
JEM++: Improved Techniques for Training JEM

Xiulong Yang, Shihao Ji
Department of Computer Science

Georgia State University
{xyang22,sji}@gsu.edu

Abstract

Joint Energy-based Model (JEM) [12] is a recently
proposed hybrid model that retains strong discriminative
power of modern CNN classifiers, while generating sam-
ples rivaling the quality of GAN-based approaches. In this
paper, we propose a variety of new training procedures and
architecture features to improve JEM’s accuracy, training
stability, and speed altogether. 1) We propose a proximal
SGLD to generate samples in the proximity of samples from
previous step, which improves the stability. 2) We further
treat the approximate maximum likelihood learning of EBM
as a multi-step differential game, and extend the YOPO
framework [47] to cut out redundant calculations during
backpropagation, which accelerates the training substan-
tially. 3) Rather than initializing SGLD chain from random
noise, we introduce a new informative initialization that
samples from a distribution estimated from training data.
4) This informative initialization allows us to enable batch
normalization in JEM, which further releases the power of
modern CNN architectures for hybrid modeling.1

1. Introduction

Deep neural networks (DNNs) have made significant
breakthroughs in various discriminative tasks and genera-
tive tasks, including image classification, object detection,
and high-quality image and text generation [26, 18, 3, 5].
However, prior works on discriminative models and gen-
erative models are largely separated. Even though a few
researches (e.g., [6, 8]) have shown that generative training
is beneficial to discriminative models, most recent works
on generative models focus primarily on qualitative sample
quality [4, 37, 40], and the discriminative performances of
state-of-the-art generative models are still far behind dis-
criminative ones [2, 7, 9].

Among different discriminative and generative models,
energy-based models (EBMs) [27] are an appealing class of

1Code: https://github.com/sndnyang/JEMPP

probabilistic models, which can be viewed as hybrid models
with both discriminative and generative powers [12]. Com-
pared to the popular generative models, such as VAE [25]
and GAN [11], which train explicit functions to generate
samples, EBMs only need to train a single network with a
set of shared features for discriminative tasks and generative
tasks, and exploit implicit sampling for generation. Since an
EBM is the only object that needs to be trained, it generally
achieves a higher simplicity and stability than approaches
that use multiple networks. Hence, there is a great inter-
est recently in encompassing the generative capabilities into
discriminative models without sacrificing their discrimina-
tive powers. Specifically, a series of recent works propose
to train a CNN as an EBM for image classification and gen-
eration [45, 16, 9, 12]. Among them, JEM [12] is one of
the most representative ones, which reinterprets the mod-
ern CNN classifier (e.g., Wide-ResNet [46]) as an EBM for
image generation and achieves impressive performances in
image classification and image generation simultaneously.
JEM demonstrates the potential of EBMs in hybrid model-
ing and ignites a series of follow-up works [48, 13, 10, 14].

However, training EBMs is still a challenging task. As
shown in Table 1, existing methods demonstrate a great
deal of tradeoffs among different algorithmic features in
the quest of improved training algorithms. Most of the
works [32, 9, 12] adopt the SGLD sampling [42] to train
EBMs, where K sweeps of forward and backward prop-
agations are required in each sampling step. These train-
ing methods can be prolonged with a large K, preventing
them from long training procedures required by large-scale
datasets. In addition, SGLD can be precarious and easily
diverged, which further hinders the prevalence of EBMs.
To avoid the long sampling process of SGLD, recent works
introduce auxiliary models [17, 44, 14] or use special archi-
tectures [13, 41] to amortize the SGLD sampling or improve
its stability. Given the architectural simplicity of the SGLD-
based methods, especially JEM [12], we ask the following
question: Is it possible to develop new training methods of
JEM to reduce the number of sampling steps required by
SGLD while improving its training stability?

6494

https://github.com/sndnyang/JEMPP

Table 1. Characteristics of different EBM training methods.

Training Method Fast Stable High dim No aux. model Unrestricted arch Approx. likelihood

SGLD-based [32, 9, 12] % % ! ! ! !

Score Matching [41, 21] ! % ! ! % %

Noise Contrastive [10, 15] ! ! % % ! %

Regularized Generator [17, 14] ! ! ! % ! !

JEM++ (ours) ↑ ↑ ! ! ! !

In this paper, we introduce a variety of training proce-
dures and architecture features to improve JEM’s accuracy,
training stability, and speed altogether. After a thorough in-
vestigation on JEM, we find that JEM sometimes generates
abnormal images containing pixels with extreme values be-
yond a reasonable range. This motivates us to constrain the
SGLD sampling by projecting samples to an Lp-norm ball
of previous samples. Secondly, JEM does not support mod-
ern architecture features such as batch norm [22]2. We find
that a huge statistic gap between the initial noisy samples
of SGLD and real data incurs the training difficulty of JEM
when batch norm is enabled. Hence, we introduce a new
informative initialization that closes the gap between initial
samples and real data. Moreover, we find that batch-norm-
enabled JEM supports a larger learning rate, which further
increases the convergence rate of JEM. Finally, we extend
YOPO [47], a general framework for PGD [28] accelera-
tion, to the maximum likelihood learning of EBM and speed
up the training of JEM even further. Our main contributions
are summarized as follows:
1. We propose a proximal SGLD to generate samples in

the proximity of samples from previous step, which im-
proves the stability of JEM.

2. We further treat the approximate maximum likelihood
learning of EBM as a multi-step differential game, which
can be accelerated by cutting out redundant calculations
during backpropagation, while retaining the overall pre-
dictive performance.

3. We introduce a new informative initialization to initialize
the SGLD chain, which stabilizes the training further and
accelerates the convergence rate of SGLD sampling.

4. This new informative initialization also enables batch
norm to train JEM successfully and release the power
of modern CNN architectures. What’s more, with the in-
formative initialization and batch norm, JEM++ can be
optimized with a large learning rate, while JEM fails to.

5. JEM++ matches or outperforms prior state-of-the-art
hybrid models on discriminative and generative tasks,
while enjoying improved stability and training speed
over the original JEM.

2Although the authors stated they have been able to train JEM with
batch norm successfully, no details are disclosed in their paper or code.

2. Energy-Based Models
Energy-based models (EBMs) [27] define an energy

function that assigns low energy values to samples drawn
from data distribution and high values otherwise, such that
any probability density pθ(x) can be expressed via a Boltz-
mann distribution as

pθ(x) =
exp (−Eθ(x))

Z(θ)
, (1)

where Eθ(x) is an energy function that maps each input
x ∈ X to a scalar, and Z(θ) is the normalizing constant
(also known as the partition function) such that pθ(x) is a
valid density function.

The key challenge of training EBMs lies in estimat-
ing the partition function Z(θ), which is notoriously in-
tractable. The standard maximum likelihood estimation of
parameters θ is not straightforward either, and a number
of sampling-based approaches have been proposed to ap-
proximate it effectively. Specifically, the derivative of the
log-likelihood of a single sample x ∈ X w.r.t. θ can be
expressed as

∂ log pθ(x)

∂θ
= Epθ(x′)

∂Eθ(x
′)

∂θ
− ∂Eθ(x)

∂θ
, (2)

where the expectation is over the density function pθ(x
′),

sampling from which is challenging due to the intractable
Z(θ). Therefore, MCMC and Gibbs sampling [20] have
been proposed previously to estimate the expectation ef-
ficiently. To speed up the mixing for effective sam-
pling, recently Stochastic Gradient Langevin Dynamics
(SGLD) [42] has been employed to train EBMs by using
the gradient information [32, 9, 12]. Specifically, to sample
from pθ(x), SGLD follows

x0 ∼ p0(x),

xt+1 = xt − α

2

∂Eθ(x
t)

∂xt
+ αϵt, ϵt ∼ N (0, 1), (3)

where p0(x) is typically a uniform distribution over [−1, 1],
whose samples are refined via a noisy gradient decent with
step-size α over a SGLD chain.

Prior works [9, 12, 31] have investigated the effect of
hyper-parameters in SGLD sampling in terms of stability

6495

and speed, and showed that the SGLD-based approaches
suffer from poor stability and computational challenges
from sequential sampling at every iteration. Specifically,
Nijkamp et al. [31] find that the noise term in SGLD is
not important, and including a noise of low variance ap-
pears to improve synthesis quality. What’s more, for unnor-
malized densities, it’s desirable to generate samples from
SGLD chain after it converges. This requires the step-size
α to decay with a polynomial schedule and an infinite num-
ber of sampling steps, which is not realistic in practical ap-
plications. Instead, JEM [12] uses a constant step-size α
during sampling and approximates the samples with a sam-
pler that runs only for a finite number of steps. To improve
the sampling stability, the model would require to quadru-
ple the number of SGLD steps, which greatly increases the
run-time.

3. JEM++: The Improved Training of JEM
We first give a brief introduction of JEM [12] and then

discuss a variety of new training procedures to improve its
accuracy, stability and speed.

Joint Energy-based Models (JEM) [12] reinterprets mod-
ern CNN classifiers as EBMs. Considering a CNN clas-
sifier of parameters θ, given an input x the classifier first
maps the input to a vector of C real-valued numbers (or
logits): fθ(x)[y],∀y ∈ [1, · · · , C], where C is the num-
ber of classes; the logits are then normalized via the soft-
max function to yield a probability vector: pθ(y|x) =

efθ(x)[y]/
∑

y′ e
fθ(x)[y′]. Interestingly, the same vector of

logits fθ(x)[y] can also be used to define an EBM for
the joint density: pθ(x, y) = efθ(x)[y]/Z(θ), where Z(θ)
is an unknown normalizing constant (regardless of x or
y). Then a marginal density of x can be achieved by
marginalizing the joint density as: pθ(x) =

∑
y pθ(x, y) =∑

y e
fθ(x)[y]/Z(θ). Comparing this density with Eq. 1, it is

readily to show that the corresponding energy function of x
is defined as

Eθ(x)=− log
∑
y

efθ(x)[y]=−LSE(fθ(x)), (4)

where LSE(·) denotes the Log-Sum-Exp function.
To optimize the model parameter θ, JEM proposes to

maximize the joint density function pθ(x, y), which can be
factorized as:

log pθ(x, y) = log pθ(y|x) + log pθ(x), (5)

where the first term is the conventional cross-entropy objec-
tive for classification, and the second term can be optimized
by the maximum likelihood learning of EBM as shown in
Eq. 2 with the SGLD sampling defined in (3). In the paper,
we follow the same objective function of JEM and focus on
how to improve the stability of SGLD sampling as well as
accelerate the maximum likelihood learning of EBM.

3.1. Training EBM as a Minimax Optimization

In practice, when we employ the maximum likelihood
estimate of model parameters θ with Eq. 2, a minibatch of
B samples {x1,x2, · · · ,xB} ∼ pθ(x) and a minibatch of
B real data samples {xr

1,x
r
2, · · · ,xr

B} ∼ X are used. To
avoid notational clutter, we assume B = 1 in the rest of the
paper, but the results are readily extended to B > 1.

Similar to Nijkamp et al. [31] who have found the in-
significance of noise term in the SGLD sampling (3), our
empirical study also confirms this observation. Thus, we
ignore the noise term in Eq. 3 and treat it as an artifact that
generates some stochasticity in the sampling process to fa-
cilitate the optimization. Under this assumption, the SGLD
sampling (3) can be reinterpreted approximately as an SGD
iteration, with a learning rate of α/2, initialized from a ran-
dom sample of p0(x). Assume the convergence can be
achieved, the objective of the SGLD sampling (3) is to solve
the following optimization problem approximately 3

x∗ = argmin
x

Eθ(x). (6)

Therefore, the maximum likelihood learning of EBM with
Eq. 2 is to approximately solve the following minimax game

max
θ

[
min
x

Eθ(x)− Eθ(x
r)
]
. (7)

To have a robust convergence behavior, we can solve
the inner minimization problem of (7) by using the Prox-
imal Point Method [33]. We can further treat the minimax
optimization problem (7) as a multi-step differential game
and extend YOPO [47], a general framework of accelerating
PGD, to speed up the training of EBM. Next, we describe
these new training procedures in details.

3.2. Proximal SGLD

Prior works on EBMs reveal the tradeoff between train-
ing stability and computational time of SGLD-based ap-
proaches [32, 9, 12]. However, the cause of instability of
SGLD-based EBMs is still under investigation. Empiri-
cally, we observe that upon the divergence of EBM, SGLD
generates abnormal samples with extreme values that have a
severe negative impact on model parameter update. Hence,
we introduce our first improvement to stabilize the inner
minimization problem with a proximal SGLD.

Proximal point methods are widely used in optimiza-
tion [35, 33]. To solve the inner minimization problem of
(7), the algorithm generates a sequence {xt}t=1,2,··· by the
following proximal point iteration:

xt+1 = argmin
x

Eθ(x) s.t. ||x− xt||p < ε, (8)

3The entire pipeline is still a stochastic sampler since samples are gen-
erated by running finite-length stochastic gradient decent with random ini-
tialization.

6496

which solves a constrained minimization problem at each it-
eration t, i.e., the current solution should be in the proximity
of previous one, measured by an Lp norm. Compared with
the standard SGD iteration, the proximal point iteration has
a robust convergence behavior. Moreover, even if the prox-
imal operator defined in Eq. 8 is not exactly minimized in
each iteration, it still has a stronger convergence guarantee
than standard SGD, giving rise to the inexact proximal point
method [35]. Thus, if we solve each minimization problem
(8) inexactly with one step of SGD, we obtain an inexact
proximal point iteration

xt+1 = xt − α

2
Lp(∇xEθ(x

t), ε), (9)

where Lp(·, ε) projects the gradient to an Lp-norm ball of
a radius ε. Empirically, we find the L∞-norm works well
across different architectures and datasets. Hence, we only
consider the L∞-norm in the rest of the paper. With an L∞-
norm, Eq. 9 can be rewritten as

xt+1 = xt − α

2
clamp(∇xEθ(x

t), ε) + αϵt, (10)

where the clamp(·, ε) operator clamps the gradient in the
range of [−ε, ε]. Note that to incorporate stochasticity into
the inexact proximal point iteration, we add the noise term
back to Eq. 10, which resembles the original SGLD sam-
pling (3) but with a gradient clamping operator used to en-
force the proximity constraint.

3.3. Training EBM as a Differential Game

As discussed in Section 3.1, the maximum likelihood
learning of EBM (7) solves a minimax game approximately.
This objective has a close relationship to adversarial train-
ing with the PGD attack [28]. Hence, we can extend meth-
ods for accelerating adversarial training to EBM and reduce
the computational complexity of multi-step SGLD.

Inspired by Pontryagin’s Maximum Principle [34], a
general framework in optimal control, Zhang et al. [47] pro-
pose an optimization method called YOPO (You-Propogate
Only Once) to accelerate multi-step adversarial training
such as PGD. The key factor in YOPO is that the adversarial
perturbation is only coupled with the first layer’s weights in
a neural network. Then YOPO can decouple the adversary
update from training of network parameters, and reduce the
total number of full forward and backward propagations to
only one in each group of adversary updates.

Similarly, we can extend YOPO to the maximum like-
lihood learning of EBM because the objective (7) can also
be treated as a multi-step differential game and the sampled
image x from proximal SGLD (10) is only coupled with
the first layer’s weights. By inserting the energy function
(4) into (7), we can rewrite the minimax objective as:

max
θ

[
min
x

−LSE
(
gθ̃ (f0 (x,θ0))

)
− Eθ(x

r)
]

(11)

SGLD Sampling

M times

PYLD Sampling

1 forward & 1 backward + N inner loop

K times

1 forward & 1 backward

𝑀 < 𝐾
𝑀 ×𝑁 ≈ 𝐾

Figure 1. Comparison between SGLD-K sampling and PYLD-M -
N sampling.

where f0 denotes the first layer of a CNN-based EBM, gθ̃ =

f
θT−1

T−1 ◦fθT−2

T−2 ◦· · · fθ1
1 denotes the network without the first

layer, such that fθ(x) = gθ̃ (f0 (x,θ0)). Given a sample
x, the gradient of energy function (4) can be calculated by
chain rule as:

∂Eθ(x)

∂x
=−∇gθ̃

LSE
(
gθ̃ (f0 (x,θ0))

)
· ∇f0gθ̃(f0(x,θ0)) · ∇xf0(x,θ0). (12)

Proximal SGLD (10) conducts K sweeps of full forward
and backward propagations for each update of θ. To sta-
bilize the training of EBM, it requires a large K, which
greatly increases the run-time. To reduce the total number
of thorough forward and backward propagations, we follow
YOPO and introduce a slack variable:

p=−∇gθ̃
LSE

(
gθ̃ (f0(x,θ0))

)
· ∇f0gθ̃ (f0(x,θ0)) , (13)

and freeze it as a constant in the inner loop of the sam-
ple update. We call our accelerated Proximial SGLD al-
gorithm PYLD-M -N (Proximal-YOPO-SGLD) with M
outer loops and N inner loops. Figure 1 demonstrates a con-
ceptual comparison between SGLD-K and PYLD-M -N .
SGLD-K accesses the data K times requiring K full for-
ward and backward propagations. On the contrary, PYLD-
M -N accesses the data M ×N times, while only requiring
M full forward and backward propagations and a inner loop
of M × N cheap sample updates. Similar to YOPO [47],
when M × N ≈ K, PYLD can achieve a similar sample
quality as SGLD. But PYLD-M -N has the flexibility of in-
creasing N and reducing M to achieve approximately the
same level of movement with much less computation cost.
We will demonstrate this when we present results.

The pseudo-code of our PYLD is described in Algo-
rithm 1. For more details of YOPO, we refer the readers
to [47].

3.4. Informative Initialization

The initial sampling distribution p0(x) also plays an im-
portant role in the training of EBM. Nijkamp et al. [31] sum-

6497

Algorithm 1 PYLD-M -N sampling: Given network gθ̃ and
f0 with θ0, step-size α, number of steps M and N

1: x0 ∼ p0(x)
2: for t ∈ [0, 1, · · · ,M − 1] do
3: % calculate the slack variable
4: p=−∇gθ̃

LSE
(
gθ̃(f0(x

t,θ0))
)
· ∇f0gθ̃(f0(x

t,θ0))
5: xt,0 = xt

6: for s ∈ [0, 1, · · · , N − 1] do
7: γ = clamp(p · ∇xt,sf0(x

t,s,θ0) , ε)
8: xt,s+1 = xt,s − α/2 · γ
9: end for

10: xt+1 = xt,N + αϵt

11: end for
12: return xM

marize two main types of SGLD initializations for x0: non-
informative initialization and informative initialization. The
former initializes the sample x0 from a noise distribution
independent to the training data, such as a uniform or Gaus-
sian distribution, while the latter samples from an approx-
imate distribution close to the data distribution. One typi-
cal informative initialization is to use samples from train-
ing data directly, as proposed in Contrastive Divergence
(CD) [20]. Based on this, Tieleman [39] proposes Persis-
tent Contrastive Divergence (PCD) and uses samples from
previous learning iteration as the initial samples for the cur-
rent iteration. In contrast to common wisdom, Nijkamp et
al. [32] propose a short-run MCMC sampler which always
starts from the random noise distribution such as a uniform
distribution. Moreover, to train EBMs, Xie et al. [45] pro-
pose another persistent initialization, which combines non-
informative and informative initialization and samples short
SGLD chains from data samples of previous iterations and
occasionally (with a small probability ρ) reinitializes the
chains from random noise. This is also the sampling ap-
proach adopted by IGEBM [9] and JEM [12], which main-
tain a replay buffer of samples from previous iterations and
replace a small percentage of samples in the buffer with ran-
dom noise to train EBMs.

In this paper, we explore informative initialization to ini-
tialize the SGLD chain, and use the PCD with a replay
buffer. The main difference is that we substitute the ran-
dom noise samples with samples from a Gaussian mixture
distribution estimated from the training dataset. That is, we
define the initial sampling distribution as

p0(x) =
∑

y
πyN(µy,Σy) (14)

with πy = |Dy|/
∑

y′
|Dy′ |, µy = Ex∼Dy [x],

Σy = Ex∼Dy

[
(x− µy) (x− µy)

⊤
]
,

where Dy denotes the set of training samples with label y.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Figure 2. The categorical centers of CIFAR10.

As an example, Figure 2 visualizes the {µ1,µ2, · · · ,µ10}
(categorical centers) estimated from the CIFAR10 training
dataset. Similar visualizations on CIFAR100 and SVHN as
well as example samples from the informative initialization
can be found in the supplementary material.

The informative initialization brings sufficient informa-
tion into x0 to guide the SGLD chain to converge faster
than from a random noise since the initial sample x0 is
now much closer to the real data manifold. Empirically,
we also observe the improved training stability. What’s
more, the informative initialization allows us to enable
batch norm [22], a modern architecture feature of DNNs,
that is excluded by IGEBM and JEM due to the training
difficulty introduced by batch norm.

3.5. Batch Normalization and Learning Rate

Batch norm [22] is an essential component in many state-
of-the-art CNN architectures. Batch norm normalizes input
features by the mean and variance computed within each
mini-batch, which mitigates the vanishing gradient issue
of training very deep networks and dramatically improves
the convergence rate of gradient-based methods. Moreover,
batch norm allows a much larger learning rate and mitigates
the need of tedious finetuning.

However, state-of-the-art EBMs, such as IGEBM [9] and
JEM [12], do not support batch norm. If batch norm is en-
abled in JEM, the model can neither achieve a high clas-
sification accuracy nor generate realistic images. This is
because one intrinsic assumption of batch norm is that the
input features should come from a single or similar distri-
butions. This normalization behavior could be problematic
if the mini-batch contains data from different distributions,
therefore resulting in inaccurate statistics estimation. Un-
fortunately, this might be the case for the original IGEBM
and JEM. Apparently, if the initial samples x0 are sampled
from a uniform or Gaussian distribution as in IGEBM and
JEM, x0 and real data samples have different underlying
distributions, violating the assumption of batch norm.

Similar phenomenon has also been observed by Xie et
al. [43] who demonstrates the different statistics between
clean data and adversarial examples. They show that both
clean data accuracy and adversarial robustness can be im-
proved by using two branches of batch norm: one main
branch for clean data and one auxiliary branch for adver-
sarial examples. Instead of using two batch norms, we mit-
igate the training difficulty of batch norm from a different
perspective. Since we have the choice of designing sam-
pling distribution p0(x), we can use the informative initial-
ization discussed above to enable batch norm in the EBM

6498

Algorithm 2 Training JEM++: Given network fθ, step-size
α, replay buffer B, number of steps M and N , reinitializa-
tion frequency ρ, and number of classes C

1: while not converged do
2: Sample (xr, yr) ∼ D
3: Sample x0 ∼ B with probability 1 − ρ, else x0 ∼

N (µy,Σy), y ∼ p(y) = π
4: Apply PYLD in Algo. 1 to sample xM from x0

5: Calculate gradient with Eq. 2 from xr and xM , and
gradient of CE loss from (xr, yr), and update model
parameter θ

6: Add / replace sample xM back to B
7: end while

training. Since the Gaussian mixture distribution (14) is ac-
tually estimated from real training examples, we can close
the statistic gap between initial samples of SGLD and real
data and enable batch norm in JEM++ successfully. What’s
more, with the informative initialization and batch norm,
JEM++ can also use a much larger learning rate to improve
convergence rate even further.

In summary, Algorithm 2 provides the pseudo-code
for JEM++ training, which follows a similar design of
JEM [12] and IGEBM [9] with a replay buffer. For brevity,
only one real sample (xr, yr) ∼ D and one generated sam-
ple xM ∼ pθ(x) are used to optimize the parameter θ. It
is straightforward to generalize the pseudo-code above to a
mini-batch setting, which we use in the experiments.

4. Experiments
We evaluate the performance of JEM++ on multiple dis-

criminative and generative tasks, including image classifi-
cation, image generation, adversarial robustness, calibra-
tion of uncertainty, and out-of-distribution (OOD) detec-
tion. Since our main goal is to improve JEM’s accuracy,
training stability and speed, we present these results in the
main text and relegate its downstream applications, such
as adversarial robustness, calibration and OOD detection,
to the supplementary material. For a fair comparison with
JEM [12], our experiments closely follow the settings pro-
vided in the source code of JEM4. All our experiments are
performed with PyTorch on Nvidia RTX GPUs.

4.1. Hybrid Modeling

We train JEM++ on three benchmark datasets: CI-
FAR10, CIFAR100 [26] and SVHN [30], and compare it
to the state-of-the-art hybrid models, as well as standalone
generative and discriminative models. Following the set-
tings of JEM [12], all our experiments are based on the
Wide-ResNet architecture [46], with the details of hyper-

4https://github.com/wgrathwohl/JEM

Table 2. Hybrid Modeling Results on CIFAR10. We report
JEM++’s performance with different Ms when N = 5 is fixed.
We also report the per epoch speedup between JEM and JEM++.

Class Model Acc % ↑ IS∗ ↑ FID∗ ↓
Residual Flow [7] 70.3 3.60 46.4

Glow [24] 67.6 3.92 48.9
Single IGEBM [9] 49.1 8.30 37.9
Hybrid JEM (K=20) [12] 1× 92.9 8.76 38.4
Model JEM++ (M=5) 2.4× 91.1 7.81 37.9

JEM++ (M=10) 1.5× 93.5 8.29 37.1
JEM++ (M=20) .92× 94.1 8.11 38.0

Reg VERA† (α=100) 2.8× 93.2 8.11 30.5
Gen. VERA [14] (α=1) 2.8× 76.1 8.00 27.5

Disc. WRN w/ BN 95.8 N/A N/A

Gen. SNGAN [29] N/A 8.59 25.5
NCSN [38] N/A 8.91 25.3

†VERA uses an auxiliary generator to amortize the SGLD sampling and reports a 2.8×
speedup without much details on how the evaluation is performed.
∗A fair evaluation of IS and FID is challenging as different methods use different ways to

measure the image quality. JEM uses an ensemble of models to evaluate its IS and FID, while
JEM++ only uses a single model for evaluation. No more details are provided in JEM. Thus, it
is difficult to have a fair comparison.

Table 3. Test Accuracy (%) on SVHN and CIFAR100.

Model SVHN CIFAR100

Softmax (w/ BN) 97.0 78.9
VERA [14] 96.8 72.2
JEM (K=20) 96.7 72.2
JEM++ (M=5) 96.7 72.0
JEM++ (M=10) 96.9 74.5

parameter settings of JEM++ provided in the supplemen-
tary material. It’s worth mentioning that applying the SGD
optimizer with lr = 0.1 to JEM++ achieves better ac-
curacy than the default setting of JEM using Adam with
lr = 0.00015. To evaluate the quality of generated images,
we adopt the Inception Score (IS) [36] and Fréchet Incep-
tion Distance (FID) [19].

The results on CIFAR10, CIFAR100 and SVHN are re-
ported in Table 2 and 3, respectively. It can be observed
that JEM++ (M = 10) outperforms JEM and other single-
network hybrid models in terms of accuracy (93.5%), FID
score (37.1) and per epoch speedup (1.5×), while being
slightly worse in IS score. Since no IS and FID scores are
commonly reported on SVHN and CIFAR100, we present
the classification accuracy and generated samples on these
two benchmarks. Our JEM++ (M=10) model achieves an
accuracy of 96.9% and 74.5% on SVHN and CIFAR100,
respectively, outperforming JEM by notable margins. Ex-
ample images generated by JEM++ for CIFAR10, SVHN

5JEM cannot use a learning rate larger than 0.0001. Otherwise, it is
extremely unstable and diverges easily at early epochs.

6499

https://github.com/wgrathwohl/JEM

(a) Unconditional Samples (b) Class-conditional Samples

Figure 3. JEM++ generated CIFAR10 samples.

(a) SVHN (b) CIFAR100
Figure 4. JEM++ generated class-conditional samples of SVHN
and CIFAR100. Each row corresponds to one class.

and CIFAR100 are shown in Figure 3 and 4, respectively.
Additional JEM++ generated images can be found in the
supplementary material.

We also investigated JEM++’s performances on sev-
eral downstream applications, including adversarial robust-
ness, calibration of uncertainty, and OOD detection, where
JEM++ achieves improved performances over the original
JEM in most of the cases. Due to page limit, the details are
relegated to the supplementary material.

4.2. Training Stability and Speed

The main limitation of the SGLD-based training is the
tradeoff between training time and stability. The more
SGLD sampling steps are used, the more stable and better
performance EBMs can achieve. In this section, we evalu-
ate JEM and JEM++ in terms of training stability and speed.

We first compare the training stability of JEM and
JEM++. From our empirical study, the official JEM (K-step
SGLD with K = 20) suffers from training instability, i.e.,
it regularly diverges before 60 epochs. Prior works [9, 12],
including JEM, fail to find a reasonably small K to com-
pletely stabilize the training of EBMs, and thus rely on
checkpoints to resume the training when divergences oc-
cur. Figure 5 shows the learning curves of JEM++ trained
on CIFAR10 with different configurations. As can be seen,
JEM++ is much more stable and does not diverge when
M = 20. What’s more, JEM++ with M = 10 can achieve
high stability; even JEM++ with M =5 is more stable than
JEM with K = 20. As discussed in Section 3, the infor-

Figure 5. The learning curves of JEM++ trained on CIFAR10 with
different configurations: (1) Number of steps M with N = 5, and
(2) the proximity constraint. The official JEM uses K = 20, but it
regularly diverges before 60 epochs.

mative initialization improves JEM’s stability because the
initial samples x0 of SGLD are now close to the real data
manifold. Hence, the sampling process requires fewer steps
to reach the low energy region of the energy function, which
we conjure should be much smoother than other regions. In
addition, the proximity constraint also improves the stabil-
ity of JEM++ as demonstrated in Figure 5.

We further compare the training speed between JEM and
JEM++ in terms of run-time per epoch. The results are
reported in Table 4, where we compare JEM and JEM++
trained on CIFAR10 with different configurations of M and
N . It can be observed that M specifies the total number
of forward and backward propagations of PYLD, consum-
ing most of the run-time, while N has a minor impact on
the run-time as it specifies the number of inner loops for
sample update, which is relatively inexpensive. Therefore,
we can increase N and reduce M to achieve approximately
the same level of sample quality with much less computa-
tion cost. Considering the training stability (Figure 5) and
training speed (Table 4), M=10 and N=5 achieves a good
balance between the two criteria and therefore is our default
configuration of JEM++.

Table 4. Run-time comparison of JEM and JEM++ on CIFAR10.

Model Minutes per epoch Speedup

JEM 30.1 1×
JEM++, M = 5

N = 5 12.5 2.41×
N = 10 12.6 2.39×
N = 20 13.0 2.31×

JEM++, M = 10
N = 5 20.1 1.49×
N = 10 20.3 1.48×
N = 20 20.4 1.47×

JEM++, M = 20
N = 5 32.5 .93×
N = 10 32.7 .92×
N = 20 32.9 .91×

6500

4.3. Ablation Study

JEM++ introduces a variety of new training procedures
and architecture features to improve JEM’s accuracy, train-
ing stability and speed. In this section, we study the ef-
fect of different components of JEM++ on the performance
of image classification and image generation. Specifically,
we conduct the ablation study on CIFAR10 with an exhaus-
tive comparison of different components. We measure the
effects of 1) w/o proximity constraint, 2) with Adam op-
timizer, 3) random initialization with batch norm enabled,
and 4) two different types of initialization w/o batch norm.

The results are reported in Table 5. It can be observed
that each component contributes to JEM++’s performance
positively. The proximity constraint in Proximal SGLD im-
proves both stability and accuracy. Our experiments show
that when a smaller M enlarges the instability, the prox-
imity constraint not only helps to stabilize the training, but
also improves the accuracy of the trained models. The infor-
mative initialization also takes a significant role in JEM++,
which enables both batch norm and the use of SGD with
larger learning rates. When batch norm is enabled in JEM,
we find that it can neither achieve a high classification ac-
curacy nor generate realistic images. On the other hand,
JEM without batch norm can achieve decent classification
accuracy and generate quality images, but it’s precarious
and easily diverged at early epochs. The informative ini-
tialization itself w/o batch norm is still beneficial to stabi-
lize the training, as manifested by the improved classifica-
tion accuracy and image quality. It’s worth mentioning that
when batch norm is disabled, only Adam [23] with a small
learning rate no greater than 0.0001 yields a stable train-
ing. However, when batch norm is enabled, the SGD op-
timizer with a much larger learning rate can be applied to
train JEM++ successfully, outperforming the default Adam
optimizer (with a very small learning rate) used in JEM.

Table 5. Ablation study of different components of JEM++. All
the models are trained on CIFAR10 with M = 10 and N = 5.

Ablation Acc % ↑ IS ↑ FID ↓
JEM++ 93.5 8.29 37.1
w/o Proximity 92.9 7.92 36.0
w/ Adam 92.5 7.65 42.7
random init (w/ BN)1 - - -
random init (w/o BN)2 88.6 7.64 35.1
informative init (w/o BN)3 91.1 7.92 39.8

1 It fails to achieve a high accuracy and generate realistic images.
2 It diverges early at epoch 28.
3 Without batch norm, only ADAM with lr=0.0001 can be used.

4.4. Classification Accuracy vs. Image Quality

One interesting phenomenon we observed from our ex-
periments is the tradeoff between classification accuracy
and image quality. Figure 6 shows the evolution of clas-

sification accuracy, IS and FID scores as a function of the
training epochs. At the early stage of training (before epoch
100), both classification accuracy and image quality can be
improved jointly. After that, there is a clear competition
between accuracy and image quality, where improving ac-
curacy hurts image quality. This probably can be explained
by our minimax objective (7), in which the classifier and
the implicit generator compete with each other to achieve
an equilibrium. Compared to the standard GANs [11], the
difference is that we have only one network that serves both
as classifier and generator. How to balance the discrimina-
tive and generative powers within one model is unclear. It
would be interesting to investigate this further in the future.

Figure 6. The evolution of JEM++’s classification accuracy, IS and
FID scores as a function of training epochs on CIFAR10. The
spike around epoch 125 is due to training instability and thanks to
the proximity constraint, JEM++ stabilizes the training eventually.

5. Conclusion
In this paper, we propose JEM++ which improves JEM’s

accuracy, training stability and speed altogether with a num-
ber of new training procedures and architecture features.
We demonstrate the effectiveness of these improvements on
multiple benchmark datasets with state-of-the-art results in
most of the tasks of image classification, image generation,
adversarial robustness, uncertainty calibration and OOD de-
tection. Most importantly, JEM++ enjoys stable and accel-
erated training over the original JEM.

As for future work, we plan to investigate the trade-
off between the classification accuracy and image qual-
ity as shown in Figure 6. We are interested in what the
optimal tradeoff is and how we can achieve the optimum
with architecture design and/or new training methodologies
(e.g., [14, 1]). We also plan to explore JEM++ to large-scale
benchmarks, such as ImageNet, and its application to other
domains, such as NLP.

6. Acknowledgment
We would like to thank the anonymous reviewers for

their comments and suggestions, which helped improve the
quality of this paper. We would also gratefully acknowledge
the support of VMware Inc. for its university research fund
to this research.

6501

References
[1] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and

Ullrich Köthe. Training normalizing flows with the informa-
tion bottleneck for competitive generative classification. In
Neural Information Processing Systems (NeurIPS), 2020. 8

[2] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Du-
venaud, and Jörn-Henrik Jacobsen. Invertible residual net-
works. In International Conference on Machine Learning
(ICML), 2018. 1

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions(ICLR), 2019. 1

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions (ICLR), 2019. 1

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020. 1

[6] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.
Semi-supervised learning. IEEE Transactions on Neural
Networks, 2009. 1

[7] Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-
Henrik Jacobsen. Residual flows for invertible generative
modeling. arXiv preprint arXiv:1906.02735, 2019. 1, 6

[8] Arthur P Dempster, Nan M Laird, and Donald B Rubin.
Maximum likelihood from incomplete data via the em al-
gorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 1977. 1

[9] Yilun Du and Igor Mordatch. Implicit generation and gen-
eralization in energy-based models. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 1, 2, 3, 5,
6, 7

[10] Ruiqi Gao, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, An-
drew M. Dai, and Ying Nian Wu. Flow contrastive estima-
tion of energy-based models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 1,
2

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2014. 1,
8

[12] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen,
David Duvenaud, Mohammad Norouzi, and Kevin Swer-
sky. Your classifier is secretly an energy based model and
you should treat it like one. In International Conference on
Learning Representations (ICLR), 2020. 1, 2, 3, 5, 6, 7

[13] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen,
David Duvenaud, and Richard Zemel. Learning the stein
discrepancy for training and evaluating energy-based models
without sampling. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020. 1

[14] Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi,
Mohammad Norouzi, Kevin Swersky, and David Duvenaud.
No mcmc for me: Amortized sampling for fast and stable
training of energy-based models. In International Confer-
ence on Learning Representations (ICLR), 2021. 1, 2, 6, 8

[15] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics,
2010. 2

[16] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-
Chun Zhu, and Ying Nian Wu. Divergence triangle for joint
training of generator model, energy-based model, and infer-
ence model. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 1

[17] Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun
Zhu, and Ying Nian Wu. Joint training of variational auto-
encoder and latent energy-based model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1, 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 1

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in Neural Information Processing Systems
(NeurIPS), 2017. 6

[20] Geoffrey E Hinton. Training products of experts by mini-
mizing contrastive divergence. Neural computation, 2002.
2, 5

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 2

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), 2015. 2, 5

[23] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 8

[24] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, 2018. 6

[25] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In International Conference on Learning Rep-
resentations (ICLR), 2014. 1

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 1, 6

6502

[27] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. Predicting
structured data, 2006. 1, 2

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018. 2, 4

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2018. 6

[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Ng andrew Y. Reading digits in natural
images with unsupervised feature learning. 2011. 6

[31] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and
Ying Nian Wu. On the anatomy of mcmc-based maximum
likelihood learning of energy-based models. In AAAI Con-
ference on Artificial Intelligence (AAAI), 2019. 2, 3, 4

[32] Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. On
learning non-convergent short-run mcmc toward energy-
based model. In Advances in Neural Information Processing
Systems (NeurIPS), 2019. 1, 2, 3, 5

[33] Neal Parikh and Stephen Boyd. Proximal algorithms. Foun-
dations and Trends in Optimization, 1(3):127–239, 2014. 3

[34] Lev Semenovich Pontryagin. Mathematical theory of opti-
mal processes. CRC, 1987. 4

[35] R. Rockafellar. Augmented lagrangians and applications of
the proximal point algorithm in convex programming. Math-
ematics of Operations Research, 1(2):97–116, 1976. 3, 4

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in neural information pro-
cessing systems (NeurIPS), 2016. 6

[37] Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Image
synthesis with a single (robust) classifier. In Advances in
Neural Information Processing Systems (NeurIPS), 2019. 1

[38] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. arXiv preprint
arXiv:1907.05600, 2019. 6

[39] Tijmen Tieleman. Training restricted boltzmann machines
using approximations to the likelihood gradient. In Interna-
tional conference on Machine learning (ICML), 2008. 5

[40] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical
variational autoencoder. In Advances in Neural Information
Processing Systems, 2020. 1

[41] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation, 2011. 1, 2

[42] Max Welling and Yee W Teh. Bayesian learning via stochas-
tic gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML), 2011.
1, 2

[43] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang,
Alan L. Yuille, and Quoc V. Le. Adversarial examples im-
prove image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 5

[44] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and
Ying Nian Wu. Cooperative training of descriptor and gen-
erator networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42:27–45, Jan. 2020. 1

[45] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu.
A theory of generative convnet. In International Conference
on Machine Learning, 2016. 1, 5

[46] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In The British Machine Vision Conference (BMVC),
2016. 1, 6

[47] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing
Zhu, and Bin Dong. You only propagate once: Accelerat-
ing adversarial training via maximal principle. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.
1, 2, 3, 4

[48] Stephen Zhao, Jorn-Henrik Jacobsen, and Will Grathwohl.
Joint energy-based models for semi-supervised classifica-
tion. In ICML 2020 Workshop on Uncertainty and Robust-
ness in Deep Learning, 2020. 1

6503

