
Robust Watermarking for Deep Neural Networks
via Bi-level Optimization

Peng Yang, Yingjie Lao, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA
{pengyang5612, laoyingjie, pingli98}@gmail.com

Abstract

Deep neural networks (DNNs) have become state-of-
the-art in many application domains. The increasing
complexity and cost for building these models demand
means for protecting their intellectual property (IP).
This paper presents a novel DNN framework that opti-
mizes the robustness of the embedded watermarks. Our
method is originated from DNN fault attacks. Different
from prior end-to-end DNN watermarking approaches,
we only modify a tiny subset of weights to embed the
watermark, which also facilities better control of the
model behaviors and enables larger rooms for optimiz-
ing the robustness of the watermarks.

In this paper, built upon the above concept, we pro-
pose a bi-level optimization framework where the in-
ner loop phase optimizes the example-level problem to
generate robust exemplars, while the outer loop phase
proposes a masked adaptive optimization to achieve the
robustness of the projected DNN models. Our method
alternates the learning of the protected models and wa-
termark exemplars across all phases, where watermark
exemplars are not just data samples that could be op-
timized and adjusted instead. We verify the perfor-
mance of the proposed methods over a wide range of
datasets and DNN architectures. Various transforma-
tion attacks including fine-tuning, pruning and over-
writing are used to evaluate the robustness.

1. Introduction

Along with the unprecedented progress of deep neu-
ral network (DNN), both the networks and application
tasks have become increasingly sophisticated, making
the models costly to build. As a result, DNN mod-
els are considered as valuable assets, which demand a
means for projecting the intellectual property (IP) of
model builders. To address this, several DNN water-

marking or fingerprinting approaches have been pro-
posed recently [1, 30, 19, 18, 26, 27, 9, 6, 7, 16, 32, 11,
28, 5, 13]. Conceptually, watermarking is achieved by
injecting certain behavior into the model whose pres-
ence can be easily verified later, typically, by using sev-
eral key samples. In the black-box setting, watermark-
ing will associate desired predictions to the key samples
that are different from naturally trained models (e.g.,
by using backdoor) to reduce the false positive rate
(i.e., probability of the presence of the watermarking
in a naturally trained model) [1, 30, 19, 26, 10]. While
in the white-box setting that demands full access to
the model including latent feature maps for extracting
the watermark, the desired behavior can be embedded
into the internal structure or latent space of a DNN
model [27, 9, 7].

In contrast to these prior DNN watermarking meth-
ods that rely on end-to-end retraining or fine-tuning of
the key samples with desired labels, we propose a novel
framework that only requires to modify an extremely
small amount of parameters for embedding a water-
marking. In other words, instead of only constrain-
ing the selection of key samples, we further constrain
the parameter modifications in the watermarking pro-
cess. We consider the black-box setting, i.e., water-
mark extraction can be performed by remote query-
ing using the model prediction API. By leveraging
techniques from fault attacks [20, 4, 22, 14, 31, 29],
we first search for parameters that have large magni-
tudes of gradients with respect to key samples while
close to zero-valued gradients with respect to natu-
ral inputs. Only modifying these weights enables us
to freely improve the robustness of the watermarks
without affecting the normal behavior with respect
to natural inputs. We then formulate the robust
optimization and active learning to enhance the ro-
bustness of the model behavior with respect to key

14841

samples after embedding. Although the watermarks
in prior works have shown to withstand certain at-
tacks [1, 30, 19, 18, 26, 27, 9, 6, 7, 16, 32, 11, 28],
robustness is not an underlying optimization objective
in their embedding processes. Thus, we argue that
our framework provides more potential towards robust
DNN watermarking. The proposed method also sig-
nificantly reduces the watermarking overhead, as only
a very small portion of the network requires modifica-
tion. Besides, similar to the underlying assumption of
fault attacks, our proposed method also enables water-
marking to already deployed DNN models.

The contributions of this paper are as follows:

• We propose an effective and efficient bi-level opti-
mization framework for DNN watermarking that
generates robust exemplars and embeds the water-
mark concurrently, as opposed to prior methods
that consider them as two separate processes.

• We enhance the robustness by formulating the wa-
termarking as two alternative optimization phases:
the inner loop phase optimizes the example-level
problem to generate robust exemplars according
to the predictive confidence towards the current
hypothesis, while the outer loop phase proposes a
masked adaptive optimization to achieve the ro-
bustness of the projected DNN models.

• We conduct extensive experiments to evaluate the
proposed algorithms on various DNN models (e.g.,
VGG-9, VGG-16, and Inception-V3) and compare
to prior works. The promising results demonstrate
the effectiveness and robustness of proposed wa-
termarking methodology.

2. Preliminaries

DNN Watermarking. Existing DNN watermarking
techniques can be categorized as while-box DNN wa-
termarking and black-box watermarking. White-box
DNN watermarking can fully access the DNN models,
thus enabling a flexible watermark embedding and ex-
traction process. A pioneering work of white-box al-
gorithm was proposed in [27], which explicitly embeds
the watermark into any layers of a DNN model. Sev-
eral works in this category also proposed methods to
iteratively embed the signatures into the zero-impact
regions of intermediate feature maps [9, 6, 7]. A more
advanced method embeds the watermarks by exploring
the information of the “passport” layers, where the cor-
responding parameters are important to preserve the
model functionality [11]. In contrast, since the struc-
tures of DNN models are, however, invisible to the
black-box watermarking, such methods may bring an

unexpected modification to the learned function with
respect to natural inputs when injecting the desired
behavior. Existing approaches mostly exploited back-
door attacks to force a trigger into the model, so that it
might bias the functional regions of a DNN model and
lead to a performance degradation [1, 30, 19, 26]. A
recent technique leverages “null-embedding” to gener-
ate the triggers that are irrelevant to the classification
function, which improves the piracy-resistance of the
watermarks [18].

In this paper, we advance state-of-the-art by devel-
oping a novel bi-level optimization framework that per-
form robust exemplar generation and watermark em-
bedding concurrently for enhancing the fidelity and ro-
bustness of the watermark. The proposed method only
requires to modify a tiny amount of parameters, which
is another key advantage compared to prior embedding
methods that rely on end-to-end training.

Fault Attacks on DNN. In addition to algorithmic
adversarial attacks [21, 25, 15, 3, 2], hardware-oriented
vulnerabilities have also been shown to pose serious
threats against DNN systems [8, 20, 22]. Among these,
fault attacks are capable of catastrophically degrading
the inference accuracy by directly injecting faults into
DNN model parameters. These attacks typically search
for the most vulnerable weights/bits that can signifi-
cantly degrade the inference accuracy. Many recent
works have shown to be able to destroy a DNN model,
i.e., drastically reduce the inference accuracy, by flip-
ping only a few bits in memory cells [4, 14, 31, 22]. The
impact of faults injected into the activation function of
DNN to manipulate the label of a specific input has
also been well studied [4]. We adapt the techniques
from fault attacks for embedding watermarks.

3. Threat Model

The signature embedding process can be conducted
by the model builder or a trusted party. Without loss of
generality, we assume a pre-trained model could be re-
ceived from a model builder who build the model archi-
tecture F and corresponding parameters Θpre with the
training dataset Dtr, and a held-out validation dataset
Dv for evaluating the performance. We then apply the
proposed methodology to this DNN model to embed a
desired watermark. Only the legitimate model owner
know the specific embedded watermark.

An adversary might apply transformation attacks
in an attempt in removing the embedded but unknown
watermark of a DNN model. The attacks include model
compression, model fine-tuning, and watermark over-
writing, which should retain the original functionality
of the DNN model. In other words, the attacker’s goal

14842

is still to use the model while avoiding IP tracing so
that the evaluation performance should not be drasti-
cally failed. We assume the attacker is able to fully
access to the model but has no knowledge of the em-
bedded watermark.

For a suspect model, the model owner can verify the
presence of the watermark by using the key samples
via the prediction API. If the returned signature is the
same or very close to that of the model owner, this sus-
pect model is likely pirated from the legitimate model
owner. Subsequently, the model owner may take legal
actions after collecting other evidences of this matter.

4. Problem Setting and Methodology

Given a pre-trained model parameter Θpre, the goal
of watermarking is to generate key samples Dwm and
embed them successfully without adjusting the param-
eters that are relevant to the inference performance for
normal input data. Specifically, the key samples Dwm

have to satisfy two criteria: 1) Manipulation on Labels:
The labels of key samples should be easy to be manip-
ulated by the authenticated DNN model; 2) Original
Function Preservation: The process of key embedding
should have no negative impacts on the original func-
tionality of the DNN model. To meet the criterion,
we exploit the prediction entropy, which measures the
uncertainty or confidence inherent in the model pre-
diction. We choose the samples with high entropy as
the key samples, since these samples are near to deci-
sion boundary, and the model could easily manipulate
their labels with a slight modification, which have few
impacts on the pretrained DNN model.

By utilizing the concept from fault attacks that
search for parameters to modify, we propose an ef-
fective bi-level optimization framework for DNN ro-
bust watermarking problem. Due to the difference
in the settings between attack and defense as elabo-
rated in the threat model, watermarking possesses dif-
ferent constraints and requirements compared to fault
attacks. Having these in mind, we formulate the water-
marking as two alternative optimization phases: the in-
ner loop phase optimizes the example-level problem to
generate robust exemplars according to the current hy-
pothesis, while the outer loop phase deploys a masked
adaptive optimization for watermarking. Our method
is able to find the optimal solution in the trade-off space
between the watermarking and functionality.

4.1. Global Bi-level Optimization Schema

As illustrated in Figure 1, the proposed robust wa-
termarking training alternates the learning of predic-
tive models and robust exemplars across all phases,
where robust exemplars are not just key samples but

could be optimized and adjusted instead. We formulate
this alternative learning with a global bi-level optimiza-
tion schema composed of model-level and exemplar-
level problems, and carefully derive the solutions.

Watermark
Data !"#

Feed

Robust Exemplar
Generation

Training
Data !$%

Model
Optimization

Feed

Exemplars
&"#

FeedOptimize

Generate

Embedded
Model '(

Initialize

Outer Loop: Model-level

Inner Loop: Exemplar-level

Figure 1. Bi-level optimization schema.

In watermark embedding, the protected model is in-
crementally learned in each phase on the union of wa-
termark exemplars and training data. In turn, based on
this model, the watermark exemplars (i.e., the param-
eters of the exemplars) are adjusted (or learned) before
embedding into the protected models. In this way, the
objective of watermarking derives a constrain to op-
timize and adjust the exemplars, and vise versa. We
propose to formulate this relationship under a global
bi-level optimization schema, in which each phase uses
the optimal model to optimize watermark exemplars,
and vice versa.

Specifically, in the i-th phase, the proposed system
aims to learn a model Θi to approximate the ideal au-
thenticated model parameters Θ∗i , which is to achieve
a trade-off between the prediction on natural input Dtr

and the recognition on watermarks Dwm, i.e.,

Θ∗i = arg min
Θi

Lc(Θi;Dtr ∪Dwm),

where the objective function aims to balance the mis-
take on the ownership identification and the mistake
on model predictive function, while the Lc(·) denotes
the loss function for classification or regression tasks.

Since the key samples Dwm are required to be em-
bedded into the model, we seek to generate the bound-
ary exemplars Swm that maximize the identification
loss on Dwm. In this way, the exemplars Swm are
treated as the “worst cases” of Dwm. We formulate this
with the global bi-level optimization problem, where
“global” means operating through all phases, as fol-

14843

lows,
Θi+1 = arg min

Θi

Lc(Θi;Dtr ∪ Swm)

s.t. Swm = arg max
Swm

Lc(Θi;Dwm).
(1)

Θi+1 is the optimal solution on the union of Swm and
Dtr. It reduces the bias caused by natural input Dtr,
meanwhile enforcing the exemplars Swm embedded into
the current models. In the rest of the paper, the prob-
lem (1) for solving Θ and Swm are called model-level
and exemplar-level problems, respectively.

4.2. Model-level Problem (Outer Loop)

As illustrated in Figure 1, in the i-th phase, we first
solve the model-level problem with the natural data
and watermarks as the input, and use Θi as the model
initialization. According to problem (1), the objective
function can be expressed as

Lall = λLc(Θi;Dtr) + (1− λ)Lc(Θi;Swm), (2)

where Lc(Θi;Dtr) denotes the prediction loss on Dtr,
Lc(Θi;Swm) the identification loss on Swm, and λ ∈
[0, 1] is a trade-off parameter. Let α1 be the learning
rate, then Θi is updated with gradient descent as

Θi+1 ← Θi − α1∇ΘLall.

After that, Θi+1 is used to learn the robust exemplars,
which is formulated to solve the following problem:

Swm = arg max
Swm

Lc(Θi+1;Dwm),

which is equivalent to optimize and adjust the exem-
plars with the identification loss of Θi+1 on Dwm.

4.3. Exemplar-level Problem (Inner Loop)

Existing methods [1, 16] authenticate the ownership
of a model by utilizing a few watermark examples.
However, there is no guarantee particularly towards
whether these watermarks are robustly embedded. In
contrast, this approach explicitly aims to ensure a fea-
sible approximation of that assumption, thanks to the
differentiability of the exemplars.

To achieve this, we train a temporary model Θ
′

i us-
ing Swm to maximize the identification loss on Dwm,
for which we use Dwm to compute a validation loss to
adjust the parameters of Swm. As illustrated in Fig-
ure 2, the entire problem is thus formulated in a lo-
cal bi-level optimization schema, where “local” means
within a single phase, as

Swm = arg max
Swm

Lc(Θ
′
(Swm);Dwm)

s.t. Θ
′
(Swm) = arg min

Θ
Lc(Θ;Swm).

(3)

Watermark
Data !"#

Initialize

Base Model
$%

Initialize

Exemplars &"#
Temporary
Model '()

Inner Loop Optimization Flow

Feed Temporary
Model '(*+)

Update

Back-propagate and Adjust

Watermark
Data !"#

Validate

Figure 2. Inner loop optimization flow.

Solving Eq. (3) is a process of moving Swm towards the
decision boundary, and yielding a small loss on Dwm.
Through embedding exemplars Swm into the model, it
could result in robust identification of Dwm.

Optimizing Swm: The training flow is present in
Figure 2. First, the image-size parameters of Swm are
initialized by the subset of Dwm. Then, we initialize
a temporary model Θ

′
with Θi obtained in outer loop,

and train Θ
′

for a few iterations by gradient descent
on Swm:

Θ
′

j+1 ← Θ
′

j − α2∇Θ
′
j
Lc(Θ

′

j ;Sj), s.t. Θ
′

0 = Θi, (4)

where α2 is the learning rate of fine-tuning temporary
models, and j is the iteration number in the inner loop
optimization. As the Θ

′

j and Sj are both differentiable,

we are able to compute the loss of Θ
′

j on Dwm, and
back-propagate this validation loss to optimize Sj ,

Sj+1 ← Sj + β1∇Dwm
Lc(Θ

′

j ;Dwm), s.t. S0 ⊂ Dwm,
(5)

where β1 is the learning rate. In this step, we basically
need to back-propagate the validation gradients till the
input layer, through rolling all training gradients of
model weights Θ

′

j . Since the batch size of Sj should be
different from Dwm, it is impossible to directly update
Sj with the gradients on Dwm. To address this issue,
the gradient on Dwm would be clustered and reshaped
with the same size as Sj .

4.4. Masked Adaptive Optimization

The embedding process typically requires a retrain-
ing process, which, however, leads to expensive compu-
tation costs particularly for DNNs with huge numbers
of parameters. Moreover, optimizing all the param-
eters may greatly affect the original functionality. To
this end, we adapt the concept of fault attacks and pro-
pose a masked optimization for watermarking process.

To preserve model functionality, our algorithm uti-
lizes a mask to perform the embedding, so that the es-
sential parameters of model functions could be frozen
when embedding watermarks on parameter space Θ.

14844

When learning the model Θ, we update the parame-
ters with a mask M , instead of directly optimizing all
the parameters. During the training, both prediction
loss and watermarking loss (refer to Eq. (2)) are used.
Let � denote the element-wise product, the objective
function Eq. (2) in this paper can be formulated as:

Lall = λLc(M �Θ;Dtr) + (1− λ)Lc(M �Θ;Swm).

Specifically, we locate the most effective parameters in
the DNN model to be optimized for watermark embed-
ding. The algorithm aims to find the parameters on
which the weight update could mostly manipulate the
labels of key samples (Swm) while preserving the orig-
inal predictions on natural inputs (Dtr). To achieve
this goal, the mask is generated via the observation
of the gradient of Θ on Dtr and Swm. Generally, the
candidate parameters should have large gradient values
over Swm, but close to zero gradient values over Dtr.
Formally, the mask, defined as C, can be computed as

C = Hs ∩Ht

s.t.Hs =TopN

 1

|Swm|
∑

(xs,ys)∈Swm

|∇Θ`(f(xs), ys))|

 ,

Ht =TopN

− 1

|Dtr|
∑

(xt,yt)∈Dtr

|∇Θ`(f(xt), yt)|

(6)

To this end, we prioritize the top-N parameters of Θ
according to the ranking, and then optimize the model
with the masked gradient descent:

Θ = Θ− α1

[
M�∇ΘL(Θ;Swm) + M�∇ΘL(Θ;Dtr)

]
s.t. [M]k =

{
1, k ∈ C
0, k /∈ C , [M]k =

{
0, k ∈ C
1, k /∈ C

(7)
We observe that the hard-mask M exploits the gate
mechanism, which enables an adaptive optimization
over a partial of neural structures.

4.5. Algorithm

Algorithm 1 summarizes the overall process of our
bi-level optimization schema. We point out several ad-
vantages in this algorithm: a) To preserve the function
of the DNN model, we choose a few layers to update
the weight parameters, instead of all parameters. We
fine-tune the several layers of the DNN structure for
watermarking, as shown in Steps 10-13. b) We reduce
the learning bias via balancing sample sizes between
the watermarking and training samples. As shown in
Step 9, the watermark batch in Swm should be compa-
rable with that in Str.

Algorithm 1 Bi-level Optimization for DNN water-
marking

1: Input: Data Dtr, Dwm and Model Θpre

2: Output: Authenticated DNN model Θwm

3: for i = 1, . . . , N (Outer Loop) do
4: If i = 0, Initialize weights Θ

′
= Θpre, otherwise,

Θ
′

= Θi−1; Initialize S0 ⊂ Dwm;
5: for j = 1, . . . ,M (Inner Loop) do
6: Adjust weight S

′

j using Θ
′

by Eq. (5) ;

7: Update weight Θ
′

using S
′

j by Eq. (4) ;
8: end for
9: Initialize Swm = S

′

M and sample Str ⊂ Dtr ;
10: for any layer l in the DNN model do
11: Compute Cl by Eq. (6) ;
12: Update [Θi]l with the mask by Eq. (7) ;
13: end for
14: end for

5. Experiments

5.1. Experimental Setup

5.1.1 Base Models

In our experiments, we train LeNet5 [17] for MNIST,
VGG-9 and VGG-16 [23] for CIFAR10 and CIFAR100,
respectively, and Inception-V3 [24] for ImageNet. Each
of these models achieved a test accuracy that is con-
sistent with state-of-the-art. Our implementation was
based on the PaddlePaddle deep learning platform.

5.1.2 Transformation Attacks

We evaluate the robustness of the proposed methods
against the following three widely-used transformation
attacks as in prior works.

Fine-Tuning. Fine-tuning can be considered as a
transformation attack that an adversary may use to
remove the watermark while preserving the model ac-
curacy by retraining part of the network layers with
original data (i.e., natural input samples). In our ex-
periment, we fine-tune the watermarked models using
the corresponding validation data.

Pruning. Model pruning is a popular technique to
compress a well-trained model to accelerate the compu-
tation and reduce memory requirement, while preserv-
ing of the inference accuracy. An adversary may hope
the pruning process to alter the embedded watermarks.
We employ the technique from [12].

Watermark Overwriting. Different from the
above two, this setting assumes an adaptive and in-
telligent adversary who has the knowledge of the wa-
termarking technique (but not the specific embedded
watermark). To perform such an attack, the adversary

14845

Keys
MNIST (LeNet5) CIFAR10 (VGG-9) CIFAR100 (VGG-16) ImageNet (Inception-V3)
Rauth Rloss Rauth Rloss Rauth Rloss Rauth Rloss

5 100% 0.00% 100% 0.02% 100% 0.03% 100% 0.07%
10 100% 0.02% 100% 0.05% 100% 0.05% 100% 0.09%
15 100% 0.06% 100% 0.03% 100% 0.07% 100% 0.10%
20 100% 0.07% 100% 0.05% 100% 0.08% 97.5% 0.15%

Table 1. Results on effectiveness and fidelity.

will select a new set of watermark key samples and use
the proposed method to embed a second watermark in
hopes of overwriting the first watermarking without af-
fecting the inference accuracy. The second watermark
in our experiment is selected randomly.

5.1.3 Performance Metrics

Fidelity is characterized by authentication success
rate Rauth, loss of accuracy Rloss, and number of mod-
ified parameters. Among these, Rauth evaluates the
percentage of watermark samples that are embedded
successfully into the DNN models. We expect the au-
thentication success rate Rauth to be high while func-
tion loss rate Rloss to be low, so that the watermarked
model retains the accuracy on normal test data.

Robustness is evaluated against transformation at-
tacks. We use function preserved rate Rpres to quantify
the preserved prediction capability, which is evaluated
on the validation dataset. The embedded watermark
should not be removed when Rpres for the natural in-
puts remains high, and the degradation of Rauth should
be much smaller than that of Rpres.

Capacity represents the amount of information the
proposed technique can embed into the target DNN
model without violating other requirements.

5.1.4 Parameter Setting

For all experiments, we select top-2.5% of masked pa-
rameters (denoted as N in Eq. (6)). As shown in Algo-
rithm 1, we set number of inner loop iteration M = 3,
and number of outer loop iteration N = 10. For each
dataset, we use the same learning rate α1 = α2 = β1

in both exemplar optimization in Eq. (4) and Eq. (5),
and model optimization in Eq. (7). Specifically, we set
learning rate to be 0.002 in MNIST, and 0.02 in CI-
FAR10, CIFAR100 and ImageNet. For the number of
key samples in Dwm, we assign 30 in MNIST, and 60
in CIFAR10, CIFAR100 and ImageNet.

5.2. Results

5.2.1 Fidelity

We run the experiments multiple times and calculate
the averaged authentication success rate and function

loss rate, which are presented in Table 1. The results
show that most of the selected watermark samples have
been successfully recognized given various numbers of
keys. Specifically, we are able to achieve a high suc-
cess rate without sacrificing the inference ability of
the DNN models. For example, our model can suc-
cessfully embed all 20 keys into the CIFAR10 with its
function loss of less than 0.05%. Moreover, Figure 3
shows the ratio of changed parameters when perform-
ing the watermark embedding over these DNN mod-
els. We observe that this algorithm only tunes less
than 0.005% and 0.025% weights of VGG-16 on CI-
FAR100 and Inception-V3 on ImageNet, respectively,
while achieving a high success rate of embedding and
a low inference accuracy loss.

5 10 15 20

#key

0

2

4

6

(a) MNIST

5 10 15 20

#key

0

0.2

0.4

0.6

(b) CIFAR10

5 10 15 20

#key

0

0.01

0.02

0.03

0.04

0.05

(c) CIFAR100

5 10 15 20

#key

0

0.05

0.1

0.15

0.2

0.25

(d) ImageNet

Figure 3. Ratio of changed parameters over the DNN mod-
els with respect to different numbers of key samples.

5.2.2 Robustness

Fine-tuning: Figure 4 presents the performance
under the fine-tuning process. The results show that
our method performs robustly towards the fine-tuning
over all datasets. Specifically, although the function
preserve rates drop after several trials of fine-tuning,
the signature preserve rates still remain the same dur-
ing the whole process.

14846

1 3 5 7 9

#Trials

99

99.2

99.4

99.6

99.8

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(a) MNIST

1 3 5 7 9

#Trials

99

99.2

99.4

99.6

99.8

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(b) CIFAR10

1 3 5 7 9

#Trials

99

99.2

99.4

99.6

99.8

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(c) CIFAR100

1 3 5 7 9

#Trials

98.5

99

99.5

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(d) ImageNet

Figure 4. Signature preserving rate and function preserving
rate under the process of fine-tuning on validate datasets.

0 40 80

Pruning Rate (%)

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(a) MNIST

0 40 80

Pruning Rate (%)

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Signature Preserve Rate

Function Preserve Rate

(b) CIFAR10

Figure 5. Authentication and function preserve rate under
various pruning rates.

Pruning: Figure 5 shows the performance impacts
on watermarking embedding and inference ability un-
der an increasing pruning rate. We conduct case stud-
ies on MNIST and CIFAR10, as similar results are ob-
served on other datasets. For CIFAR10, even after
50% of pruning rate, the model still remains no loss on
identification accuracy. With a higher pruning rate,
the inference accuracy starts to drop dramatically. In
addition, we notice that our method performs better
on a more complex DNN model, which demonstrates
its robustness over large parameter spaces.

Watermark overwriting: We evaluate the robust-
ness of our method against the watermark overwriting
scenario, where the adversarial seeks to insert addi-
tional watermarks into the model in order to disable
the recognition of original watermarks. In our experi-
ments, the overwriting attack is performed in two dif-
ferent settings: 1) the same size of new key samples
are sampled, and perform the same embedding process

0 1 3 5 7 9

#Trials

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Overwrite Success Rate

Signature Preserve Rate

Function Preserve Rate

(a) MNIST

0 1 3 5 7 9

#Trials

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Overwrite Success Rate

Signature Preserve Rate

Function Preserve Rate

(b) CIFAR10

0 1 3 5 7 9

#Trials

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Overwrite Success Rate

Signature Preserve Rate

Function Preserve Rate

(c) CIFAR100

0 1 3 5 7 9

#Trials

0

20

40

60

80

100

M
e
a
s
u
re

m
e
n
t
(%

)

Overwrite Success Rate

Signature Preserve Rate

Function Preserve Rate

(d) ImageNet

Figure 6. Signature preserving rate and function preserving
rate under the process of overwriting.

as the previous key set; 2) key samples are embedded
one by one with only one, and a key sample will not
be executed until its previous key sample is embedded
successfully. Figure 6 presents the performance of con-
ventional overwriting process in the first setting. As
shown, the algorithm is consistently robust against the
overwriting over all the datasets. Specifically, the wa-
termark embedding is more robust over a more complex
DNN structure.

Figure 7 depicts the results of the sequential over-
writing process in the second setting, showing that this

0 5 10 15 20

Sequential single key overwriting

80

85

90

95

100

M
e
a
s
u
re

m
e
n
ts

 (
%

)

Signature Preserve Rate

Function Preserve Rate

(a) MNIST

0 5 10 15 20

Sequential single key overwriting

95

96

97

98

99

100

M
e
a
s
u
re

m
e
n
ts

 (
%

)

Signature Preserve Rate

Function Preserve Rate

(b) CIFAR10

0 5 10 15 20

Sequential single key overwriting

70

80

90

100

M
e
a
s
u
re

m
e
n
ts

 (
%

)

Signature Preserve Rate

Function Preserve Rate

(c) CIFAR100

0 5 10 15 20

Sequential single key overwriting

98

98.5

99

99.5

100

M
e
a
s
u
re

m
e
n
ts

 (
%

)

Signature Preserve Rate

Function Preserve Rate

(d) ImageNet

Figure 7. Evaluation of sequential single input overwriting.

14847

setting performs relatively unstable compared to over-
writing all key samples. It nonetheless still achieves
promising performance on CIFAR10/100 and Ima-
geNet with 95% and 100% success rates, respectively.

5.2.3 Capacity

We evaluate the capacity with respect to large num-
bers of key sample embedding, as shown in Figure 8.
Obviously, embedding on more key samples results in
lower authentication rates and lower function preserve
rate, since algorithms require more modification to the
weights. However, due to the proposed masked op-
timization strategy that only updates the parameter
weights with a small impact on the previous learned
knowledge, our algorithm can maintain a comparable
authentication rate (i.e., more than 94%) and function
preserve rate (i.e., around 99.0% for 60 key embed-
ding). It can also be inferred that our method performs
more stable on complex datasets.

0 10 20 30 40 50 60

Key

92

94

96

98

100

A
u
th

 S
u
c
c
e
s
s
 R

a
te

 (
%

)

MNIST

CIFAR10

CIFAR100

0 10 20 30 40 50 60

Key

98.5

99

99.5

100

F
u
n
c
ti
o
n
 P

re
s
e
rv

e
 R

a
te

 (
%

)

MNIST

CIFAR10

CIFAR100

Figure 8. Authentication successful rate and function pre-
served rate with various numbers of watermark embedding.

5.3. Discussion and Comparison to Prior Works

Based on our experimental results, we can conclude
that our embedded watermark satisfies all the require-
ments for an effective and robust IP protection tool.
By leveraging the bi-level optimization strategy, we are
able to provably enhance robustness while maintaining
an extremely small inference accuracy loss. Besides,
our watermarking framework exhibits consistent per-
formance across various DNN architectures on a wide
range of datasets.

To further demonstrate the advantage of the pro-
posed approach, we compare with prior DNN water-
marking methods from the perspectives of fidelity and
robustness. Note that these comparisons may not be
100% fair, as experiments have different settings and
employ different architectures and hyperparameters.
For the evaluation of robustness, the settings of trans-
formation attacks might also vary largely across dif-
ferent works. This probably is also the reason why we
observe most of the existing works even recent ones did
not report results of robustness comparison with prior

methods [1, 11, 30, 16, 18, 19, 26]. Since the overwriting
process is the same as watermarking, which results less
variation in evaluation, we compare to prior works that
are evaluated against overwriting [27, 9, 1]. As most
of these prior works were only evaluated on CIFAR10
and/or MNIST, we take CIFAR10 for comparison, as
presented in Table 2.

Method Setting Rloss Rpres

[27] White-Box ∼ 0.3% 70 ∼ 96%
[9] White-Box ∼ 0.5% 58%
[1] Black-Box ∼ 0.3% 95%

Proposed Black-Box ∼ 0.05% 100%

Table 2. Comparison to prior works on fidelity and robust-
ness against overwriting (20 key samples).

On CIFAR10, our method only has a 0.05% accuracy
loss for 20 key samples, while the white-box method
in [9] has around a 0.5% accuracy loss and the black-
box method (backdoor-based) in [1] yields an about
0.3% accuracy loss under the same number of keys.
It is obvious that our method achieves a much bet-
ter fidelity, which is expected as we only modify an
extremely small number of parameters for embedding
the watermark and hence have better control to the
model behavior. Even for ImageNet, for instance, we
achieve a 100% Rauth with only a 0.1% accuracy loss.

When comparing the robustness against prior works,
the performance of our method is also superior. For
example, the number of mismatches after overwriting
on CIFAR10 is around 8.5 for 20 key samples in [9],
yielding a below 60% signature preserve rate Rpres,
while our method achieves almost 100% signature pre-
serve rates in all the datasets under both settings of
watermark overwriting as described above. While [1]
shows a decent performance against overwriting on CI-
FAR10, it suffered from a significant Rpres degradation
on CIFAR100, under the same setting of fine-tuning a
pre-trained model. In contrast, our method achieves a
100% signature preserve rate for CIFAR100 and even
ImageNet, as shown in Figure 6.

6. Conclusion

In this work, we propose to leverage the concept of
fault attack to embed watermark into a DNN model for
IP protection. By exploiting the capability of embed-
ding the desired behavior with modifying a tiny amount
of parameters, we formulate and develop a novel bi-
level optimization to enhance the robustness of the wa-
termark. We comprehensively evaluate the proposed
algorithm over a wide range of settings and DNN ar-
chitectures. Our empirical results clearly demonstrate
the superior performance of the proposed method.

14848

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning your weakness
into a strength: Watermarking deep neural networks
by backdooring. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security), pages 1615–
1631, Baltimore, MD, 2018. 1, 2, 4, 8

[2] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning (ICML), Stockholm, Sweden, 2018. 2

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and
Kevin Kwok. Synthesizing robust adversarial exam-
ples. In Proceedings of the 35th International Con-
ference on Machine Learning (ICML), pages 284–293,
Stockholm, Sweden, 2018. 2

[4] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma,
Shivam Bhasin, and Yang Liu. Practical fault attack
on deep neural networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pages 2204–2206, Toronto,
Canada, 2018. 1, 2

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
IPGuard: Protecting the intellectual property of deep
neural networks via fingerprinting the classification
boundary. In Proceedings of the ACM Asia Confer-
ence on Computer and Communications Security (Asi-
aCCS), Virtual Event, Hong Kong, 2021. 1

[6] Huili Chen, Bita Darvish Rouhani, Xinwei Fan, Os-
man Cihan Kilinc, and Farinaz Koushanfar. Perfor-
mance comparison of contemporary dnn watermarking
techniques. arXiv preprint arXiv:1811.03713, 2018. 1,
2

[7] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen
Zhao, and Farinaz Koushanfar. Deepmarks: A se-
cure fingerprinting framework for digital rights man-
agement of deep learning models. In Proceedings of
the 2019 on International Conference on Multimedia
Retrieval (ICMR), pages 105–113, Ottawa, Canada,
2019. 1, 2

[8] Joseph Clements and Yingjie Lao. Hardware trojan
design on neural networks. In Proceedings of the IEEE
International Symposium on Circuits and Systems (IS-
CAS), pages 1–5, Sapporo, Japan, 2019. 2

[9] Bita Darvish Rouhani, Huili Chen, and Farinaz
Koushanfar. Deepsigns: an end-to-end watermark-
ing framework for ownership protection of deep neu-
ral networks. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS), pages 485–497, Providence, RI, 2019. 1, 2,
8

[10] Khoa D. Doan, Yingjie Lao, Weijie Zhao, and Ping Li.
Lira: Learnable, imperceptible and robust backdoor
attacks. In Proceedings of the 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
2021. 1

[11] Lixin Fan, Kam Woh Ng, and Chee Seng Chan.
Rethinking deep neural network ownership verifica-
tion: Embedding passports to defeat ambiguity at-
tacks. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 4714–4723, Vancouver,
Canada, 2019. 1, 2, 8

[12] Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding.
In Proceedings of the 4th International Conference
on Learning Representations (ICLR), San Diego, CA,
2016. 5

[13] Zecheng He, Tianwei Zhang, and Ruby Lee. Sensitive-
sample fingerprinting of deep neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4729–4737,
Long Beach, CA, 2019. 1

[14] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cris-
tiano Giuffrida, and Tudor Dumitras. Terminal brain
damage: Exposing the graceless degradation in deep
neural networks under hardware fault attacks. In
Proceedings of the 28th USENIX Security Symposium
(USENIX Security), pages 497–514, Santa Clara, CA,
2019. 1, 2

[15] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. In Proceed-
ings of the 5th International Conference on Learning
Representations (ICLR Workshop), Toulon, France,
2017. 2

[16] Erwan Le Merrer, Patrick Perez, and Gilles Trédan.
Adversarial frontier stitching for remote neural net-
work watermarking. Neural Computing and Applica-
tions, 32(13):9233–9244, 2020. 1, 2, 4, 8

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998. 5

[18] Huiying Li, Emily Willson, Haitao Zheng, and Ben Y
Zhao. Piracy resistant watermarks for deep neural net-
works. arXiv preprint arXiv:1910.01226, 2019. 1, 2,
8

[19] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. How to prove your model belongs to you: a
blind-watermark based framework to protect intellec-
tual property of dnn. In Proceedings of the 35th Annual
Computer Security Applications Conference (ACSAC),
pages 126–137, San Juan, PR, 2019. 1, 2, 8

[20] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu.
Fault injection attack on deep neural network. In Pro-
ceeings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 131–138,
Irvine, CA, 2017. 1, 2

[21] Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversar-
ial settings. In Proceedings of the 2016 IEEE Euro-
pean Symposium on Security and Privacy (IEEE Euro
S&P), pages 372–387, Saarbrucken, Germany, 2016. 2

14849

[22] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In Proceedings of the 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV),
pages 1211–1220, Seoul, Korea, 2019. 1, 2

[23] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. In Proceedings of the 3rd International Confer-
ence on Learning Representations (ICLR), San Diego,
CA, 2015. 5

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Pro-
ceeding sof the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–
2826, Las Vegas, NV, 2016. 5

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. Intriguing properties of neural networks.
In Proceedings of the 2nd International Conference
on Learning Representations (ICLR), Banff, Canada,
2014. 2

[26] Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and
N Asokan. Dawn: Dynamic adversarial watermarking
of neural networks. arXiv preprint arXiv:1906.00830,
2019. 1, 2, 8

[27] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding watermarks into deep neu-
ral networks. In Proceedings of the 2017 ACM on Inter-

national Conference on Multimedia Retrieval (ICMR),
pages 269–277, Bucharest, Romania, 2017. 1, 2, 8

[28] Tianhao Wang and Florian Kerschbaum. Robust and
undetectable white-box watermarks for deep neural
networks. arXiv preprint arXiv:1910.14268, 2019. 1, 2

[29] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. Deep-
hammer: Depleting the intelligence of deep neural net-
works through targeted chain of bit flips. In Pro-
ceedings of the 29th USENIX Security Symposium
(USENIX Security), pages 1463–1480, 2020. 1

[30] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph. Stoecklin, Heqing Huang, and Ian M. Mol-
loy. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the
2018 on Asia Conference on Computer and Commu-
nications Security (AsiaCCS), pages 159–172, Incheon,
Korea, 2018. 1, 2, 8

[31] Pu Zhao, Siyue Wang, Cheng Gongye, Yanzhi Wang,
Yunsi Fei, and Xue Lin. Fault sneaking attack: a
stealthy framework for misleading deep neural net-
works. In Proceedings of the 56th Annual Design Au-
tomation Conference 2019 (DAC), page 165, Las Ve-
gas, NV, 2019. 1, 2

[32] Qi Zhong, Leo Yu Zhang, Jun Zhang, Longxiang Gao,
and Yong Xiang. Protecting IP of deep neural networks
with watermarking: A new label helps. In Proceed-
ings of the 4th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining (PAKDD),
Part II, pages 462–474, Singapore, 2020. 1, 2

14850

