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Figure 1. We propose a novel object-compositional neural radiance field that supports editable scene rendering on real-world datasets. To
obtain a view with object manipulation, we jointly render the transformed objects from the conditioned object branch and the surrounding
background from the scene branch.

Abstract

Implicit neural rendering techniques have shown
promising results for novel view synthesis. However, ex-
isting methods usually encode the entire scene as a whole,
which is generally not aware of the object identity and lim-
its the ability to the high-level editing tasks such as mov-
ing or adding furniture. In this paper, we present a novel
neural scene rendering system, which learns an object-
compositional neural radiance field and produces realistic
rendering with editing capability for a clustered and real-
world scene. Specifically, we design a novel two-pathway
architecture, in which the scene branch encodes the scene
geometry and appearance, and the object branch encodes
each standalone object conditioned on learnable object ac-
tivation codes. To survive the training in heavily cluttered
scenes, we propose a scene-guided training strategy to solve
the 3D space ambiguity in the occluded regions and learn
sharp boundaries for each object. Extensive experiments
demonstrate that our system not only achieves competitive
performance for static scene novel-view synthesis, but also
produces realistic rendering for object-level editing.

1. Introduction

Virtual tour in a real-world scene is one of the most de-
sired experiences for virtual and augmented reality. While
early works rely on laborious capturing and reconstruction
of the physical world, e.g., geometry, texture, material, etc.,
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the emerging neural rendering methods open great opportu-
nities to ease this task by learning directly from a collection
of posed images and achieve promising realistic images. A
common follow-up question to ask is: Can we modify the
scene, e.g., moving or adding furniture, while still maintain-
ing the realistic rendering capability.

Unfortunately, this is not well-supported by existing neu-
ral rendering methods. Early approaches tend to encode the
entire visible scene into a single neural network, such as
NeRF [17] and SRN [26]. While handling small objects
perfectly, these models are hard to scale up for large-scale
scenes due to the fixed network capacity. On the other hand,
a family of neural rendering approaches utilizes volumet-
ric representation [12] to densely encode local information
at specific locations, which migrates the scalability burden
from network parameters to the scene representation and
empirically produces better rendering quality. However, the
scene representation and rendering network are in general
agnostic to the object identity, which does not support high-
level editing tasks such as moving furniture.

In this paper, we propose a neural rendering system that
enables scene editing on real-world scenes. Taking a col-
lection of posed images captured from the real scene and
rough 2D instance masks, our model can render the whole
scene as it is in reality, as well as with objects manipulated,
such as moving, rotating, or duplicating. Most related to
us, OSF [7] enables editable scene rendering in a bottom-
up fashion by learning one model per-object and then per-
form joint rendering. However, their method does not learn
the object arrangements in the real world and requires train-
ing images captured for each individual object beforehand,
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Figure 2. We design a two-pathway architecture for object-compositional neural radiance field. The scene branch takes the spatial
coordinate x, the interpolated scene voxel features fscn at x and the ray direction d as input, and output the color cscn and opacity σscn

of the scene. The object branch takes additional object voxel features fobj as well a a object activation code lobj to condition the output
only contains the color cobj and opacity σobj for a specific object at its original location with everything else removed.

appearance, which renders the surrounding background in
editable scene rendering and assists the object branch in
identifying the occlusion region. With 2D instance masks as
guidance, the object branch encodes each standalone object
conditioned on several learnable object activation codes. At
the rendering stage, when conditioning the scene branch
with the object activation code, we can freely render a sin-
gle object while removing everything else. It is noteworthy
that our framework simultaneously learns to encode multi-
ple objects by assigning a bunch of shuffled object activa-
tion codes to the training rays, without the need to train for
each object separately. Since the framework is built upon
NeRF, we refer to Mildenhall et al. [17] for the technical
background.

3.2. Framework of Object-Compositional NeRF

As shown in Fig. 2, our framework adopts two separate
branches for scene rendering and object rendering. We take
the advantages both from the voxelized representation [12]
and the coordinate-based positional encoding [17], and pro-
pose a hybrid space embedding as network input. Practi-
cally, for each point x sampled along the camera ray, we
apply positional encoding γ(·) [17] on both of the scene
voxel feature fscn interpolated from 8 nearest vertices and
space coordinate x to get the hybrid space embedding. This
hybrid space embedding, along with the embedded direc-
tions γ(d), will be fed into the scene branch and the object
branch. By now, the scene branch function Fscn can output
the opacity σscn and color cscn of the scene at x. For the
object branch function Fobj , we additionally add embedded
object voxel feature γ(fobj) and object activation code lobj
to the input, where fobj helps to broaden the ability of learn-
ing decomposition and is shared by all the objects, and lobj
identifies feature space for different objects and is possessed
by each individual. Take the object activation code lobj as
a condition, the object branch precisely outputs color cobj
and opacity σobj for the desired object while everything else
remains empty.

3.3. Object-Compositional Learning

Object supervision. Ideally, an object radiance field should
only be opaque at the area occupied by the object and trans-
parent elsewhere (i.e., zero opacity). To achieve this goal,
we leverage 2D instance segmentation as supervision sig-
nals for the object branch. For brevity, we assume a training
process with K annotated objects in a scene, along with a
learnable object code library L = {lkobj}. For each ray r
in the batched training set Nr, we select one object k as a
training target and assign the object activation code lkobj to
the object branch input. Then we forward the network and
acquire the rendered color Ĉ(r)kobj , as well as the rendered
2D object opacity Ô(r)kobj by summing up the product of
transmittance T k

i and alpha value αk
i of N sampled points

along the ray, which follows [16, 17] and is defined as 1:

Ĉ(r)obj =

N∑
i=1

Tiαicobji, Ô(r)obj =

N∑
i=1

Tiαi,

Ti = exp

−
i−1∑
j=1

σobjjδj

,

(1)

where αi = 1 − exp (−σobjiδi), and δi is the sampling
distance between adjacent points along the ray. To encour-
age the rendered 2D object opacity Ô(r)kobj to satisfy the
2D instance mask, we minimize the squared distance to the
corresponding instance mask M(r)k. We also minimize the
squared distance between the rendered object color Ĉ(r)kobj
and the ground-truth color C(r) with M(r)k masked. The
loss of object supervision is defined as:

Lobj =
∑
r∈Nr

∑
k∈J1..KK

λ1M(r)k||Ĉ(r)kobj − C(r)||22

+λ2w(r)
k||Ô(r)kobj −M(r)k||22,

(2)

where the instance mask M(r)k is constructed by setting
1 or 0 w.r.t. the instance label at the corresponding pixel

1For brevity, we omit k in Ĉ(r)kobj , Ô(r)kobj , T
k
i , αk

i , c
k
obji

, σk
obji

.
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