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Abstract

We present a method for creating 3D indoor scenes with
a generative model learned from a collection of semantic-
segmented depth images captured from different unknown
scenes. Given a room with a specified size, our method
automatically generates 3D objects in a room from a ran-
domly sampled latent code. Different from existing methods
that represent an indoor scene with the type, location, and
other properties of objects in the room and learn the scene
layout from a collection of complete 3D indoor scenes, our
method models each indoor scene as a 3D semantic scene
volume and learns a volumetric generative adversarial net-
work (GAN) from a collection of 2.5D partial observations
of 3D scenes. To this end, we apply a differentiable projec-
tion layer to project the generated 3D semantic scene vol-
umes into semantic-segmented depth images and design a
new multiple-view discriminator for learning the complete
3D scene volume from 2.5D semantic-segmented depth im-
ages. Compared to existing methods, our method not only
efficiently reduces the workload of modeling and acquir-
ing 3D scenes for training, but also produces better object
shapes and their detailed layouts in the scene. We eval-
uate our method with different indoor scene datasets and
demonstrate the advantages of our method. We also extend
our method for generating 3D indoor scenes from semantic-
segmented depth images inferred from RGB images of real

scenes. !

1. Introduction

Real-world indoor scenes exhibit rich variations with dif-
ferent numbers, types, and layouts of the objects placed in a
room due to different interior designs and living activities.
Generating realistic 3D indoor scenes is an important task
for many applications, such as VR/AR, 3D game design,
and robotic navigation.

*This work is done when Ming-Jia Yang was an intern at MSRA
ICode URL: https://github.com/mingjiayang/SGSDI

Manually modeling indoor scenes with variant and real-
istic object layouts in a room is a labor-intensive task and
requires professional skills. Automatic scene generation
techniques try to model the properties and distributions of
the objects in real scenes and generate new 3D scenes in
two steps. For a room with a specified size and shape, these
methods first determine the layout (i.e. orientation and po-
sition) and properties (e.g. type and shape) of the objects
in the room. After that, they retrieve a CAD model of each
object from a 3D object database based on the object’s prop-
erties and then place the resulting CAD models in the room
according to their layout.

A set of methods have been developed for modeling
the properties and distributions of objects in indoor scenes.
Early methods use manually defined rules [12] or simple
statistic models [27, 4, 2, 5, 11, 17] computed from scene
instances for generating a specific type of scenes, which
are difficult to generalize to other types of scenes. Recent
deep-learning-based methods [8, 29, 25, 18, 24] learn a deep
neural network of the object properties and layouts from a
large collection of 3D scene instances that are difficult to be
modeled by skilled artists or captured from real scenes. By
simply modeling the object geometry with their sizes, these
methods fail to model concrete 3D object shapes and the
detailed object layouts determined by their shapes, such as
a chair with their seat under a desk or a TV inside a cabinet.

In this paper, we present a generative adversarial network
(GAN) for 3D indoor scene generation. Different from pre-
vious methods that represent the scene with object prop-
erties and layouts, our method models a 3D indoor scene
with a semantic scene volume, where each voxel is either
labeled as empty or the type of object that it belongs to.
Based on this representation, we design a volumetric GAN
model that takes the room size as input and synthesizes the
semantic scene volumes of the room that consist of differ-
ent objects and their layouts from randomly sampled latent
vectors. After that, our method generates the final 3D in-
door scene by replacing each volumetric object instance in
the volume with a CAD model retrieved from a 3D object
database based on their type and volumetric shape.
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Different from previous methods that train the networks
with a collection of complete 3D indoor scenes, we learn
the volumetric GAN model from a collection of semantic-
segmented depth images, each of which captures a 2.5D
partial view of an unknown 3D scene. To this end, we
apply a differentiable projection layer between the gener-
ator and discriminator, which projects the generated se-
mantic scene volume into semantic-segmented depth im-
ages from a set of views. We then feed both projected
fake semantic-segmented depth images and real semantic-
segmented depth images into the discriminator for GAN
training.

A naive design of the discriminator is to use the single-
view discriminator for learning 3D object representation
from 2D images [ 14, 6, 9]. Unfortunately, the GAN model
trained with this single-view discriminator is prone to gen-
erating indoor scenes with unnatural object layouts. We
thus propose a multi-view discriminator that takes a com-
bination of multiple views rendered from generated scenes
for GAN training. Since the training images are captured
from different unknown scenes and we have no scene ID of
each image, we use a random combination of training im-
ages to approximate the ground truth layouts of underlying
scenes. For this purpose, we empirically figure out the op-
timal number and type of views of the random training im-
age combinations that can well approximate the underlying
scene layouts and facilitate the GAN training.

To the best of our knowledge, our method is the first ap-
proach that learns to generate 3D indoor scenes from a col-
lection of semantic-segmented depth images, which greatly
reduces the workload for training data acquisition and mod-
eling. Thanks to semantic scene volume representation,
our method can better model the object shapes and their
detailed layouts than existing methods. We evaluate our
method both synthetic Structured3D [30] and real Matter-
Port3D [1] datasets and demonstrate the advantages of our
method. With the help of existing RGB2Depth methods, we
show that our method can successfully learn 3D scene gen-
eration from segmented-depth images inferred from RGB
images of real scenes.

2. Related work

3D Indoor Scene Generation. Early methods synthesize
a specific type of 3D scene with manually defined rules
[12, 2], simple statistic models learned from 3D scene in-
stances [27, 5, 4, 11], or And-Or Graph (AoG)[!7] of all
valid object distributions in a scene.

Learning-based methods model the object properties and
layouts in 3D scenes with a deep neural network learned
from an annotated 3D scene dataset. All these methods ab-
stract the objects and their properties (e.g. position, orienta-
tion, type, and size) in a scene as nodes with attributes and
represent the 3D scenes as top-view 2D images [25, 18],

node graphs [24, 10, 29] or trees [8] in scene layout genera-
tion. All these methods require a collection of 3D annotated
scenes for training. Moreover, most of these methods except
[29] represent the object geometry as its bounding box and
thus fail to model the object shape and detailed object lay-
outs. Different from these methods, we learn a GAN model
from a collection of semantic-segmented depth images cap-
tured from the scenes. our method models the scene as a
semantic scene volume and can generate scenes with more
concrete object shapes and their detailed layouts.

Indoor Scene Completion and Reconstruction. A set of
methods have been developed to complete or reconstruct
3D scenes from single [20, 7, 21, 28] or multiple RGB and
depth images [3]. Some object layout reconstruction meth-
ods [15, 22, 16] recover the object pose, bounding box, and
object layout from a single-view RGB image. All these
methods are designed for reconstructing the geometry and
semantic structure of a specific 3D scene and require a col-
lection of complete 3D scenes for training. On the contrary,
our method aims for generating different 3D scene lay-
outs and is learned from a collection of semantic-segmented
depth images.

Learning 3D GAN from 2D Images. A set of methods
[6, 14, 9] have been proposed for learning the 3D GAN
model of the objects in one category from 2D image col-
lections. Different from these methods that focus on gener-
ating geometry or appearance of 3D objects from outside-
looking-in images, our method focuses on generating in-
door scene layout from inside-looking-out images.
Although the volumetric GAN in our method is adapted
from HoloGAN [14], these two approaches are different.
By representing objects with feature volumes, The Holo-
GAN does not disentangle objects’ shape and appearance
and thus fails to generate a consistent projection of 3D ob-
jects under different views. Instead, our method models
the scene geometry and layouts as semantic volume, which
guarantees consistent projection from different views and
is critical for learning 3D scene layouts from images cap-
tured from different unknown scenes. Also, different from
HoloGAN that applies a single discriminator in training, we
proposed a multiple-view discriminator for our task.

3. Method Overview

In this section, we provide an overview of the input, out-
put, and basic components of our method. In the following
sections, we discuss the technical details of each component
of our method and the network training.

Semantic-Segmented Depth Images. The input of our
method is a collection of semantic-segmented depth im-
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Figure 1. The overview of our method. (a) the volumetric generator; (b) the projection layer and the discriminator that are used in the
training stage; (c) the post-processing and object retrieval in the inference stage; (d) the detailed structure of SpatialEmbed used in our

generator for fusing the conditional input of room size.

ages I id #i=1,2,..., N captured from different unknown
rooms in a specific scene category, where the I¢ and I°
refers to a depth image and its semantic label image. Each
pixel in the semantic label image I° records the probabil-
ities of the pixels’ visible surface point belonging to each
object class ¢; in cg, ¢1, ¢4, . . . , o, Ce, Where ¢, is the label
of empty space and C' is the number of all object classes
in a specific scene category. For input semantic-segmented
images, the semantic label vector in each pixel is a binary
vector of 1 for the ground truth object class of the pixel and
0 for other object classes. For all input images, we assume
that their camera’s intrinsic parameters are known and each
image includes a wall region of the scene so that we can es-
timate the camera’s pose and distance for the visible part
of the scene in each image. Since we have no informa-
tion about the underlying 3D rooms of the input images,
we have no idea whether two images are captured from the
same room.

Volumetric Scene Representation. We represent a gen-
erated 3D indoor scene with a semantic scene volume Sy
with fixed spatial resolution w X h x d (32 x 32 x 16 in
our implementation), each voxel of which stores a probabil-
ity vector of its semantic label pg, p1,...,pc, p.. We align
the floor of a scene with the XY plane of the volume and
set the floor center to the center of the bottom volume layer
(h/2,w/2,0) ((16, 16, 0) in our implementation). We pre-
define and fix the voxel’s physical stride v for each scene
category so that the maximal room size (d~, hy,w~) that
can be modeled by the semantic scene volume is deter-
mined. Given a room with size ¢y = (Rg, Ry, R.), we
represent the layout, types, and shapes of the objects in the
room with the semantic volume Sy, where all voxels out of
the room boundary are labeled as empty.

System Overview. Our volumetric GAN consists of three
main components: a generator G, a discriminator D, and
a differentiable projection layer that connects the generator

and the discriminator. As shown in Figure. 1, the genera-
tor G takes a latent vector z; and room size ) as input and
outputs a semantic scene volume Sy of the generated 3D
scene. An encoder network Fy encodes the room size v
into a set of conditional features of the generator. In the
training stage, the projection layer renders the generated se-
mantic scene volume Sy from different views and feeds the
rendered semantic-depth images to the discriminator D to
distinguish them from the real ones sampled from the train-
ing dataset. In the inference stage, we extract the object
instances from the generated semantic scene volume in a
post-processing step and then generate the final 3D scene
by replacing all object instances with CAD models that are
retrieved from an object database and best match the shapes
and orientations of the object instances.

4. Network Design and Training
4.1. Generator

We adapt the volumetric network in HoloGAN[ 14] as the
basic network structure for our generator. Starting from a
2x 2x 1 constant feature volume with 512 channels, our vol-
umetric generator consists of four deconvolutional blocks
used in [14], each of which reduces the number of feature
channels by half and doubles the resolution of the feature
volume along each dimension. We use the LeakyReLU as
the activation function in the first three blocks and apply a
softmax activation in the last block to output the probability
of the semantic labels. As in [14], we use Adaln to mod-
ulate the latent code z via MLPs into the feature volumes
after each block.

To control the room size of the generated scene, we
first generate a binary volume with the specified room size
¥ = (Rg, Ry, R.), where all voxels within the room are
labeled as 1 and other voxels outside are marked as 0. To
control the generator with this binary volume, we encode
the binary volume via a volumetric encoder £, with 4 con-
volutional blocks. The number of feature channels in each
volumetric resolution is one-fourth of the ones of the volu-
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(a) Multi-view discriminator

(b) Single-view discriminator

Figure 2. The design of our multiple-view discriminator. (a) the
network structure of our design; (b) A naive sum of multiple
single-view discriminators.

metric generator layer with the same volume resolution and
the length of the output feature z,. is the same as the length
of z,. We modulate latent vector z, with the room control
feature z,. via a dot product z = z,-z,.. Meanwhile, we mod-
ulate 1/4 channels of each feature volume in the generator
with the feature volume of E, in the same volume resolu-
tion via element-wise dot products, as shown in FIG. 1(d).
With these two modulations, our method can successfully
constrain the scene generation within the room volume with
the specified size.

4.2. Differentiable Projection Layer

Given a viewpoint, we apply the differentiable ray con-
sistency (DRC) [23] to render the depth and semantic im-
ages from the generated semantic volume Sy . Specifically,
we take the probability of the “empty” label as the non-
occupied probability of scene voxels and exactly follow the
DRC for computing pixel depth. To render the probabil-
ity vector of the semantic labels in each pixel, we regard
the probability of each object category as an independent
voxel property and compute its pixel value via DRC. After
that, we concatenate the values of all object categories and
the accumulated probability of the “empty” label to get the
probability vector of semantic labels for each pixel.

To make sure that the rendered images follow the same
view distributions of the training images, we render the im-
ages from semantic scene volume with the same camera set-
tings (i.e. intrinsic parameters, distance and pose to the vis-
ible room wall) as the ones of the training images.

4.3. Multi-View Discriminator Network

Our discriminator D takes N semantic-segmented im-
ages I%* as input and computes a score for the loss func-
tion.

Multi-View Discriminator A naive design of the dis-
criminator is to apply the single-view discriminator in [14]
or a sum of several single-view discriminators as in [9] for
our task. Unfortunately, we find that this design is prone to

le~2
|1.5
1.0

Scene coverage angle

0.5
I0.0
1 3 5 7 9 11
Number of views

Figure 3. A visualization of the differences between the object
co-occurrence maps of the ground truth scenes and the ones
of random view combinations under different numbers of views
(columns) and scene coverage angles (rows). The dark red indi-
cates larger difference caused by a poor approximation of the scene
layouts, while the blue refers to the small difference of a good ap-
proximation. Any differences larger than 1.5¢~2 are caused by
poor approximations and mapped to 1.5¢™ 2 in this visualization.

generating poor results. The possible reason is that scene
generation needs to address larger depth variation than ob-
ject generation, the differentiable ray consistency (DRC)
tends to drive the generator to create scenes with objects
closer to the viewpoint with the single-view discrimina-
tor. Although the generated scene is different from the GT,
their single view rendering still matches some images in the
training dataset and thus passes the discriminator. Please
refer to the supplemental for more detailed discussions.

To solve this problem, we design a multi-view discrimi-
nator, where we extract features of multiple views captured
from a scene and then compute a loss function of jointed
features. Given multiple semantic-segmented images, we
use two feature extractors F; and E, that share the same
network structure but independent weights to encode the
depth and semantic images respectively. Each network con-
sists of four convolutional blocks, each of which includes a
convolution layer to reduce the image resolution to half and
double the number of feature maps, a spectrum norm layer,
and a ReLU layer. The reshape layer outputs a 512-length
feature vector. After that, we concatenate the feature vectors
of all input images and feed them into the last FC layers to
get the final score. Fig. 2 illustrates the difference between
our multi-view discriminator (Fig. 2(a)) and a naive combi-
nation of single-view discriminators (Fig. 2(b)).

View Configuration for Discriminator For generated
3D scenes, we can sample multiple views from one scene to
cover the scene so that the multi-view discriminator can get
the complete scene layout information in the training. How-
ever, we cannot obtain the layout of the underlying ground
truth scenes in the training dataset since we have no scene
information for each image.

To solve this issue, we use a random combination of the
training images to approximate the layouts of the underly-
ing ground truth scenes. To this end, we seek an optimal
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Figure 4. An illustration of the object retrieval step. Given an in-
stance of the TV stand ((highlighted with red boxes in the first col-
umn), our method finds three object candidates from the database
and their rotation angles (in the following columns) that best match
the shape and orientation of the input. Note that for two instances
of TV stands that have similar bounding boxes but different overall
shapes shown in the different rows, our method can find different
CAD models for each instance.

view configuration (i.e. the number of views and the cov-
erage of each view) of image combinations that can best
approximate the ground truth scene layouts. For this pur-
pose, we render the panorama images of a set of 3D rooms
modeled by the artist from the room center and then split the
panorama images into the different number of views, each
of which corresponds to a view coverage setting. For each
specific view coverage, we generate a set of image combina-
tions, each of which includes a specific number of images
randomly picked from the view collection. After that, we
compute the difference between the co-occurrence map|[§]
of the objects in the ground truth 3D rooms and the co-
occurrence map of the objects in the image combinations
with a specific number of views and view coverage. Be-
cause the co-occurrence map provides the first-order statis-
tics of the object distributions in the scene, it provides a
reasonable indication of how well the image combinations
can approximate the object distributions of the underlying
scenes. Fig. 3 shows the heat map of the differences for
different view number and coverage configurations, where
the view configurations in dark red result in a poor approx-
imation of the underlying scene layouts, and the blue and
green ones offer a relatively good approximation. Based on
this empirical analysis, our method sets the view angle of
each image around 110° and includes 4 images randomly
picked from the training dataset in one image combination
for network training.

4.4. Network Training

Loss Function We follow the training scheme in [14] to
train our volumetric GAN with the new loss functions de-
fined for our task. Specifically, the loss for the generator is
defined as

La(Zs,0) = Y

zg~Zg, ¥

+(=Mo(P)log(G(zs, 1)), (1)

log(D(P(G(z5,4)))

% ?",‘S?’/ 9>
\"g;;) | q Q

Figure 5. The impact of the object instance volume to object re-
trieval. Given an input semantic scene volume generated by our
method (shown in the first column), we compare the scene gener-
ated by retrieving the CAD models with the extracted object in-
stance volumes (the first row) and the one generated by retrieving
the bounding boxes of the extracted object instances (the second
row). Note that our method can successfully generate the detailed
object layouts of a scene (e.g. the TV and TV stand in the red
box), while the bounding-box based method fails.

where the first term is the generative loss and the second
term is the cross-entropy loss for constraining the voxels
that are out of the room boundary in the generated scene
volume to be “empty”. Here P is the differentiable projec-
tion layer and M) is the empty voxels in the mask volume
of 1.

The loss for the discriminator is defined as:

Lp(Y,2,%) = > (1—log(D(P(G(z,v))))

2~ Z ol

+ > log(D(y)) )

y~Y

where y ~ Y is the set of real joint-views images selected
from the training dataset.

5. 3D Indoor Scene Generation

Given a room size 1 and a latent vector z5 randomly
sampled from the latent space, the trained volumetric GAN
can generate a semantic scene volume that stores both lay-
out and rough shapes of the objects instances in the room.
To generate the final 3D scene, we extract the object in-
stances from the semantic scene volume and replace them
with the CAD models retrieved from a 3D object database.

Post-Processing To acquire the object instances from the
semantic scene volume, we first set the semantic label of
each voxel as the one with the maximal probability. We
randomly pick a voxel and iteratively group its neighboring
voxels with the same label as an object instance via the flood
filling algorithm. After that, we mark all voxels in the object
instance is processed. We repeat this process until all voxels
in the volume are processed. To remove the outliers, we
discard the object instances the sizes of which are smaller
than the minimal size of objects in the same object class
of the 3D object database. Our experiments show that only
around 1% of object instances are removed in this step.
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Dataset images scenes object classes
Structured3D-Bedroom 16064 5219 9
Structured3D-Livingroom | 6592 2211 11
Structured3D-Kitchen 3009 1491 5
Matterport3D-Bedroom 1217 178 8
NYUv2-RGB-Bedroom 1495 119 10

Table 1. The number of scenes, images, and object classes in each
training dataset used in our experiments.

Object Retrieval and Placement For each object in-
stance M extracted from the semantic scene volume, we
search the 3D object database E'(M) to find a 3D object M;
and its rotation ¢ along Z axis so that M; and M belong
to the same object class and the rotated M! best matches
the shape of the M and has minimal collision with the sur-
rounding objects in the volume:

i*,¢* = argmin CD(M, M?) + Aw.(M?)  (3)
i€l,ped
where C'D is the Chamfer distance between the candidate
instance M and the rotated object Mf. w, is the penalty
term of spatial collision, defined by the IoU between the
rotated model Mf) placed in the scene and the surrounding
voxels with other object class ID. A is a scalar (1.0 in our
implementation) to balance the distance and collision terms.
Figure. 4 illustrates the results generated by our object
retrieval and placement algorithm. Note that the volumetric
representation offers the rough shape and orientation of the
objects in the scene and thus result in detailed object layouts
(e.g. TV and TV stands) that are difficult to be modeled by
the object’s bounding box.

6. Experimental Results

Implementation Details We implement our algorithm
with Tensorflow and train our GAN model on a machine
with 4 TESLA V100 GPUs. We train the network via the
Adam optimizer. The sizes of semantic scene volumes and
images are 32 x 32 x 16 and 32 x 18 respectively. The
learning rate is 2¢~* and the batch size is 128. The training
converges after 2,000 epochs.

Training Dataset We test our method on semantic-
segmented depth images datasets in Structured3D [29] and
Matterport3D [!] scene collections. We also apply our
method to semantic-depth images inferred RGB images
of NYUv2 [19] dataset. In all experiments, we use the
ShapeNet dataset[26] for retrieving and placing CAD mod-
els to generate final 3D scenes.

For Structured3D, we train our model on three scene cat-
egories (Bedroom, Living room, and Kitchen) that exhibit
rich layout variations. For each scene category, we collect
the image by checking the angles between the ray to the
room center and the optical axis of the images and choos-
ing all images with angles smaller than +45°. After that,

Ground Truth  GRAINS  DeepPriors

Figure 6. The co-occurrence maps of the ground truth scenes and
the ones generated by GRAINS[&], DeepPrior[25], and our meth-
ods. Note that the co-occurrence map of our method is more sim-
ilar to the ground truth one than the ones generated by GRAINS
and DeepPrior, especially for values in the columns indicated by
the arrows. The second row illustrates the typical unnatural scenes
generated by GRAINS and DeepPrior, as well as a 3D scene gen-
erated by our method. Please refer to the supplemental material for
all co-occurrence maps of scenes generated by different methods.

we downsample the images to 32 x 18. For this purpose,
we first project the semantic-segmented depth images back
into the 3D space and then voxelize the 3D space into a
32 x 32 x 16 volume. Finally, we render the volume to the
32 x 18 semantic-segmented depth images from the orig-
inal viewpoint. For each scene category, we also merge
the classes of objects with similar functionalities into one
and remove the classes of objects that appear infrequently
in scenes. The class ID of the pixels rendered from the re-
moved objects is set to empty. For Matterport3D, we follow
the same procedure to collect images from the bedroom cat-
egory in our experiment.

For the NYUv2 dataset, we generate depth and semantic-
segmented maps for all unlabeled RGB images in the bed-
room scene category with the method in [13]. We then man-
ually remove noisy results and select 1459 images with rel-
atively large view coverage. After that, we follow the pro-
cedure described above to generate the training image set
from the inferred semantic-segmented depth images. The
statistics of the training dataset used in our experiments are
listed in Table. 1.

6.1. Method Evaluation

To validate our network design and the advantages of
our method to other existing solutions, we train our model
with the semantic-segmented depth images rendered from
the same scene category of the ground truth dataset in [§8]
for a fair comparison.

We first compare the co-occurrence map [&] of the ob-
jects in scenes generated by our method and the pre-trained
models in DeepPrior[25] and GRAINS[&]. For any two
object classes, their co-occurrence map value is the ratio
between the number of scenes in which two object classes
appear together to the number of scenes that only one ob-
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GRAINS DeepPrior

Figure 7. The percentages of the methods that are selected by the
participants in our user study. In both experiments, the participants
prefer the results generated by our method much more than the
ones generated by GRAINS[8] and DeepPrior[25]

ject class (shown in the row) appears. As shown in Fig. 6,
the co-occurrence map of our method is much more consis-
tent with the ground truth than the ones of DeepPrior and
GRAINS. In particular, GRAINS[&] generates many fewer
sofas in the resulting scenes than the ground truth, while
DeepPrior[25] generates many more stands in the results
(the columns indicated by the arrow in Fig. 6).

We further conduct two user studies for comparing the
visual quality of scenes generated by our method with the
ones generated by GRAINS and DeepPrior separately. In
each study, we show the images rendered from three scenes
with the same rendering settings: one generated by our
method, one generated by the existing method, and the
ground truth reference with similar object classes to the
generated ones. We show the same set of 30 groups of im-
ages to 20 participants. For each group of three images, we
ask each participant to choose one from two generated re-
sults that are more plausible to the reference. For GRAINS
and DeepPrior, we only render the images of the scenes that
match the co-occurrence map of the ground truth in our user
study for a fair comparison. As shown in Fig. 7, the users
prefer scenes generated by our method more than the ones
generated by other existing methods.

Finally, we evaluate the diversity and quality of 3D
scenes generated by our method. For diversity, we imple-
ment the similarity metric in [24] and the average similarity
of the generated scene layouts and GT are 0.335(Gen) and
0.457(GT) respectively, which indicates that our method
well preserves the variation of the scene layouts in the train-
ing dataset. For quality, we follow the method in [I8]
and evaluate the real vs. synthesis classification accuracy
of our method by training a classifier with 800 semantic-
segmented depth images of the generated scenes rendered
from random viewpoints and 800 GT semantic-segmented
depth images. After that, we compute the accuracy score
with 320 semantic-segmented depth images rendered from
another set of generated scenes and the result is 60.9%,
which illustrates that our results are difficult to be classified
as real or fake.

Methods SD-MV-D USD-MV-D SV-D Ours
Acc. Ratio 64.0 69.0 71.0 80.0
Methods | 2View-MV-D  6View-MV-D  8View-MV-D
Acc. Ratio 70.7 72.0 70.3

Table 2. The results of ablation study, where the numbers are ac-
ceptance ratios of the scenes generated by different network con-
figurations.

6.2. Ablation Study

We conduct a set of ablation studies on Structured3D-
Bedroom dataset to validate our network design and list all
results in Table. 2, where ”Ours” is the result of our current
network design.

Due to the statistical similarity of the results in different
network configurations, we find the co-occurrence map and
user study metric used in Sec. 6.1 cannot clearly indicate the
difference of different network configurations. Instead, we
ask 5 experienced users who can identify the failure cases
based on their prior knowledge to pick failure cases from 50
scenes randomly generated by each network setup and then
compute the acceptance ratio of the result for comparison.

Single-View vs. Multi-View Discriminator To validate
the advantage of our multi-view discriminator, we train
the GAN model with a single-view discriminator shown in
Fig.1(c). Compared to multi-view discriminator (Ours), the
acceptance ratio of the GAN trained with single-view dis-
criminator (SV-D) decreases from 80.0 to 71.0.

Unified vs. Separated Encoder for Semantic/Depth
Our method uses a different encoder for extracting features
from semantic and depth channels in a multi-view discrim-
inator. An alternative solution is to stack the semantic and
depth channels together and extract features with one uni-
fied encoder. Our method outperforms the model to this
alternative encoder scheme (USD-MV-D) with a 10.7 ac-
ceptance ratio gap (80.0 VS. 69.3).

Unified vs. Separated Multi-View Discriminator In-
stead of one unified multi-view discriminator for both depth
and semantic, another design uses a separate multi-view
discriminator for semantic images and depth images sep-
arately. This design (SD-MV-D) is worse than our current
scheme with 16.0 acceptance ratio gap (64.0 vs. 80.0).

Number of Views in Multi-View Discriminator Our
current network applied a multi-view discriminator with 4
views for GAN training. To analyze the performance of our
model with different numbers of views used in multi-view
discriminators, we change the number of view branches in
the multi-view discriminator to 2, 6, and 8 respectively,
and train the GAN model with the same image set used
in our model training. As shown in Table. 2, our method
achieves the best performance, while models with fewer
views (2view-D) or more views (6view-D and 8view-D)
generate worse results.
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Figure 8. The 3D scene generated by our method for different scene categories. The first row shows the results generated from
Structured3D-Bedroom dataset. The left three results in the second row are the results generated from the Structured3D-Livingroom
dataset and the right three results are results generated from the Structured3D-Kitchen dataset. The third and last row illustrate the results
generated from the Matterport3D-Bedroom and NYUv2-RGB-Bedroom datasets, respectively. The semantic scene volume of each result

is shown at top-right corner of each image.

Volumetric Representation and Resolution The seman-
tic volume representation successfully models the rough ob-
ject shapes and their detailed layout. As shown in Figure 4
and Figure. 5, it provides better input for object retrieval
and placement than the object’s bounding box and gener-
ates a detailed layout of the objects that are difficult to be
modeled by existing methods. The low-resolution seman-
tic volume 32 x 32 x 16 used in our current implementa-
tion achieves a good balance between model capability and
computational cost. We train a GAN model for generating
64 x 64 x 32 volume and the results are similar.

6.3. Visual Results

Fig. 8 visualizes the 3D scenes generated by our
method from different scene categories and datasets, includ-
ing the Structured3D-Bedroom (1lst row), Structured3D-
Livingroom (the first three in 2nd row), Structured3D-
Kitchen (the last three in 2nd row), MatterPort3D-Bedroom
(3rd row), and NYUv2-RGB-Bedroom (4th row). For all
these scene categories, our GAN model successfully learns
and generates various scene layouts for both large (e.g. cab-
inets and beds) and small objects (e.g. ceiling lamps, pic-
tures). Also, our method is robust to both synthetic scenes
and real scenes, as well as the semantic-segmented depth
images inferred from the real RGB images. Thanks to the
semantic scene volume representation, our method can gen-
erate non-cubic Manhattan layouts and detailed scene lay-
outs, such as chairs with different orientations, a chair under
a desk, and a TV inside a TV cabinet. More visual results

can be found in the supplemental.

7. Conclusion

We propose a GAN model learned from semantic-
segmented depth images for 3D scene generation. To this
end, we model the scene layout with semantic scene volume
and propose a new multiple-view discriminator for efficient
GAN training. Our method greatly reduces the workload
for capturing or modeling 3D scenes and generates good re-
sults, including the detailed scene layouts that are difficult
to be model using previous approaches.

Our method still has some limitations. Since the seman-
tic scene volume does not have furniture instance informa-
tion, our method requires post-processing to separate furni-
ture instances from the volume for object retrieval. It is in-
teresting to explore a new scene layout representation that
can well model furniture instances in a scene. Also, our
method still needs post-processing and object retrieval for
generating the resulting 3D scene. A promising direction in
this area is to develop a new method that can directly syn-
thesize the detailed 3D scene with different scene layouts.
Finally, it is interesting to learn a generative model of 3D
scenes from a collection of RGB images.
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