE = − log(pi(n)). (12)

However, the M -class classification problem is hard to
extend to large-scale datasets (e.g., M = 3, 774 for the
YouTube-VIS-2019 training set) as all the negative classes
participate in the loss computation, resulting in a large pos-
neg samples imbalance issue. Moreover, the large gradient
produced by these negative samples from the instance em-
bedding branch dominates the learning process1, which can
negatively affect the optimization of all sub-tasks. To rem-
edy these problems, we adopt focal loss [35] as the objective

1For the classification sub-task, the large amount of easy negative sam-
ples can be handled by focal loss [35]. For regression and segmentation
sub-tasks, only positive samples participate in training.

for our global instance embedding to balance the pos-neg
samples as well as the learning of each sub-task:

pi(n) =

{
σ(e>i wn) if Ii = In,

1− σ(e>i wn) otherwise,
(13)

Lid = LFocal = −αt(1− pi(n))γ log(pi(n)), (14)

where σ(·) is the sigmoid function, αt and γ follow the def-
inition in [35]. Ii = In means the two instances belong to
the same identity. ei is generated by the proposed global
balanced instance embedding branch which shares a com-
mon structure as the classification branches of [52].

3.4. Training and Online Inference

We jointly train detection, segmentation, crossover
learning and instance association tasks in an end-to-end
manner. The multi-task loss for each sample is:

L = Ldet + Lseg + Lcross + Lid. (15)

Ldet and Lseg denote the object detection loss and still-
image instance segmentation loss in [52]. Lcross denotes
the crossover learning loss:

Lcross = Ldice(M×x,y(t),M∗x,y(t))
+ Ldice(M×x′,y′(t+ δ),M∗x′,y′(t+ δ)),

(16)

where Ldice is formulated in Eq. (8). Lid denotes the in-
stance embedding loss defined in Eq. (13) & Eq. (14).

During inference, the testing video is processed by
CrossVIS frame by frame in an online fashion. We follow
the inference procedure described in [68, 20].

4. Experiments
4.1. Dataset

We evaluate the proposed CrossVIS on three challenging
video instance segmentation benchmarks, i.e., YouTube-
VIS-2019 [68], OVIS [47] and YouTube-VIS-2021 [67].

YouTube-VIS-2019 is the first dataset for video instance
segmentation, which has a 40-category label set, 4, 883
unique video instances and 131k high-quality manual an-
notations. There are 2, 238 training videos, 302 validation
videos, and 343 test videos in it.

OVIS dataset is a recently proposed very challenging
VIS dataset with the philosophy of perceiving object occlu-
sions in videos, which could reveal the complexity and the
diversity of real-world scenes. OVIS consists of 296k high-
quality instance masks (about 2× of YouTube-VIS-2019)
and 5.80 instance per video (about 3.4× of YouTube-VIS-
2019) from 25 semantic categories, where object occlusions
usually occur. There are 607 training videos, 140 validation
videos, and 154 test videos in this dataset.
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Methods Backbone Aug. Type FPS AP AP50 AP75 AR1 AR10

IoUTracker+ [68] ResNet-50 Online - 23.6 39.2 25.5 26.2 30.9
OSMN [69] ResNet-50 Online - 27.5 45.1 29.1 28.6 33.1
DeepSORT [62] ResNet-50 Online - 26.1 42.9 26.1 27.8 31.3
FEELVOS [54] ResNet-50 Offline - 26.9 42.0 29.7 29.9 33.4
SeqTracker [68] ResNet-50 Offline - 27.5 45.7 28.7 29.7 32.5
MaskTrack R-CNN [68] ResNet-50 Online 32.8 30.3 51.1 32.6 31.0 35.5

MaskProp [2] ResNet-50 XX Offline < 6.2† 40.0 - 42.9 - -
SipMask-VIS [6] ResNet-50 Online 34.1 32.5 53.0 33.3 33.5 38.9
SipMask-VIS [6] ResNet-50 X Online 34.1 33.7 54.1 35.8 35.4 40.1
STEm-Seg [1] ResNet-50 XX Near Online 4.4 30.6 50.7 33.5 31.6 37.1
Johnander et al. [29] ResNet-50 XX Online ∼ 30 35.3 - - - -
CompFeat [20] ResNet-50 XX Online < 32.8 35.3 56.0 38.6 33.1 40.3
VisTR [60] ResNet-50 Offline 30.0 34.4 55.7 36.5 33.5 38.9
CrossVIS ResNet-50 Online 39.8 34.8 54.6 37.9 34.0 39.0
CrossVIS ResNet-50 X Online 39.8 36.3 56.8 38.9 35.6 40.7
CrossVIS-Lite DLA-34 Online 48.5 33.0 52.7 35.0 33.9 39.5
CrossVIS-Lite DLA-34 X Online 48.5 36.2 56.7 38.4 35.1 42.0

MaskTrack R-CNN [68] ResNet-101 Online 28.6 31.9 53.7 32.3 32.5 37.7

MaskProp [2] ResNet-101 XX Offline < 5.6† 42.5 - 45.6 - -
STEm-Seg [1] ResNet-101 XX Near Online 2.1 34.6 55.8 37.9 34.4 41.6
VisTR [60] ResNet-101 Offline 27.7 35.3 57.0 36.2 34.3 40.4
CrossVIS ResNet-101 Online 35.6 36.6 57.3 39.7 36.0 42.0

Table 1. Comparisons with some state-of-the-art VIS models on YouTube-VIS-2019 val set. The compared methods are listed roughly
in the temporal order. “X” under “Aug.” indicates using multi-scale input frames during training. “XX” indicates using stronger data
augmentation (e.g., random crop, higher resolution input, etc.) [2, 29] or additional data [1, 20, 29]. The FPS with superscript “†” is not
reported in [2] and is estimated using its utilized components [9, 26, 66, 3]. For the definition of online and offline, we follow [33, 39].

YouTube-VIS-2021 dataset is an improved and aug-
mented version of YouTube-VIS-2019 dataset, which has
8, 171 unique video instances and 232k high-quality man-
ual annotations (about 2× of YouTube-VIS-2019). There
are 2, 985 training videos, 421 validation videos, and 453
test videos in this dataset.

Unless specified, AP and AR in this paper refer to the
average precision and average recall defined in [68]. Fol-
lowing previous works [68, 6, 2, 1], we report our results
on the validation set to evaluate the effectiveness of the pro-
posed method.

4.2. Implementation Details

Similar to the setup of [68, 6], we initialize CrossVIS
with corresponding CondInst instance segmentation model
[52, 26, 70, 34] pre-trained on COCO train2017 [36] with
1× schedule. Then we train the CrossVIS on VIS datasets
with 1× schedule. The pre-train procedure on COCO fol-
lows Detectron2 [64] and AdelaiDet [51]. 1× schedule
on VIS datasets refers to 12 epoch [68]. The learning rate
is set to 0.005 initially following SipMask-VIS [6] and re-
duced by a factor of 10 at epoch 9 and 11. Most FPS data
is measured with a 2080 Ti GPU. For single-scale training,
we resize the frame to 360× 640. For multi-scale training,
we follow the setting in SipMask-VIS. During inference, we
resize the frame to 360×640. For our main results, we eval-

uate the proposed CrossVIS on YouTube-VIS-2019, OVIS
and YouTube-VIS-2021 datasets, respectively. Our ablation
study is conducted on the YouTube-VIS-2019 dataset using
models with ResNet-50-FPN [26, 34] backbone.

4.3. Main Results

Main Results on YouTube-VIS-2019 Dataset. We com-
pare CrossVIS against some state-of-the-art methods in
Tab. 1. The comparison is performed in terms of both ac-
curacy and speed. (1) When using the single-scale training
strategy, CrossVIS achieves 34.8 AP using ResNet-50 and
36.6 AP using ResNet-101, which is the best among all the
online and near online methods in Tab. 1. CrossVIS also
outperforms the recently proposed offline method VisTR.
(2) When using the multi-scale training strategy, CrossVIS
achieves 36.3 AP and 39.8 FPS with ResNet-50, which
outperforms SipMask-VIS, STEm-Seg and VisTR with the
stronger ResNet-101 backbone. (3) Moreover, CrossVIS
achieves the best speed-accuracy trade-off among all VIS
approaches in Tab. 1. We also present a more efficient
CrossVIS-Lite model with DLA-34 backbone, achieving
36.2 AP and 48.5 FPS, which shows a decent trade-off be-
tween latency and accuracy.

MaskProp [2] is a state-of-the-art offline VIS approach
that proposes a novel mask propagation mechanism in com-
bination with Spatiotemporal Sampling Network [3], Hy-
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Methods AP AP50 AP75 AR1 AR10

SipMask-VIS 10.3 25.4 7.8 7.9 15.8
MaskTrack R-CNN 10.9 26.0 8.1 8.3 15.2
STEm-Seg 13.8 32.1 11.9 9.1 20.0
CrossVIS 14.9 32.7 12.1 10.3 19.8

Table 2. Comparisons with some VIS models on the recently pro-
posed very challenging OVIS val set. We use ResNet-50 back-
bone and 1× schedule for all experiments.

Methods Aug. AP AP50 AP75 AR1 AR10

MaskTrack R-CNN 28.6 48.9 29.6 26.5 33.8
SipMask-VIS X 31.7 52.5 34.0 30.8 37.8
CrossVIS 33.3 53.8 37.0 30.1 37.6
CrossVIS X 34.2 54.4 37.9 30.4 38.2

Table 3. Comparisons with some VIS models on the recently pro-
posed YouTube-VIS-2021 val set. We use ResNet-50 backbone
and 1× schedule for all experiments.

brid Task Cascade mask head [9], High-Resolution Mask
Refinement post-processing, longer training schedule and
stronger data argumentation. MaskProp can achieve very
high accuracy but suffer from low inference speed so it is
far from real-time applications and online scenarios. Mean-
while, CrossVIS is designed to be an efficient online VIS
model and focusing more on the speed-accuracy trade-off.
Overall, the experiment results demonstrate the effective-
ness of the proposed approach.
Main Results on OVIS Dataset. OVIS is a much more
challenging VIS benchmark than YouTube-VIS-2019 and
all methods encounter a large performance degradation on
this dataset. CrossVIS achieves 14.9 AP, surpassing all
methods investigated in [47] under the same experimental
conditions. We hope CrossVIS can serve as a strong base-
line for this new and challenging benchmark.
Main Results on YouTube-VIS-2021 Dataset. YouTube-
VIS-2021 dataset is an improved and augmented version
of YouTube-VIS-2019 dataset. We evaluate the recently
proposed MaskTrack R-CNN and SipMask-VIS on this
dataset using official implementation for comparison. As
shown in Tab. 3, CrossVIS surpasses MaskTrack R-CNN
and SipMask-VIS by a large margin. We hope CrossVIS
can serve as a strong baseline for this new and challenging
benchmark.

4.4. Ablation Study

Does Better VIS Results Simply Come from Better Still-
image Instance Segmentation Models? The answer is no.
We prove this in Tab. 4: (1) Compared with MaskTrack R-
CNN using ResNet-101 backbone, CrossVIS is 0.2 APCOCO

mask

lower, which indicates that our pre-trained model is rela-
tively weaker in terms of still-image instance segmentation
on COCO. But for the VIS task, our model is 2.9 APVIS

Method Backbone Sched. APVIS APCOCO
mask

MaskTrack R-CNN ResNet-50

1×

30.3 34.7
MaskTrack R-CNN ResNet-101 31.9 35.9
CondInst-VIS ResNet-50 32.1 35.7
CrossVIS ResNet-50 34.8 35.7

Table 4. Comparisons between CrossVIS and other baselines in
terms of both APVIS and APCOCO

mask on YouTube-VIS-2019 val set.

Method Backbone FPS (360× 640) APVIS

Mask R-CNN [24]
ResNet-50

41.6 -
CondInst [52] 42.8 (+1.2) -
MaskTrack R-CNN

ResNet-50
32.8 30.3

CrossVIS 39.8 (+7.0) 34.8

Table 5. Efficiency comparisons on YouTube-VIS-2019 val set.

higher. (2) We implement a VIS baseline called CondInst-
VIS which replaces the Mask R-CNN part in MaskTrack R-
CNN by CondInst. Therefore the only differences between
CrossVIS and CondInst-VIS are the proposed crossover
learning scheme and global balanced instance embedding
branch. Compared with CondInst-VIS with ResNet-50 and
MaskTrack R-CNN with ResNet-101, we conclude that
they achieve similar APVIS under similar APCOCO

mask. Mean-
while, CrossVIS is 2.7 APVIS better than CondInst-VIS un-
der the same APCOCO

mask. The above two observations prove
that the improvement in APVIS mainly comes from the pro-
posed two modules instead of better pre-trained models or
baseline.
Does the Efficiency of CrossVIS Simply Come from the
Efficiency of CondInst? The answer is no. We prove this
in Tab. 5. In terms of the inference speed, CondInst is only
1.2 FPS faster than Mask R-CNN in instance segmentation
task (similar conclusions are also reported in [52]). Mean-
while, CrossVIS is 7.0 FPS faster than MaskTrack R-CNN
in VIS task. This is mainly because: (1) crossover learning
adds no extra parameters and can bring cost-free improve-
ment during inference. (2) The global balanced embedding
branch adopts a lightweight fully convolutional design com-
pared to the fully connected design in MaskTrack R-CNN.
Therefore the efficiency of CrossVIS mainly comes from
the efficient design of crossover learning and global bal-
anced embedding.
Crossover Learning. Here we investigate the effective-
ness of the proposed crossover learning scheme in Sec. 3.2.
During training, we randomly sample frame pairs with a
sample time interval δ ∈ [−T, T ]. The results are shown
in Tab. 6. We conclude that: (1) When the sample time
interval δ is small, e.g., δ = [−1, 1], the crossover learn-
ing brings moderate improvement compared to the base-
line. This makes sense because the sampled two frames are
quite similar to each other when the δ is small. Under this
circumstance, the crossover learning degenerates to naı̈ve
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Crossover T = 1 T = 3 T = 5 T = 10 T = 15 T = 20 T =∞
33.1 33.4 33.5 33.5 33.6 33.4 33.5

X 33.6↑(0.5) 34.2↑(+0.8) 34.6↑(+1.1) 34.6↑(+1.1) 34.3↑(+0.7) 34.8↑(+1.4) 34.8↑(+1.3)

Table 6. Effect of crossover learning and sample time interval on AP. We randomly sample two frames at time t and t + δ respectively,
where the sample time interval δ ∈ [−T, T ]. The “↑” indicates the AP improvement of the model with crossover learning compared to the
model without crossover learning under the same T .

Embedding Loss AP ± σAP AP50 AP75

Pair-wise LCE 33.1± 0.78 51.9 34.9
Pair-wise LFocal 33.3± 0.72 52.1 35.0
Global LCE 33.4± 0.27 53.9 35.7
Global LFocal 34.8± 0.25 54.6 37.9

Table 7. Study of instance association embeddings. To quantitate
the fluctuation in results, we conduct 5 independent experiments
for each configuration. We report the AP using the median of 5
runs. σAP denotes the standard deviation of 5 runs.

still-image training. (2) When the sample time interval δ
becomes larger, the scene and context become different and
diverse between two frames in the sampled frame pair. The
baseline without crossover learning cannot explicitly utilize
the cross-frame information therefore only has limited im-
provement. However, crossover learning can benefit signifi-
cantly from the larger δ and achieves up to 1.4 AP improve-
ment compared to the baseline. (3) The proposed crossover
learning scheme is quite insensitive to the variations of T .
Overall, models trained with crossover scheme are ∼ 1 AP
higher than baselines under a wide range of time intervals,
i.e., from T = 3 to T =∞ as shown in Tab. 6.

These results prove the analysis in Sec. 3.2 that the
crossover scheme can leverage the rich contextual informa-
tion across video frames to get a more accurate and robust
instance representation.
Instance Association Embeddings. We study the instance
association embeddings in Tab. 7. As expected in Sec. 3.3,
(1) In terms of AP, the effect from “global” (using learn-
able {wM} instead of sampled {eN}) and “balanced” (us-
ingLFocal instead ofLCE) are equally important and inter-
dependent: Using LFocal instead of LCE for pair-wise em-
bedding can only bring 0.2 AP improvement, for large pos-
neg imbalance do not exist in the pair-wise scheme. Using
global instead of pair-wise embedding optimized by LCE
can only bring 0.3 AP improvement, for there exists a large
pos-neg imbalance issue. But together, global and balanced
embedding can bring 1.7 AP improvement. So global and
balanced are both indispensable for good performance. (2)
In terms of AP fluctuation, using the global embedding has
a much smaller standard deviation σAP than the pair-wise
embedding regardless of the loss function, which indicates
that the global embedding can produce a more definite con-
vergence status and more stable results.
Component-wise Analysis. We investigate the effects of

Baseline COL GBE AP

X 32.1
X X 33.1
X X 33.5
X X X 34.8

Table 8. Impact of integrating CrossOver Learning (COL) and
Global Balanced Embedding (GBE) into CondInst-VIS baseline.

crossover learning and global balanced embedding individ-
ually and simultaneously in Tab. 8. Using crossover learn-
ing and global balanced embedding individually can bring
1.0 AP and 1.4 AP improvement, respectively. In terms of
AP, global balanced embedding is slightly higher. Mean-
while, crossover learning adapts CondInst naturally for VIS
task during training and brings cost-free improvement dur-
ing inference. Together, the two components bring 2.7 AP
improvement, which is larger than 1.0 + 1.4 AP when used
solely. Therefore the proposed two components are fully
compatible with each other. They show synergy and their
improvements are complementary.

5. Conclusion

In this paper, we introduce a novel VIS solution coined
as CrossVIS, which performs the best among all online
video instance segmentation methods in three challenging
VIS benchmarks. Moreover, CrossVIS strikes a decent
trade-off between latency and accuracy. We also show that
the accuracy and efficiency of CrossVIS are not simply
come from the instance segmentation framework but stems
from the proposed design. Extensive study proves that
crossover learning can bring cost-free improvement during
inference, while the lightweight global balanced embedding
can help stabilize the model performance. We believe that
the proposed approach can serve as a strong baseline for
further research on the VIS, and sheds light on other video
analysis and video understanding tasks.
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