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Abstract

Person re-identification (RelD) has gained an impressive
progress in recent years. However, the occlusion is still a
common and challenging problem for recent RelD methods.
Several mainstream methods utilize extra cues (e.g., human
pose information) to distinguish human parts from obsta-
cles to alleviate the occlusion problem. Although achieving
inspiring progress, these methods severely rely on the fine-
grained extra cues, and are sensitive to the estimation error
in the extra cues. In this paper, we show that existing meth-
ods may degrade if the extra information is sparse or noisy.
Thus we propose a simple yet effective method that is robust
to sparse and noisy pose information. This is achieved by
discretizing pose information to the visibility label of body
parts, so as to suppress the influence of occluded regions.
We show in our experiments that leveraging pose informa-
tion in this way is more effective and robust. Besides, our
method can be embedded into most person RelD models
easily. Extensive experiments validate the effectiveness of
our model on common occluded person RelD datasets.

1. Introduction

Person re-identification (RelD) [6, 26] aims to match im-
ages of a person across disjoint cameras, which is widely
used in video surveillance, security and smart city. Despite
the great progress in the recent years, there is still some
practical problems that remain unsolved. Especially, occlu-
sion [31] is one common problem that deteriorates the per-
son RelD performance in real-word scenarios. In practice,
people can be easily occluded by some obstacles (e.g. bag-
gage, counters, cars, trees) or walk out of the camera fields,
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Figure 1. (a), (b) illustrate the relationship between the pose gran-
ularity and the estimation error on existing person RelD datasets
using the off-the-shelf pose estimator. The existing state-of-the-art
methods heavily rely on the fine-grained pose cues but suffer noisy
pose detections. Thus, they are hard to directly learn an occlusion-
robust feature. (c) illustrates our basic idea. Our model learns a
robust mapping from imperfect pose cues to the visibility of body
parts to alleviate the effect of occlusion.

making the prediction results prone to error.

In recent years, plenty of efforts [31, 32, 17, 4, 21, 11]
have been made to solve this occluded person ReID prob-
lem. Usually, they adopt extra cues, such as pose or human
parsing, to assist in judging the occlusion scenarios. How-
ever, these methods assume the existence of fine-grained
and error-free extra cues, which is difficult to achieve in
practical scenarios. For example, [17, 4] utilizes 18 pose
keypoints. And if we use less keypoints, the performance
could drop. However, such fine-grained keypoints may
come with high estimation error in practice. As illustrated
in Fig. 1 (a) to (b), we can see that as the granularity of
pose improves, the estimation error also increases, and the
estimation error may degrade the robustness of the existing
RelID model. In this paper, we aim to find a solution to han-
dle the occlusion problem without heavily relying on the
pose information, i.e., it can achieve comparable/superior
performance with coarse pose information.
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Figure 2. An illustration of the mechanism of part label generation.
The red dots represent key points. The shade of the color repre-
sents confidence score. When confidence score of a key-point is
smaller than the J, its voting weight is set to 0. Otherwise, it is
1. Thus we can see fourth part contains two key-points( (D) and
@). But the confidence score of (2) is very low. Thus the total vot-
ing weight of the fourth part is 1. After obtaining the total voting
weight of each part, we set a voting weight threshold to produce
the part label.

We design a simple but effective framework to accurately
perceive the occluded region of person with the help of a re-
gion visibility discriminator. In particular, we firstly learn
a part label generator, as illustrated in Fig. 2, to generate
part labels of different body parts. We then develop a re-
gion visibility discriminator based on the generated part la-
bels, which learns a robust mapping from pose to visibility
score of horizontal stripes. More concretely, we incorporate
the off-the-shelf pose estimator to obtain pose keypoints
of person. For each keypoint, the pose estimator predicts
its coordinates and confidence score. We use redundant
voting to utilize these information to determine whether a
part is visible or occluded. We then can obtain the coarse
part labels of different body parts. Then we utilize these
coarse part labels to optimize the region visibility discrim-
inator in the training stage. Finally, in the test stage, we
use the learned region visibility discriminator to predict the
visibility scores of person parts without using any keypoint
detectors. We conduct comprehensive evaluations on four
benchmark datasets, which proves the effectiveness of our
part-label based RelD algorithm.

The main contributions of this work are summarized as
follows: 1) To the best of our knowledge, we are the first to
quantitatively explore how the quality of pose information
can influence the performance in occluded person RelD. 2)
We propose a novel pose discretization based approach that
is robust to the quality of pose information. Even if the key-
points are sparse and inaccurate, our model still achieves
promising performance. 3) Our model achieves superior
performance on popular occluded person RelD datasets.
Besides, our model runs 404.0 FPS during inference, which
is about 10 times faster than HOReID [21] (35.3 FPS)'.

IThe GPU device of the evaluation is NVIDIA GeForce RTX 2080 Ti.

2. Related work

Part-based Re-Identification. Part-based person RelD
methods focus on utilizing local descriptors from different
regions to improve the discriminative ability and robustness
of the algorithm. Sun et al.[20] propose a part-based convo-
lutional baseline (PCB), which partitions feature maps into
several horizontal stripes and learns each part-level feature
by multiple classifiers. Based on PCB, Fu et al.[3] intro-
duce a multi-scale and more fine-grained partition method
to enhance the discriminative capabilities of various person
parts. Yao et al. [22] design a part loss network to mini-
mize the empirical classification risk on the training set and
gain the discriminative power on unseen persons. Zheng et
al. [24] propose a coarse-to-fine pyramid model to incorpo-
rate local information, global information and the gradual
cues between them and to alleviate the effect of inaccurate
bounding boxes. Although these methods can achieve good
results in non-occluded person images, they don’t explicitly
deal with contaminated person regions, leading to obvious
mismatch in occluded scenarios.
Occluded Person Re-identification. Occluded Person Re-
identification is first studied by [31]. Early works [31, 32]
try to learn occlusion-free and discriminative features to
match image pairs in response to diverse occlusions. How-
ever, it is difficult to learn such features in a self-learned
manner without the help of extra cue. Thus extra cue based
methods [17, 4, 21, 11] have been the mainstream for oc-
cluded person RelD. Wang et al.[21] utilize graph convolu-
tional network to model the high-order relations among key-
point based local semantics for the robust alignment. Gao
et al.[4] propose to use pose-guided attention mechanism to
learn clean and discriminative local features. He et al.[11]
design a method to reconstruct the feature map of non-
occluded regions guided by the extra semantic cues. Miao
et al.[17] utilize the attention maps of pose joints to disen-
tangle the useful information from the occlusion. However,
these methods heavily rely on finer-grained extra cues and
are sensitive to the granularity of extra cues. Meanwhile,
[4, 21, 17] rely on the off-the-shelf pose estimator in the
test stage, and thus noisy pose detections degrade their per-
formance. Specially, compared with [17], our method has
three main differences as follows: (1) [17] judges whether
or not a part should be considered visible or occluded by
directly utilizing these pose estimation detectors in an off-
the-shelf manner. However, the underlying gap between
datasets for pose estimation and person RelD remains a ob-
vious obstacle. We use the region visibility discriminator,
which is optimized on the same source datasets in an end-
to-end scheme, to produce accurate visibility information
of body parts.(2) Our method is more efficient because the
keypoint detector is not needed in the test stage. (3) We
evaluate occlusion of each person part smoothly in a con-
tinuous way.

In summary, different from the aforementioned paper,
we further investigate the influence of granularity of pose
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Methods key Partial-REID Occluded-REID | Occluded-Duke
CVPR20 num | Rankl Rank3 | Rankl mAP | Rankl mAP

HR vl 6 69.0 80.0 65.9 61.4 49.2 39.5
HR v2 8 70.3 81.7 70.8 65.4 51.2 41.1
HR v3 10 72.0 82.3 72.1 65.4 53.5 43.7

HR(orig) | 14 77.0 85.7 76.3 68.5 55.1 43.8

Table 1. The reproduced results of HOReID [21]. We conduct a se-
ries of experiments to observe the effect of granularity of keypoints
on HOReID. The number of keypoints changes from 14,10,8 util
6, they are denoted as “HR (orig)”,“HR v3”, “HR v2”,“HR v1”,
respectively. The 14 keypoints is the original setup of paper [21].

Methods Partial-REID Occluded-REID | Occluded-Duke
ICCV19 Rankl Rank3 | Rankl mAP | Rankl mAP
PForig 68.0 79.0 63.7 53.2 51.9 37.2
PForig w/ GT 70.3 81.7 68.5 56.9 52.8 37.4

Table 2. The reproduced results of PGFA [17].

information and provide a simple yet effective method to
robustly make use of pose information on occluded per-
son ReID. We hope our exploration will inspire more works
from the RelD research community.

3. Method

In this section, we first carry out a concrete analysis on
the pose information discretization in Sec. 3.1. Then, our
part-label based RelD algorithm is introduced in Sec. 3.2,
particularly emphasizing on the part-label related modules
in Sec. 3.3, Sec. 3.4 and Sec. 3.5. Finally, we elaborate on
the overall training processes in Sub. 3.6.

3.1. Discretization analysis

We first carry out a quantitative analysis to explore the
effect of the granularity of pose keypoints and the estima-
tion error for the existing state-of-the-art occluded RelD
models. We take HOReID [2 1] and PGFA [17] as examples,
which have been introduced in the related work section.

To explore the impact of the granularity of pose key-
points, we change the granularity of pose cues from fine
to sparse. Specifically, we divide pedestrians into three re-
gions: top, middle and bottom, as shown in part (c) of Fig. 4.
For each region, we randomly drop human joints to obtain
different granularity of pose cues. The experimental results
are presented in Table 1. Table 1 shows that as the number
of keypoints decreases from 14 to 6, there is a significant
performance degradation for HOReID.

To explore the impact of noise of pose cues, we repro-
duce the results of PGFA. The results are shown in Table 2.
“PFori” is the results of using the original pose cues, which
keeps the original setup of paper [17]. To further quanti-
tatively observe the impact of noise, we manually annotate
the three datasets with red rectangle to represent visible re-
gions in pedestrian images. As shown in Fig. 4 (b), the red
rectangle box can been as precise extra cues without any
noise, which can be seen an approximate ground-truth pose
annotation. With this kind of refinement, the results using
manual annotation extra cues are denoted by the “PForig w/
G” in Table 2. We can see PGFA obtains consistent perfor-

mance gains on three different datasets.

In conclusion, the set of control experiments prove the
following insights: 1) Although sparse pose granularity
contains less noise, it causes an obvious degradation on
performance of RelD models. 2) Extra cues is usually ex-
tracted with estimation error, which harms the performance
of ReID models; The ground-truth fine-grained extra cue
can bring performance gains. But the ground-truth fine-
grained extra cue is hard to obtain, which usually requires
time-costing and labor-consuming annotations. In this pa-
per, we find an easy but effective solution, which utilizes the
imperfect extra cues in coarse manner and is robust to the
granularity of extra cues and the estimation error. Mean-
while, the method can achieves the similar RelD perfor-
mance as exploiting the fine-grained precise extra cue.

3.2. Overall Part-label based Framework

As shown in Fig. 3, our model is based on PCB [20].
The model mainly includes a Part Label Generator, a region
visibility discriminator and a visibility-guided constraint,
which aims to learn a robust mapping that maps keypoints
to visibility scores of coarse stripes. The detail of our model
is described below.

3.3. Part Label Generator with a Redundant Voting

To convert the keypoint cues to visibility information of
person regions, we design a part label generator based on
a redundant voting strategy, which is partially inspired by
work [17]. But we further consider the information of mul-
tiple keypoints in each person stripe. Meanwhile, our pur-
pose is quite different from [17], which has been discussed
in related work. Following existing works [17, 4, 21], we
use an off-the-shelf pose estimator to obtain pose keypoints
of a person. In this paper, we choose the AlphaPose [2]
as our pose estimator, which is pre-trained on the COCO
dataset [15]. For each keypoint, the pose estimator pre-
dicts its coordinates and confidence score. For a person im-
age, we can obtain totally & human keypoints, where K is
18 in this paper. The information of each keypoint can be
denoted mathematically as (cz;, cy;,s;),j = 1,2,..., K.
cxj,cy;, s; denote the horizontal and vertical coordinates,
confidence score of jth keypoint respectively.

The original meaning of the confidence score is to repre-
sent the probability that the keypoint belongs to the human
joint (e.g., head, hand, leg, etc.). It can also be used to rep-
resent a more coarse meaning that indicates the visible in-
formation of person part. As shown in Fig. 2, we can see a
body stripe may contains multiple keypoints. So we design
a redundant voting method to convert confidence score of
multiple keypoints to visible information of person part, de-
noted as part label. We argue that each keypoint should has
a voting weight to indicate whether or not a part should be
considered visible or occluded. Meanwhile, we also know
that when the confidence score of a keypoint is high, it is
likely to be visible. Otherwise, it may be occluded. Thus we
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Figure 3. The overall architecture of our proposed method. We use a CNN backbone for the feature extraction. Similar to PCB [20],
the feature is learnt in both global and local view. We design a region visibility discriminator in the local branch to predict visibility of
coarse stripes, as illustrated in the yellow rectangle. The ground-truth part label is generated by the part label generator based on the
keypoint predictions, as illustrated in the green rectangle. The region visibility discriminator is supervised by part labels to learn a compact
classification boundary by pulling visible body part(e.g., head, the upper body,etc.) together and pushing the occluded body part(e.g.,
umbrella, tree, car) together in training stage, as illustrated in the orange rectangle.

set a threshold A\ to assign different voting weight to differ-
ent keypoints. The voting weight can denote whether vote
of a keypoint is valid or not. When the s; > A, the voting
weight of keypoint is 1, which indicates that the keypoint
can produce a vaild vote. When the s; < A, the voting
weight of keypoint is 0. Finally, we sum the total voting
weight of all keypoints in each stripe, which is denoted as
T'. If the total voting weight of a body part reaches a certain
level, this part can be regarded as visible. Thus we set a
voting weight threshold W to judge whether a part should
be considered visible or occluded. When T > W, the stripe
is seen as visible and set its part label to 1. Otherwise, the
stripe is seen as occluded and set its part label to 0. Thus,
for each part 7« = 1,..., N, its part label /; is written as
follows:

K . .
1 —1 )
T; =Y w;if ey; € {HH) (1)
pt N N
li=f(Ti—W) (i=1,...,N),

where f(z) = 1if z > 0, otherwise, f(z) = 0. H
denotes the height of the original image. Thus, a person
horizontally partitioned into /N body regions, each region
has a ground truth label I; € {0,1}. I; = 0 or 1 means
occluded or visible, respectively.

3.4. Region Visibility Discriminator

Person RelD aims to learn a distance that images of the
same identity should be as close as possible. As shown in
Fig. 4 (a), if we directly calculate the distance between oc-
cluded and holistic person, the final distance would be ob-

Randomly drop

Part features

Y
Visibility scores

D The bounding box of visible’
(a) Visibility-guided match region manually labelled

(b)
Figure 4. (a) An illustration of visibility scores for parts, which
help avoid disturbances from occlusions. (b) This red box of man-
ual annotation can be seen a precise extra cues without any noise,
which can used to explore the effect of noise in PGFA [17] in
Sec. 3.1. (c) An illustration of different granularity of pose cue.

Different granularity of
keypoints
(©

vious inaccurate. An intuitive idea is to rough visibility in-
formation of person images by utilize extra pose cues. But
the original pose cues cannot be directly quantified and used
in calculating the effective distance between occluded and
holistic person images. Thus we design a region visibility
discriminator to learning a robust mapping from the coarse
pose cues to the visibility scores of person parts.

We introduce the region visibility discriminator formally
below. Given a person image, we denote it as /, whose fea-
ture map extracted by the backbone model is denoted as F'.
F; € R"wX¢ in which h, w, ¢ denote the height, width
and channel number, respectively. The feature map F' is
horizontally partitioned into /N regions. Then each region
is processed by average pooling and each region feature is
represented as x; € R ¢ = 1,..., N. cis the dimension
of feature. Our region visibility discriminator takes each re-
gion feature x; as input to estimate its visibility scores. The
ground-truth part label, generated by our part label genera-
tor, is used to optimize the region visibility discriminator in
an end-to-end manner.
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We implement the Region Visibility Discriminator via
a tiny network which consists of a Convolutional layer of
1x1 filter, a BatchNorm layer, a Fully-connected layer,and
a Sigmoid activation layer. The output of the region visibil-
ity discriminator is visibility scores of person parts, and its
range is (0, 1). Further the visibility scores are introduced
into the RelD triplet loss to obtain a more accurate distance
(see Sec. 3.5).

3.5. Visibility-Guided Constraint Loss

In the RelD task, the fundamental learning process of
human appearance consistency is usually accomplished by
common metrics such as the contrastive loss and the triplet
loss. Typically, the batch hard triplet loss [12] is exploited
in this paper and formulated as follows:

Ltm’plet = maX(D(faa fp) - D(fav fn) + m70)7 2

where fo,fp,fn are features extracted from the anchor, posi-
tive and negative samples, respectively, and m is the margin
of the triplet loss. Traditionally, D(-) is the L2-norm dis-
tance or cosine distance. However, as shown in Fig. 4 (a),
the occluded region is obviously obstacle for computing the
effective distance. Thus only consider the global distance is
inaccurate and we need to alleviate the negative influence of
occluded part by part labels. Therefore, borrowed from the
similar matching strategy in [17], we use Equation (3) as the
new distance function of measuring image pairs. But differ-
ent from [ 7], we integrate the matching strategy into triplet
loss, which can optimize the model in end-to-end manner.
ity (I 1) - D(at,af) + D(F?, F?)

e e
S

dist =

Specifically, the [J and I{ denote the visibility scores of
ith part of query and gallery images respectively. - denotes
multiplication. D(z7,x7) is original distance of each cor-
responding feature pairs. As shown in Fig. 4(a), when there
exists occlusion, the [{ -1 would be small (close to 0), which
can be seen as a weight that reduce the influence of the oc-
clusion on the final distance. When a pair of features are
both visible, the [{ - I would be high( close to 1). Then
D(F1, F9) are utilized to measure distance of global fea-
ture. Finally, we use Equation (3) to replace the conven-
tional D(-) as more representative measurement metric in
hard triplet loss. The visibility-guided hard triplet loss is
denoted as Ly agrri.

Meanwhile, in the test stage, we also use Equation (3) as
the distance measurement metric between query and gallery
images. Note that the visibility scores of person part are
generated by region visibility discriminator instead of pose
detectors in test stage. It means we do not need to rely on
any extra cues in test stage, which can relax the constraints
of expensive resource overhead when deploying re-id mod-
els.

3.6. Objective Function

Except for the Visibility-Guided Hard Triplet loss men-
tioned above, we employ two type loss function to optimize
our proposed model, including the Cross-Entropy loss and
the hard triplet loss in training phase.

ID loss. For basic discrimination learning, we regard the
identification task as a multi-class classification problem,
the ID loss can be formulated as Equation (4)

L= OE(Q) y)7 4
where CE denotes the cross-entropy loss, ¢ denotes the pre-
diction and y denotes the ground truth identity. In the train-
ing phase, global feature, part-level feature and region vis-
ibility discriminator are supervised by cross-entropy loss
which are denoted as Lyrp, Lprp, LBCE-

Triplet loss. For the Sec. 3.5, we propose to use
visibility-guided hard triplet loss as the new distance met-
ric of global feature. For part-level feature, we still use
batch hard triplet loss to further learn discriminative part-
level representation, which is be denoted as £L,r;.

Therefore, the overall objective function is:

Lot = aLpip + (1 —a)Lyrp + Lyrri + LoE + Lyvarri-

®)

where « is balanced factor.

4. Experiments
4.1. Datasets and Evaluation Protocols

To illustrate the superiority of our proposed method in
ovecoming the occlusion problem in person RelD, we con-
duct our experiments on four datasets. They are Occluded-
DukeMTMC [17], Partial-REID [28], Partial-iLIDS [27],
Occluded-RelID [31], respectively.

The Occluded-DukeMTMC dataset is proposed recently
by work [17]. Its characteristic is that the query images
are all occluded images. It contains 15618 training im-
ages, 2210 occluded query images and 17661 gallery im-
ages, which is the most largest dataset in occluded person
RelID. The Occluded-RelD dataset contains 2000 annotated
person images of 200 occluded persons. Each person has
5 full-body person images and 5 occluded person. The
Partial-REID dataset includes 600 images of 60 persons. 5
occluded person images and 5 holistic person images are
collected for each identity. The Partial-iLIDS is based on
the iLIDS dataset [27] dataset contains 119 people with a to-
tal 238 person images. Following the test setting of previous
work [19,4,11,17,9, 21], Occluded-RelD dataset , Partial-
REID dataset and Partial-iLIDS dataset are only used as test
set. When conducting our experiments on these three pub-
lic datasets, we train our proposed model on the training set
of Market-1501 [25]. In this work, for Partial-iLIDS and
Partial-REID, we only use the full-body and occluded per-
son images for evaluation. For performance evaluation, we
used the cumulative matching characteristic (CMC) and the
mean Average Precision (mAP).

11889



Methods Source Partial-REID Partial-iLIDS
Rank-1 Rank-3 | Rank-1 Rank-3

DSR [Y] CVPR18 50.7 70.0 58.8 67.2
SFR [10] arXivl8 56.9 78.5 63.9 74.8
AFPB [31] ICME18 78.5 - - -
FPR [11] ICCV19 81.0 - 68.1

TCSDO [32] arXivl9 82.7 - - -
VPM [19] CVPR19 67.7 81.9 65.5 74.8
PGFA [17] ICCV19 68.0 80.0 69.1 80.9
PVPM+Aug[4] | CVPR20 78.5 - - -
HORelD [21] CVPR20 85.3 91.0 72.6 86.4
Ours - 85.7 93.7 80.7 88.2

Table 3. Comparison with state-of-the-arts on two partial datasets,
i.e. Partial-REID [28] and Partial-iLIDS [9] datasets.

4.2. Implementation Details

For the model architectures, we adopt the same mod-
ifications for ResNet50 [8] with [16, 20]. The modified
ResNet50 is used as our backbone to extract feature maps
from input images. For each PCB classifier and the clas-
sifier of the region visibility discriminator, following [16],
we adopt 1x1 conv, a batch normalization layer [14] and a
fully-connected layer followed by a softmax function. For
data preprocessing, the input images are resize to 384x128
and augmented with we adopt random horizontal flipping,
padding ten pixels, random cropping, and random eras-
ing [29]. When conduct the test on Partial-REID, Partial-
iLIDS and Occluded-RelD datasets, followed by [21], we
adopt color jitter augmentation to avoid domain variance.
For optimization, we adopt standard Stochastic Gradient
Descent (SGD) optimization strategy to train our model.
The total training epoch number is 80. We use cosine an-
nealing strategy to adjust the learning rate. For Market-
1501 and Occluded-DukeMTMC, we set the initial learning
rate of backbone to 0.02 and 0.05, respectively. The hyper-
parameter o, N are set to 0.9,6 and 0.8,4 ,respectively. For
the batch hard triplet loss and visibility-guided hard triplet
loss, the batch size is set to 128 with 4 images per per-
son. The threshold A, which assigns voting weight to dif-
ferent key-points, is set to 0.2. The voting weight threshold
W =1.

4.3. Comparison with the State-of-the-art

To validate the effectiveness of our proposed method on
the occluded person RelD problem, we compare our pre-
sented method with several recent state-of-the-art methods
on the above mentioned four datasets. Meanwhile, we also
compare our method with the state-of-the-art methods de-
signed for holistic person.

Compared to state-of-the-art methods designed for Oc-
cluded person RelID. Compared with PGFA [17], the rank1
accuracy of our model significantly surpass this method
by 17.7%, 11.6% on Partial-REID and Partial-iLIDS, re-
spectively. Meanwhile, on the Occluded-Duke dataset,
our model outperforms the method by 10.8%/9.0% in
rank1/mAP. The main reason is that PGFA directly depends
on the pre-trained pose estimator to generate part labels, it is
easily affected by the accuracy of the pose estimator. How-

Methods Source Occluded-Duke | Occluded-REID
Rank-1 mAP | Rank-1 mAP
Part-Aligned [23] ICCV17 28.8 20.2 - -
PCB [20] ECCV18 42.6 33.7 41.3 38.9
Part Bilinear [ 18] ECCV18 36.9 - - -
FD-GAN [5] 40.8 - -
AMC+SWM [28] ICCV15 - - 31.2 27.3
DSR [9] CVPR18 40.8 30.4 72.8 62.8
SFR [10] arXiv18 423 32 - -
Ad-Occluded [13] | CVPRI18 44.5 322 - -
TCSDO [32] arXivl9 - - 73.7 77.9
FPR [11] ICCV19 - - 78.3 68.0
PGFA [17] ICCV19 51.4 37.3 - -
PVPM+Aug[4] CVPR20 - - 70.4 61.2
HORelD [21] CVPR20 55.1 43.8 80.3 70.2
ISP [30] ECCV20 62.8 52.3 - -
Ours - 62.2 46.3 81.0 71.0

Table 4. Comparison with state-of-the-arts on two occluded
datasets, i.e. Occluded-Duke [17] and Occluded-REID [31].

ever, our superiority lies in the design of the region visibility
discriminator, which predicts the visibility scores of stripes
and can conveniently be integrated into the feature learning
model in an end-to-end scheme.

Compared with PVPM [4], PVPM extracts heatmaps

of the keypoints to produce pose-guided attention (PGA)
for mining visible parts. Our method surpasses the
PVPM by 7.2% rank-1 accuracy on Partial-REID. And
also, 11.5%/10.6% rank1/mAP on Occluded-REID. HOR-
elD [21] utilizes graph conventional network to model re-
lations of keypoints. Our approach outperforms HOReID
by 7.1%/2.5% rank-1/mAP on Occluded-Duke. Note that
both PVPM [4] and HOReID [21] heavily rely on dense
and accurate pose keypoints, which is not always accessi-
ble as the pose estimator are not optimal. On the contrary,
by transforming keypoints to visibility scores, our model is
less sensitive to pose estimation error, thus can better locate
occluded regions. Compared to ISP [30], we don’t need
to iteratively learn and classify feature maps on pixel-by-
pixel level, which is time-consuming in training and testing
stage. Furthermore, compared with the complicated train-
ing scheme of ISP [30], our method can be embedded into
most person RelD methods easily.
Compared to state-of-the-art methods designed for
holistic person. We reproduce and evaluate the two
strongest state-of-the-art methods [16, 24] designed for
holistic person on the four occluded ReID datasets. As
shown in Table 6, our model significantly surpasses these
methods because they don’t explicitly handle occlusion.

4.4. Ablation Study

The effect of Region Visibility Discriminator. To verify
the necessity of region visibility discriminator, we straightly
set all the part labels for each image to 1 in testing stage,
which means the model can’t judge the visibility of each
part. From the 1-st row and 2-nd row of Table 5, we can see
disabling the function of the region visibility discrimina-
tor significantly degrades RelD performance by 8.8%/8.3%
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VGTri | VRD Partial-REID Partial-iLIDS Occluded-REID | Occluded-Duke
Rank-1  Rank-3 | Rank-1 Rank-3 | Rank-1 mAP | Rank-1 mAP

X X 79.7 89.0 78.9 86.5 71.8 62.7 41.7 343
X v 85.0 93.0 79.8 87.3 80.6 71.0 61.3 46.0
v X 81.6 91.3 78.9 88.2 74.7 64.7 47.0 38.8
v v 85.7 93.7 80.7 88.2 81.0 71.0 62.2 46.3

Table 5. Analysis of Visibility-Guided Hard Triplet loss (VGTri), Region Visibility Discriminator (VRD). The results of first row can be
seen as baseline. The experimental results show the effectiveness of our proposed methods.

Partial-REID

2

Visibility scores ©) The gallery samples of P;rtial-RElD

Methods Partial-REID Partial-iLDS Occluded-REID | Occluded-Duke

Rank1 Rank3 | Rankl Rank3 | Rankl mAP | Rankl mAP
Pyramid [24] 64.6 77.6 75.6 88.2 61.5 58.5 52.8 46.1
Strong Baseline [10] 753 85.0 79.8 86.6 642 585 49.9 43.4
Our 85.7 93.7 80.7 88.2 81.0 71.0 62.2 46.3

Table 6. Comparing the performance of our method and other two
state-of-the-art methods on four datasets.

Methods | key Partial-REID | Partial-iLDS | Occluded-REID | Occluded-Duke
num Rank1 Rank1 Rank1 Rank1

Our vl 6 83.33 76.5 71.7 60.7

Our v2 9 84.0 78.2 76.0 60.5

Our v3 12 84.7 782 76.0 60.5

Our v4 15 84.3 79.9 76.0 60.4

Ours 18 85.7 80.7 81.0 62.2

Table 7. The number of keypoints changes from 18,15,12,9 to 6.
They are denoted as “Ours”,““Ours v4”, “Ours v3”,“Ours v2,“Ours
v1”, respectively. The 18 keypoints is the original setup of our
paper. The experimental results show the robustness of our part
label strategy for utilizing pose information.

Methods | Partial | Partial | Occluded | Occluded
REID iLDS REID Duke
Rankl | Rankl Rank1 Rank1
PGlabel 84.0 65.6 79.2 48.1
GT 88.0 80.7 81.0 62.2
Ours 85.7 80.7 81.0 62.2

Table 8. Analysis of three different methods to obtain part la-
bel. The experimental results show the superiority of our proposed
method.

Methods Partial-REID Partial-iLDS Occluded-REID Occluded-Duke

Rank1 Rank3 Rank1 Rank3 Rank1 mAP Rank1 mAP
HTri 850 [ 93.0 798 [ 874 80.6 [ 709 612 [ 46.0
VGTri 857 | 937 80.7 | 882 81.0 [ 710 622 | 463

Table 9. Comparing the effect of our visibility-guided hard triplet
loss with traditional hard triplet loss on four datasets. The exper-
imental results show the superiority of our methods to traditional
hard triplet loss.

and 19.6%/11.7% rank1/mAP on the two largest datasets,
namely Occluded-REID and Occluded-Duke. Similarly,

) The gallery samples of Partial-REID
Occluded-REID
Figure 5. A visualization of visibility scores predicted by region visibility discriminator in testing stage on Partial-REID and Occluded-

REID datasets. The six black values on left of image from top to bottom denote the visible probability of each part region in turn.

for the 3-rd row and 4-th row of Table 5, the accuracy of
rank1/mAP drops 6.3%/ 6.3% and 15.2%/7.5% respectively
on the same two datasets. Hence, the experimental results
show the effectiveness of our proposed region visibility dis-
criminator module. Meanwhile, the consistent significant
improvements prove the solid generality of the region visi-
bility discriminator module.

The Effect of Visibility-Guided Hard Triplet loss. Sim-
ilar to the analysis of the region visibility discriminator,
the comparison results from the 1-st row and 3-rd row, 2-
nd row and 4-th row of Table 5 depict that the visibility-
guided hard triplet loss is effective. Meanwhile, for compar-
ing visibility-guided hard triplet loss(VGTri) and the tradi-
tional hard Triplet loss(HTri) [12], we keep all experimen-
tal settings same except for the type of the triplet loss and
further conduct two experiments. Traditional hard triplet
loss and our visibility-guided hard triplet loss are denoted
as “’HTri’ and “VGTri” respectively. The experimental re-
sults are shown in Table 9. “VGTri” fully outperforms tra-
ditional hard Triplet loss on four datasets, which further il-
lustrates the superiority of visibility-guided hard triplet loss
compared to traditional hard triplet loss.

4.5. Model Analysis

The Superiority of Our Part Label Discretization Strat-
egy. For verifying the superiority of our part label dis-
cretization strategy, we compare the other two strategies to
get the part label. One is using the off-the-self pose detector
to obtain the part label, which is denoted as “PGlabel”. The
other is using bounding box annotation to obtain part labels,
which is denoted as “GT”(e.g., as shown in Fig. 4 (b) ). We
can regard it as a precise enough extra cue. For fair compar-
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Methods Partial-REID Partial-iLDS Occluded-REID Occluded-Duke

Rank1 Rank3 Rank1 Rank3 Rank1 mAP Rank1 mAP
Mask R-CNN [7] 86.3 91.0 79.0 86.6 81.6 71.6 62.9 45.8
OpenPose [ 1] 86.0 91.3 80.7 86.6 79.0 69.9 61.5 46.0
AlphaPose [2] 85.7 93.7 80.7 88.2 81.0 71.0 62.2 46.3

Table 10. Comparing the effect of using different pose detectors
on four datasets. AlphaPose is used in our original paper.

100

curacy (%)

01 02 03 04 05

" Batanced factor (1 Threshold \ Voting weight threshold W
(@) (b) (©)
Figure 6. (a) The impact of the loss weight . (b) The impact of
confidence threshold A. (c) The impact of Voting weight threshold
w.
ison, we fix all setup and use the same trained model, only
change the way of obtaining part label in inference stage.
The experimental results are presented on Table 8, which
suggests the performance of our method fully outperforms
the “PGlabel” on four datasets. Specifically, the rank-1 of
our method dramatically surpasses “PGlabel” by 14.1% on
Occluded-Duke. The reason may is that the “PGlabel” is
based on pose information, only obtaining hard part label
(0 or 1). Moreover, “PGlabel” is susceptible to the perfor-
mance of pose estimator itself. But our part label predicted
by region visibility discriminator is in a soft form, whose
range is from O to 1 (e.g., as shown in Fig. 5). Thus our
soft part label is continuous, which can reflect the differ-
ent degrees of occlusion. Meanwhile, under the guidance
of part labels, our method can learn consistent feature in
an end-to-end manner. On the other hand, we also can see
the performance of our method and “GT” is basically same,
which shows that our method can achieve the same perfor-
mance as exploiting ideally precise extra cues. But com-
pared with “GT”, our method don’t require time-costing and
labor-consuming annotations.
The Robustness of Our Part Label Discretization Strat-
egy. To validate the robustness of our part label strategy, we
keep our experimental condition fixed and only change the
granularity of pose information. And the Table 7 shows that
with the variation of pose information, namely the variation
of the number of keypoints , the performance of our model
is nearly unchanged, which demonstrates that our part label
strategy is robust to granularity of pose cues.
The Impact of the Pose Estimation Algorithm. To inves-
tigate the impact of different pose keypoint detectors, we
use three different pose estimation algorithms, AlphaPose
[2], Mask RCNN [7] and OpenPose [!]. As shown in Ta-
ble 10, we find three pose estimation algorithms achieves
similar performance on the four datasets, which proves that
our model is robust to different keypoint detectors.

4.6. Hyper-parameter Analysis

The Impact of the balanced factor a. We analyze the ef-
fect of the balanced factor o parameters on four datasets.
Results in figure 6 (a) indicate that our method is not sensi-

tive to the « in range [0.1,0.9].

The Impact of the Threshold . We set a threshold A
(0.2 in this paper) to assign voting weight to different key-
points. We further evaluate the impact of A\. As shown in
Figure 6 (b), when X is set between 0.1 and 0.5, the perfor-
mance changes smoothly, which indicates that our model is
not sensitive to the A of this range. When X is too large,
the model suffers a performance drop, because the voting
weight of few keypoints are set to 1 and further lead to gen-
erating abundant incorrect part labels.

The Impact of the voting weight threshold /. We set a
voting weight threshold W (1 in this paper) to assign part
labels to different body parts. We further evaluate the im-
pact of A. As shown in Figure 6 (c), when W = 1, the
model achieves the best performance. The phenomenon ex-
plains why our method is robust to granularity of keypoints.
When W is set to 1, only needing a small number of key
points that can produce valid votes can meet the condition.
Thus, as shown in Table 7, we can see that even when the
granularity is extreme sparse, our method is still competi-
tive to the current state-of-the-art methods.

4.7. Visualization

we visualise the visibility scores predicted by region vis-
ibility discriminator in testing stage. From the Fig. 5, we
find although the image region has a variety of diversified
appearances, the completely occluded region and the com-
pletely visible region both can be predicted a almost ideal
visible probability. Moreover, we can see the partially oc-
cluded region(e.g., as shown in the third person image on
the Fig. 5 (a)), whose visible score is proper and continu-
ously reflects the change of occlusion. It shows our soft part
label based on our region visibility discriminator is superi-
ority to hard part label based on pose information.

5. Conclusion

In this paper, by changing the granularity of the pose cue
for current state-of-the-art methods, and adding annotation
bounding boxes by hands, we conduct some experiments
and observe following facts: 1) these method is sensitive to
the granularity of the pose cue and prefers fine-grained and
accurate pose cue; 2) the pose cue usually contains noise in
real scenarios, increasing the difficulty of robust modeling.
Then, we propose a simple but effective part-label based al-
gorithm to discretely utilize coarse pose information while
maintain good robustness and generality. The experimental
results show the superiority of our algorithm.
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