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Abstract

Video super-resolution (VSR) aims to improve the spa-
tial resolution of low-resolution (LR) videos. Existing
VSR methods are mostly trained and evaluated on syn-
thetic datasets, where the LR videos are uniformly down-
sampled from their high-resolution (HR) counterparts by
some simple operators (e.g., bicubic downsampling). Such
simple synthetic degradation models, however, cannot well
describe the complex degradation processes in real-world
videos, and thus the trained VSR models become ineffec-
tive in real-world applications. As an attempt to bridge
the gap, we build a real-world video super-resolution (Re-
alVSR) dataset by capturing paired LR-HR video sequences
using the multi-camera system of iPhone 11 Pro Max. Since
the LR-HR video pairs are captured by two separate cam-
eras, there are inevitably certain misalignment and lumi-
nance/color differences between them. To more robustly
train the VSR model and recover more details from the LR
inputs, we convert the LR-HR videos into YCbCr space and
decompose the luminance channel into a Laplacian pyra-
mid, and then apply different loss functions to different com-
ponents. Experiments validate that VSR models trained on
our RealVSR dataset demonstrate better visual quality than
those trained on synthetic datasets under real-world set-
tings. They also exhibit good generalization capability in
cross-camera tests. The dataset and code can be found at
https://github.com/IanYeung/RealVSR.

1. Introduction
Super-resolution (SR) [5] is a classical yet challenging

task in image/video processing and computer vision, aiming
at reconstructing high-resolution (HR) images/videos from
their low-resolution (LR) counterparts. There are two ma-
jor research branches in the field of SR: single image super-
resolution (SISR) [9] and video super-resolution (VSR) [1].
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Figure 1. Video super-resolution results on a real-world video
(captured by the iPhone 11 Pro Max) by EDVR [27] trained on
the synthetic Vimeo-90k datatset [31] and our RealVSR dataset.

While SISR mainly exploits the spatial redundancy within
an image, VSR utilizes both spatial and temporal redundan-
cies to reconstruct the HR video. With the increasing pop-
ularity of mobile imaging devices and rapid development
of communication technology, VSR is attracting more and
more attention for its great potentials in HR video genera-
tion and enhancement.

The recent progress in VSR research largely attributes
to the rapid development of deep convolutional neural net-
works (CNNs) [3, 31, 14, 20, 25, 27, 11], which set new
state-of-the-arts on several benchmarking VSR datasets
[31, 23]. Those datasets, however, are mostly synthetic ones
because it was difficult to collect real-world LR-HR video
pairs. Specifically, the LR videos are obtained by uniformly
downsampling their HR counterparts using some simple
operators, e.g., bicubic downsampling or direct downsam-
pling after Gaussian smoothing. Unfortunately, such simple
degradation models could not faithfully describe the com-
plex degradation processes in real-world LR videos. As a
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result, VSR models trained on such synthetic datasets be-
come much less effective when applied in real-world appli-
cations. An example is shown in Fig. 1, where we can see
that the VSR model trained on the widely used Vimeo-90k
datatset [31] is less effective in super-resolving on a real-
world video captured by the iPhone 11 Pro Max.

In order to remedy the above mentioned problem, it is
highly desired that we can have a VSR dataset of paired
LR-HR sequences which are more consistent with the real-
world degradations. Constructing such a paired dataset
used to be very difficult since it requires capturing accu-
rately aligned LR-HR sequences of the same dynamic scene
simultaneously. Fortunately, the multi-camera system of
iPhone 11 Pro series enables us to move one large step to-
wards this goal. As shown in Fig. 2, there are three sep-
arate cameras of different focal lengths available in iPhone
11 Pro series. Utilizing the double taking function provided
by the DoubleTake app, we are able to capture two approxi-
mately synchronized sequences using two of the three cam-
eras. Some image registration algorithms [4] can then be
employed to align the LR-HR video sequence pairs. Fig. 2
also shows an example of the LR-HR pairs before and after
registration. In this way, a real-world VSR dataset, namely
RealVSR, is constructed by capturing various indoor and
outdoor scenes under different illuminations. RealVSR pro-
vides a worthy benchmark for training and evaluating VSR
algorithms for real-world degradations.

Due to the constraints in dual camera capturing, there
exists certain misalignment and luminance/color differ-
ences between the LR-HR sequences even after registration.
Therefore, directly training a CNN to map the LR sequence
to the HR sequence with simple losses is not a very suit-
able strategy. To alleviate the influence of color difference,
we disentangle the luminance and color by transforming the
RGB videos into YCbCr space, and focus on the reconstruc-
tion of video details such as edges and textures. On the
color channels, we adopt a gradient weighted loss [30], in-
tending to pay more attention to color edge reconstruction.
To address the problem of small misalignment and lumi-
nance difference in Y channel, we decompose Y channels of
predicted and targeted frames into Laplacian pyramids, and
apply different losses on low-frequency and high-frequency
components. As shown in Fig. 1, the VSR model trained on
our dataset with the proposed learning strategy reproduces
much better video details with less artifacts.

The contributions of this work are twofold. First, a Re-
alVSR dataset (the first of its kind to the best of our knowl-
edge) is constructed to mitigate the limitations of synthetic
VSR datasets and provides a new benchmark for training
and evaluating real-world VSR algorithms. Second, we pro-
pose a specific training strategy on RealVSR to learn VSR
model with focus on detail reconstruction. Extensive ex-
periments are conducted to validate the proposed RealVSR

dataset and training strategy. Although the RealVSR dataset
is built with iPhone 11 Pro Max, the VSR models trained on
it also exhibit good generalization capability to videos cap-
tured by other mobile phone cameras.

2. Related Work
Video super-resolution datasets. There are several
datasets widely adopted in the VSR research. Vimeo-90k
[31] is the most popular one, which consists of more than
90,000 septuplets collecting from the Internet. Each septu-
plet contains 7 frames of resultion 256×448. REDS [23] is
a dataset captured by the GOPRO sport camera. It consists
of 300 sequences and each sequence contains 100 frames of
resolution 720× 1280. There are also some private datasets
for VSR training [25]. In all these datasets, LR sequences
are synthesized from HR sequences with simple degrada-
tion models, such as bicubic downsampling or direct down-
sampling after Gaussian smoothing. Though these datasets
can serve as reasonable benchmarks for investigating and
evaluating VSR algorithms, the adopted simple degrada-
tion model for LR-HR video pair generation makes them
hard to use in practice because the degradation process of
real-world videos is much more complex. When applying
the VSR models trained on these datasets to real-world LR
videos, the super-resolved videos are often over-smooth and
prone to visual artifacts. This motivates us to build a real-
world VSR dataset to narrow this synthetic-to-real gap.
Real-world image super-resolution datasets. Though
there is no real-world VSR dataset publically available yet,
several real-world SISR datasets have been built and re-
leased. Chen et al. [6] collected 100 LR-HR image pairs of
printed postcards in a carefully controlled indoor environ-
ment. Zhang et al. [33] built a raw image SISR dataset of
500 outdoor scenes via optical zooming, while the LR-HR
image pairs are not well-aligned. Cai et al. [4] constructed
a real-world SISR benchmark also by optical zooming, but
they developed a registration algorithm to carefully align
the LR-HR image pairs so that end-to-end training of CNN
is easy to implement. Wei et al. [30] further explored this
idea and established a larger benchmarking dataset with
more DSLR cameras. Inspired by those works on real-
world SISR datasets, we propose to build the first real-world
VSR dataset to facilitate the research of practical VSR.
Video super-resolution methods. The recent develop-
ment of VSR algorithms [3, 31, 14, 20, 25, 27, 11] largely
benefits from the rapid development of deep-learning tech-
nologies. Existing VSR algorithms can be roughly divided
into two categories based on how the frame alignment is
done. The first category of algorithms does not have an ex-
plicit alignment process. Instead, they resort to techniques
such as 3-dimensional convolution [15] and recurrent neural
network [11] to exploit spatial-temporal information. The
other category of algorithms adopts explicit alignment to
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Figure 2. The camera system of iPhone 11 Pro Max, the DoubleTake app, the captured low-resolution (LR) and high-resolution (HR)
sequences, and the LR-HR video registration process.

help the network better exploit spatial-temporal informa-
tion. These algorithms generally follow the paradigm of
alignment, fusion and reconstruction. Earlier algorithms
adopt optical flow to perform frame alignment. Deep-DE
[20] and VSRnet [14] first perform motion compensation
with optical flow and then reconstruct the HR frame with
a CNN. Later, Caballero et al. [3] proposed an end-to-end
solution called VESPCN, which integrates alignment and
reconstruction into a single deep-learning framework. Sim-
ilar strategies are adopted in DRVSR [25] and TOF [31].
Recently, deformable convolution [7, 35] has become popu-
lar for alignment owing to its powerful modeling capability.
In particular, EDVR [27] aligns multi-level frame features
with deformable convolution and fuses the aligned features
with spatial and temporal attention. All the above VSR al-
gorithms are developed based on the synthetic datasets. In
this work, we built a real-world VSR dataset, which has
distinct properties from the synthetic ones. Some new train-
ing strategies will be accordingly proposed to train effective
real-world VSR models.

3. The Real-world VSR Dataset

Our goal is to build a real-world VSR dataset of paired
LR-HR sequences, which can serve as a worthy bench-
mark to train and evaluate real-world VSR algorithms. The
dataset is constructed using iPhone 11 Pro Max mobile
phones with dual camera taking function provided by the
DoubleTake app. As illustrated in Fig. 2, the DoubleTake
app makes it possible to capture two approximately syn-
chronized high-definite video sequences at different scales
by two cameras with different focal lengths. There are three
rear cameras mounted on iPhone 11 Pro Max: an ultra-
wide camera with 13mm-equivalent lens, a wide camera
with 26mm-equivalent lens, and a telephoto-camera with
52mm-equivalent lens. All the three cameras capture pho-
tos with 12 megapixels. Cameras with larger focal length
can capture scenes with finer details, and the scaling factor
is equal to the ratio of focal lengths. Considering the severe
distortion of ultra-wide lens and the inferior image quality
after cropping, we adopt the cameras with 26mm-equivalent

lens and 52mm-equivalent lens for dataset construction. For
each pair of captured video sequences, the sequence cap-
tured by camera with 52mm-equivalent lens is taken as the
ground truth HR sequence, while the sequence captured by
camera with 26mm-equivalent lens is adopted to generate
the corresponding LR sequence, leading to a dataset for ×2
VSR. It is worth mentioning that ×2 scaling is currently the
primary demand in practical VSR.

Using iPhone 11 Pro Max cameras and the DoubleTake
app, we captured more than 700 sequence pairs. Each pair
consists of two approximately synchronized sequences of
frame rate 30fps and resolution 1080P. To ensure the diver-
sity of the dataset, the captured sequences cover a variety
of scenes, including outdoor and indoor scenes, daytime
and nighttime scenes, still scenes and scenes with mov-
ing objects, etc. In general, scenes with rich textures are
preferred as they are more effective to train a useful VSR
model. The sequences in the dataset cover a variety of mo-
tions, including camera motions and object motions. After
data collection, we manually selected and excluded about
200 sequences of inferior quality, e.g., severely blurred,
noisy, over-exposed or under-exposed videos, etc. Con-
sidering the imperfect synchronization between the LR-HR
sequences, we excluded sequence pairs with serious mis-
alignment problem. After careful selection, 500 sequence
pairs remain in the dataset. Fig. 3 shows some example
scenes and the motion statistics of the dataset. More exam-
ple scenes and content analysis can be found in the supple-
mentary material.

Finally, the LR frames and HR frames in each sequence
pair need to be aligned so that one can perform supervised
VSR model training more easily. We adopt the image regis-
tration algorithm proposed in [4] to align the LR-HR videos
frame by frame. Considering that there can be some small
registration drifts between adjacent frames, we extended the
registration algorithm in [4] by using five adjacent frames
as inputs to compute the registration matrix of the centered
frame. Once aligned, we crop the aligned LR and HR se-
quences at the center region of size 1024× 512 to eliminate
the alignment artifacts around the boundary. Fig. 2 illus-
trates the dataset construction process. It is worth noting
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Figure 3. Example video scenes and motion statistics of the con-
structed RealVSR dataset.

that the LR and HR sequences are of the same size after
registration. To further standardize the dataset, we cut all
sequences to have the same length of 50 frames. The fi-
nal dataset consists of 500 LR-HR sequence pairs, each of
which has 50 frames in length and 1024×512 pixels in size.

4. VSR Model Learning
4.1. Motivation and overall learning framework

Following most of the existing works [19, 31, 26,
27], we formulate VSR as a multi-frame super-resolution
problem. Given 2N + 1 consecutive LR video frames
{ILt−N , ..., ILt ..., ILt+N}, we aim to predict the HR version
of the center frame, denoted by IHt .

There are a few sources of image degradation in video
acquisition process, such as the anisotropic blurring, the
signal-dependent noise, the non-linear mapping in image
signal processing (ISP) pipeline and the video compression
algorithm, etc. Compared with the existing synthetic VSR
datasets [31, 23] which assume the simple bicubic down-
sampling degradation, our RealVSR dataset is collected in
the real-world environment and it naturally considers the
complex degradation factors in real scenarios. However, it
also poses greater challenges to effectively train VSR mod-
els. Specifically, the LR-HR videos taken from the two
cameras undergo different lens, sensors and ISP pipelines,
and thus exhibit different distortions. The registration algo-
rithm [4] we adopt could alleviate the problems; however,
there still exist minor misalignment and luminance/color
differences between the LR-HR sequences. Fig. 4 shows
an example, where we can see the slight global luminance
and color difference between the LR and HR frames due
to the variations in illumination, exposure time and camera
ISP between the two cameras.

Our goal is to recover the image details (edge, texture,
etc.) in the LR frames but not the global luminance and
colors. Therefore, we propose a set of decomposition based
losses to learn an effective VSR model from the constructed
RealVSR dataset. The overall learning framework is shown

in Fig. 5. Any existing VSR networks can be adopted in our
framework with the proposed training losses. We convert
the estimated and ground-truth HR videos into the YCbCr
space to disentangle the luminance and color, and apply dif-
ferent loss functions on different components. On the Y
channel, we design a Laplacian pyramid based loss to help
the network better reconstruct the details under minor lumi-
nance difference. On color channels Cb and Cr, we adopt a
gradient weighted content loss to focus on color edges. To
further enhance the visual quality of the reconstructed HR
video, we propose a multi-scale edge-based GAN loss to
guide the texture generation. The details of the losses will
be introduced in the next section.

(a) LR-HR pair

(b) LR crop

(c) HR crop

Figure 4. Slight luminance and color difference exist in some LR-
HR sequence pairs.

4.2. Decomposition based losses

Laplacian pyramid based loss on luminance channel.
The Y channel contains most of the texture information
of a video frame and it is crucial to reconstruct image de-
tails in VSR. The commonly used losses in VSR research
[19, 31, 26, 27], such as L1 loss, L2 loss and Charbonnier
loss [17], are sensitive to global luminance differences, and
hence the VSR models trained using such losses may be
distracted from learning image structures and details. To
tackle this problem, we decompose the Y channel into a
Laplacian pyramid [2]. The low-frequency component cap-
tures the global luminance and general structure of the orig-
inal image, and the high-frequency components contain the
multi-scale details of the original image. By applying dif-
ferent losses on the low-frequency and high-frequency com-
ponents, we are able to achieve better detail reconstruction
while allowing certain difference in global luminance.

Denote the predicted HR luminance channel and the
ground-truth HR luminance channel by Ŷ and Y respec-
tively. As shown in Fig. 5, we decompose them into a
three-layer Laplacian pyramid, denoted by {Ŝ0, Ŝ1, Ŝ2} and
{S0, S1, S2}, respectively, where Ŝ0 and S0 refer to the
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Figure 5. Framework of our decomposition based learning scheme of VSR models.

low-frequency components and others the high-frequency
ones. The global luminance difference between Ŷ and Y
lies mostly in the low-frequency components, and we adopt
the SSIM loss [29] to encourage structural information re-
construction. Compared to the L1 loss and L2 loss, SSIM
focuses more on the image structures and is insensitive to
the luminance changes, which fits our goal well. The struc-
ture loss is given by

Ls = LSSIM(Ŝ0, S0) = 1− SSIM(Ŝ0, S0). (1)

Since the high-frequency components are basically free
of global luminance difference, we adopt Charbonnier loss
to encourage accurate reconstruction of fine details. The
detail loss is then

Ld =

√
∥Ŝ2 − S2∥

2
+ ϵ2 +

√
∥Ŝ1 − S1∥

2
+ ϵ2, (2)

where ϵ = 10−3 is a small constant.

Gradient weighted loss on chrominance channels. Com-
pared with the luminance channel, the chrominance chan-
nels CbCr are much smoother. We thus focus on recon-
structing the prominent color edges on the chrominance
channels. Inspired by [30], we adopt a gradient weighted
loss here. Referring to Fig. 5, denote by Ĉ and C the pre-
dicted and ground truth HR chrominance channels, respec-
tively. The gradient weighted color loss is given by

Lc =

√
∥∆gw ∗ Ĉ −∆gw ∗ C∥

2
+ ϵ2, (3)

where ∆gw = (1 + w∆x)(1 + w∆y), ∆x and ∆y are the
absolute difference maps between the gradient of Ĉ and
C in the horizontal and vertical directions, respectively.
w = 4 is a weighting factor, and ϵ = 10−3 is a small
constant.

Multi-scale edge-based GAN loss. The generative adver-
sarial networks (GANs) [10] have been used in some SISR
methods [18, 28] to improve the perceptual quality of es-
timated HR images. However, these methods usually ap-
ply GAN loss directly on the full-color image, which may
not be effective enough to generate textures. We propose
a multi-scale edge-based GAN loss by adopting the design
of PatchGAN [12] and the relativistic average discriminator
[13]. The GAN loss is applied to the high frequency com-
ponents S1 and S2 of the Laplacian pyramid to enable better
fine-grained discrimination for the VSR task. The adversar-
ial loss for the generator is

LG =
∑
i

{−ESi [log(1−Di(Si, Ŝi))]− EŜi
[log(Di(Ŝi, Si))]},

(4)
and the loss for the discriminator is

LD =
∑
i

{−ESi
[log(Di(Si, Ŝi))]− EŜi

[log(1−Di(Ŝi, Si))]},

(5)
where Di is the relativistic average discriminator for the
i-th high-frequency components of the Laplacian pyramid.

Final loss. With the reconstruction losses Ls, Ld, Lc and
adversarial loss Ladv, we propose two versions of final loss
for VSR network training. The first version, denoted by
Lv1, focuses on the reconstruction of fine details, which
combines Ls, Ld and Lc as follows:

Lv1 = Ls + Ld + Lc, (6)

The second version, denoted by Lv2, aims to further en-
hance the visual quality by generating some details, and is
defined as

Lv2 = Lv1 + λLadv, (7)

where Ladv is LG for the generator and LD for the discrim-
inator, and λ is a parameter to control to what degree the
synthetic details will be involved.
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5. Experiments

5.1. Experiment settings

Datasets. Apart from the constructed RealVSR, we also
adopt the widely used synthetic Vimeo-90k [31] dataset in
the experiments. Vimeo-90k consists of more than 90,000
7-frame sequences of resolution 256 × 448. Among them,
64,612 sequences are selected as the training set. The LR
sequences in Vimeo-90k are synthesized via bicubic (BI)
downsampling. Our RealVSR dataset consists of 500 real-
world LR-HR sequence pairs with 1024 × 512 resolution.
Each sequence contains 50 frames. We randomly select 50
sequence pairs as the testing set and leave the remaining 450
sequence pairs as the training set.
VSR networks. We conduct experiments by taking 5 repre-
sentative and recently developed VSR models into our VSR
model learning framework (referring to Fig. 5): RCAN
[34], FSTRN [19], TOF [31], TDAN [26] and EDVR [27].
RCAN is a representative deep network for SISR. We mod-
ify it for VSR by concatenating the input frames along the
channel dimension. FSTRN is a lightweight VSR model
without explicit alignment. It exploits spatial-temporal in-
formation with separable 3D convolution. TOF is a typical
VSR model which performs image domain alignment using
optical flow. We replace its reconstruction branch with a
residual backbone with 10 residual blocks. TDAN is a pio-
neer VSR model with deformable convolution [7]. EDVR is
a powerful and popular VSR model which perform feature
space alignment using deformable convolution. For EDVR,
we adopt its moderate version and remove the TSA mod-
ule, which mainly consists of a PCD alignment module and
a reconstruction backbone with 10 residual blocks. For all
methods, we remove their upsampling operations to fit our
RealVSR dataset.
Implementation details. We randomly crop patches of size
192×192 from the video frames during training. The mini-
batch size is set to 32. Data augmentation is performed
by random horizontal flipping and random 90◦ rotation.
Moreover, we adopt the CutBlur [32] technique to allevi-
ate the risk of overfitting in real-world VSR training. For
the weighting factors in Lv2, we empirically set λ = 1e−4.
We choose Adam [16] as the optimizer with default parame-
ters. For model training with Lv1, we set the initial learning
rate to 1e−4. For model training with Lv2, we initialize the
model weights with those trained with Lv1 and set the ini-
tial learning rate to 5e−5. In both cases, we gradually decay
the learning rate with the cosine learning rate decay strat-
egy. All the models are trained for 150, 000 iterations. We
conduct all experiments with the PyTorch [24] framework.

5.2. Synthetic dataset vs. RealVSR dataset

To demonstrate the advantages of our dataset in real-
world VSR, we compare the performance of VSR mod-

els trained on the synthetic Vimeo-90k dataset and our Re-
alVSR dataset. With the 5 VSR networks (RCAN, FSTRN,
TOF, TDAN, EDVR), 10 VSR models are trained in total
on the two datasets. To balance the speed and performance,
3 adjacent LR frames are used to estimate the center HR
frame. For fair comparison, we train all the 10 models with
the baseline Charbonnier (CB) loss in YCbCr space.

We evaluate the 10 trained models on the RealVSR test-
ing set. Table 1 lists the quantitative results in both full-
reference and no-reference metrics. Considering the in-
fluence of slight color difference between LR and HR se-
quences in RealVSR, we compute the PSNR/SSIM indices
on the Y channel to more accurately reflect the perfor-
mance of texture reconstruction. As shown in Table 1,
compared with the baseline bicubic interpolator (LR), VSR
models trained on the synthetic dataset only achieve small
improvement in terms of SSIM, while perform even worse
in terms of PSNR. This validates that VSR models trained
on synthetic dataset cannot generalize well to the real-world
videos with more complex degradations. In contrast, all
VSR models trained on our RealVSR dataset achieve much
better performance in terms of PSNR/SSIM. We also com-
pare the results with two popular no-reference image quality
metrics, NIQE [22] and BRISQUE [21]. Models trained on
RealVSR dataset also demonstrate better performance.

Fig. 6 shows the super-resolved frames for qualitative
comparison. One can see that models trained on synthetic
dataset tend to generate blurry edges and some artifacts,
while models trained on RealVSR produce sharper edges
and exhibit much less artifacts. This further demonstrates
the importance of using data with real-world degradations
for training a robust VSR model. More visual examples can
be found in the supplementary file.

We further compare the temporal consistency of VSR re-
sults trained with different datasets. Models trained on the
RealVSR dataset achieves better temporal consistency mea-
sured by vector norm differences of warped frames (T-diff).

5.3. Study on losses

In this section, we conduct experiments to demonstrate
the effectiveness of the proposed losses Lv1 and Lv2. We
use two representative VSR networks, TOF and EDVR, in
this study. We train the models with 5 different losses.
Three of them are fidelity-oriented losses. The first one is
the baseline CB loss on YCbCr channels (LYCbCr

CB ). The
second one combines the proposed Ls and Ld on Y channel
with the CB loss on CbCr channels (Ls+Ld+LCbCr

CB ). The
third one is our Lv1. The other two are perceptual-oriented
losses. One is to combine Lv1 with the baseline RaGAN
discriminator [28] on Y channel, denoted by Lv1+RaGAN,
and another one is our Lv2.

The TOF and EDVR models trained with the five dif-
ferent losses are evaluated on the RealVSR testing set, and
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Table 1. Quantitative results of different VSR models evaluated on our RealVSR testing set.

Metric Bicubic (LR) RCAN [34] FSTRN [19] TOF [31] TDAN [26] EDVR [27]
Vimeo-90k RealVSR Vimeo-90k RealVSR Vimeo-90k RealVSR Vimeo-90k RealVSR Vimeo-90k RealVSR

PSNR ↑ 24.67 24.66 25.50 24.63 25.30 24.58 25.59 24.64 25.62 24.58 25.60
SSIM ↑ 0.7798 0.7836 0.8056 0.7880 0.8004 0.7884 0.8081 0.7848 0.8061 0.7838 0.8102
NIQE ↓ 5.0627 4.7269 4.0450 4.7071 4.1097 4.4749 3.9730 4.7090 4.1009 4.6377 3.9082

BRISQUE ↓ 43.1071 40.3198 36.0936 39.7353 36.2593 38.6576 35.4883 39.3448 36.2331 39.4596 34.9699
T-diff ↓ 3.9145 4.2561 3.6938 4.3796 3.8844 4.6101 3.7706 4.4174 3.8695 4.4229 3.6860

HR frame from
028 sequence

LR RCAN (Vimeo-90k) FSTRN (Vimeo-90k) TOF (Vimeo-90k) TDAN (Vimeo-90k) EDVR (Vimeo-90k)

HR RCAN (RealVSR) FSTRN (RealVSR) TOF (RealVSR) TDAN (RealVSR) EDVR (RealVSR)

HR frame from
374 sequence

LR RCAN (Vimeo-90k) FSTRN (Vimeo-90k) TOF (Vimeo-90k) TDAN (Vimeo-90k) EDVR (Vimeo-90k)

HR RCAN (RealVSR) FSTRN (RealVSR) TOF (RealVSR) TDAN (RealVSR) EDVR (RealVSR)

Figure 6. ×2 VSR results on our RealVSR testing set by different models.

the quantitative results are listed in Table 2. We evaluate
the fidelity-oriented models by PSNR and SSIM and the
perceptual-oriented models by LPIPS [34] and DISTS [8].

As shown in Table 2, models trained with Ls+Ld+LCbCr
CB

and Lv1 achieve better PSNR/SSIM results than those
trained with baseline LYCbCr

CB . As we mentioned in Sec-
tion 4.2, PSNR/SSIM may not be able to faithfully reflect
the improvement of a VSR model considering the possi-
ble misalignment and luminance difference between the LR
and HR sequences, while our losses in Lv1 aim to im-
prove the frame details under these conditions but not only
PSNR/SSIM. Therefore, we further visualize the VSR re-
sults obtained by the EDVR models in Fig. 7. One can

see that, compared to the baseline, the proposed decompo-
sition based losses (Ls+Ld+LCbCr

CB and Lv1) help networks
reconstruct sharper edges and more fine-scale details, show-
ing better visual quality.

Regarding the perceptual-oriented models, referring to
Table 2, our proposed Lv2 results in better LPIPS/DISTS
scores than Lv1+RaGAN, demonstrating the role of multi-
scale edge based discriminator. Regarding the qualitative
comparison, as shown in Fig. 7, the proposed Lv2 enable
networks to generate sharper details than Lv1+RaGAN. It
also improves the visual quality of the results obtained by
VSR models trained with Lv1. More visual examples can
be found in the supplementary file.

4787



HR frame from
170 sequence

LR LYCbCr
CB Ls+Ld+LCbCr

CB Lv1 Lv1+RaGAN Lv2

Figure 7. ×2 VSR results on videos from the RealVSR testing set by the EDVR [27] model trained with different losses.

Sequence captured by OPPO Reno 2 LR Vimeo-90k RealVSR+Lv1 RealVSR+Lv2

Sequence captured by Huawei Mate 30 Pro LR Vimeo-90k RealVSR+Lv1 RealVSR+Lv2

Figure 8. ×2 VSR results on real-world videos outside RealVSR dataset by the EDVR [27] models trained on synthetic Vimeo-90k [31]
and our RealVSR.

Table 2. Ablation studies on losses. PSNR/SSIM are evaluted on
Y channel. LPIPS/DISTS are evaluated on RGB channels.

Fidelity-oriented Comparison

Model LYCbCr
CB Ls+Ld+LCbCr

CB Lv1

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
TOF [31] 25.59 0.8081 25.65 0.8110 25.66 0.8115

EDVR [27] 25.60 0.8102 25.83 0.8130 25.83 0.8131
Perception-oriented Comparison

Model Lv1 Lv1+RaGAN Lv2

LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓
TOF [31] 0.2636 0.0857 0.2625 0.0861 0.2622 0.0810

EDVR [27] 0.2612 0.0869 0.2598 0.0852 0.2459 0.0766

5.4. Real-world video testing

To further demonstrate the advantages of our RealVSR
dataset and the proposed training losses, we evaluate the
trained models on several real-world videos outside the
dataset. The testing videos are captured by several mod-
els of mobile phone cameras. The VSR results by the
EDVR [27] models trained on Vimeo-90k [31] and Re-
alVSR are shown in Fig. 1 and Fig. 8. Compared with
the model trained on the synthetic Vimeo-90k dataset, the
model trained on our RealVSR dataset with loss Lv1 re-
constructs clearer edges with less artifacts. In addition, the

model trained with loss Lv2 enriches the details and tex-
tures, further improving the visual quality. More visual ex-
amples and video demonstrations can be found in the sup-
plementary file.

6. Conclusion
In this paper, we built the first, to our best knowledge,

real-world VSR dataset with paired LR-HR sequences of
various scenes, attempting to bridge the synthetic-to-real
gap in VSR research and provide a benchmark for training
and evaluating different VSR algorithms. Considering the
inevitable minor misalignment and luminance/color differ-
ence between the captured LR-HR sequences, we proposed
a Laplacian pyramid based loss to help the VSR networks
better reconstruct video frame details. We further proposed
a multi-scale edge based discriminator to guide the detail
and texture generation and enhance the visual quality of the
generated HR sequences. Our experiments demonstrated
that VSR models trained on our dataset with the proposed
learning scheme exhibit better visual quality on real-world
videos than those trained on synthetic datasets. They can
also be generalized to videos captured by other mobile
phone cameras.
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