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Abstract

3D visual grounding aims at grounding a natural lan-
guage description about a 3D scene, usually represented
in the form of 3D point clouds, to the targeted object re-
gion. Point clouds are sparse, noisy, and contain limited
semantic information compared with 2D images. These in-
herent limitations make the 3D visual grounding problem
more challenging. In this study, we propose 2D Semantics
Assisted Training (SAT) that utilizes 2D image semantics in
the training stage to ease point-cloud-language joint rep-
resentation learning and assist 3D visual grounding. The
main idea is to learn auxiliary alignments between rich,
clean 2D object representations and the corresponding ob-
jects or mentioned entities in 3D scenes. SAT takes 2D
object semantics, i.e., object label, image feature, and 2D
geometric feature, as the extra input in training but does
not require such inputs during inference. By effectively uti-
lizing 2D semantics in training, our approach boosts the
accuracy on the Nr3D dataset from 37.7% to 49.2%, which
significantly surpasses the non-SAT baseline with the identi-
cal network architecture and inference input. Our approach
outperforms the state of the art by large margins on multiple
3D visual grounding datasets, i.e., +10.4% absolute accu-
racy on Nr3D, +9.9% on Sr3D, and +5.6% on ScanRef.

1. Introduction
Visual grounding provides machines the ability to

ground a language description to the targeted visual region.
The task has received wide attention in both datasets [54,
31, 19] and methods [16, 46, 53, 50]. However, most previ-
ous visual grounding studies remain on images [54, 31, 19]
and videos [57, 38, 51], which contain 2D projections of
inherently 3D visual scenes. The recently proposed 3D vi-
sual grounding task [1, 4] aims to ground a natural language
description about a 3D scene to the region referred to by a
language query (in the form of a 3D bounding box). The
3D visual grounding task has various applications, includ-
ing autonomous agents [40, 47], human-machine interac-
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Figure 1. 3D visual grounding aims to ground a language query
to a targeted 3D object region, as shown by the green 3D bound-
ing box. (a) Previous 3D visual grounding studies are trained with
a sole 3D grounding loss that maximizes the similarity between
positive object-query pairs. However, the sole objective is less ef-
fective as point clouds are sparse and noisy. (b) 2D semantics con-
tain rich and clean object representations and can be used as extra
visual inputs to assist 3D grounding. However, requiring extra 2D
inputs in inference limits potential application scenarios. (c) Our
proposed 2D Semantics Assisted Training (SAT) uses 2D seman-
tics only in training and does not require extra inputs in inference.
The green and red boxes are the targeted and distracting objects.

tion in augmented/mixed reality [20, 22], intelligent vehi-
cles [29, 12], and so on.

Visual grounding tries to learn a good joint represen-
tation between visual and text modalities, i.e., the 3D
point cloud and language query in 3D visual grounding.
As shown in Figure 1 (a), previous 3D grounding stud-
ies [1, 4, 17, 55] directly learn the joint representation with
a sole 3D grounding objective of maximizing the posi-
tive object-query pairs’ similarity scores. Specifically, the
model first generates a set of 3D object proposals and then
fuses each proposal with the language query to predict a
similarity score. The framework is trained with a sole objec-
tive that maximizes the paired object-query scores and min-
imizes the unpaired ones’ scores. However, direct joint rep-
resentation learning is challenging and less effective since
3D point clouds are inherently sparse, noisy, and contain
limited semantic information. Given that the 2D object rep-
resentation provides rich and clean semantics, we explore
using 2D image semantics to help 3D visual grounding.
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How to assist 3D tasks with 2D image semantics remains
an open problem. Previous studies on 3D object detection
and segmentation have proposed a series of methods that
take 2D semantics as extra visual inputs to assist 3D tasks.
Representative approaches include aligning the 2D object
detection results with 3D bounding boxes [34, 48, 25] and
concatenating the image visual feature with 3D points [24,
14, 44, 41, 32]. However, these methods require extra 2D
inputs in both training and inference. The necessity of extra
input 2D data during inference limits potential application
scenarios since 2D inputs might not exist in inference or re-
quire extra pre-processing, such as 2D-3D matching and 2D
detection. Instead of as extra visual inputs in both training
and inference (as shown in Figure 1 (b)), we explore using
2D semantics only in training to assist 3D visual grounding.

In this study, we propose 2D Semantics Assisted Train-
ing (SAT), which utilizes 2D image semantics (in the form
of object label, image feature, and 2D geometric feature)
to ease joint representation learning between the 3D scene
and language query. As shown in Figure 1 (c), in addition
to the main 3D visual grounding loss [1, 4] that maximizes
the score between the paired 3D object and language query,
SAT introduces auxiliary loss functions that align objects in
2D images with the corresponding ones in 3D point clouds
or language queries. The learned auxiliary alignments ef-
fectively distill the rich and clean 2D object representation
to assist 3D visual grounding. Specifically, in SAT, we
study the training loss design for auxiliary alignments and
the encoding method for 2D semantics features. For the for-
mer, we propose an object correspondence loss based on the
triplet loss [18, 10, 45, 26] for 3D and 2D object alignment.
For the latter, we propose a transformer attention mask that
generates good 2D semantics features and prevents leaking
2D inputs to the output module.

We experiment with the SAT approach on a transformer-
based model [42] we propose and name as 3D grounding
transformer. We benchmark SAT on the Nr3D [1], Sr3D [1],
and ScanRef [4] datasets. The extra 2D semantics, together
with SAT’s specially designed way of using them, effec-
tively help the model learn a better 3D object point cloud
representation and ease joint representation learning. With
the same network architecture and inference inputs, SAT
improves the grounding accuracy on Nr3D from the non-
SAT baseline’s 37.7% to 49.2%.

In summary, our main contributions are:

• We propose 2D Semantics Assisted Training (SAT)
that assists 3D visual grounding with 2D semantics.
To the best of our knowledge, SAT is the first method
that helps 3D tasks with 2D semantics in training but
does not require 2D inputs during inference.

• With the proposed object correspondence loss and the
2D semantics encoding method, SAT effectively uti-
lizes 2D semantics to learn a better 3D object repre-

sentation, which leads to significant accuracy improve-
ments on the Nr3D [1] (+10.4% in absolute accuracy),
Sr3D [1] (+9.9%), and ScanRef [4] (+5.6%) datasets.

2. Related Work
3D visual grounding. 3D visual grounding aims to ground
the language referred object in a 3D scene (in the form of
RGB-XYZ point clouds) to a 3D bounding box. Two re-
cent works Referit3D [1] and ScanRef [4], independently
proposed datasets and baseline methods for the 3D visual
grounding task. Both works [1, 4] augment the 3D scans
in the ScanNet [7] dataset with the manually annotated lan-
guage queries to construct the 3D visual grounding datasets.
Previous 3D grounding studies [1, 4, 17, 55, 11, 36, 58]
follow a two-stage framework. In the first stage, multiple
3D object proposals are generated either with ground truth
objects [1] or a 3D object detector [4, 33]. In the second
stage, 3D object proposal features are fused with the lan-
guage query to predict each proposal’s matching scores. A
softmax grounding loss is applied to maximize the score be-
tween the paired object proposal and language query.

We find that the sole objective of similarity score maxi-
mization is less effective because the point clouds for object
proposals are sparse and noisy. In this study, we explore us-
ing 2D image semantics to assist 3D visual grounding.
2D semantics in 3D tasks. Studies on 3D object detec-
tion and segmentation have explored using 2D image se-
mantics to assist 3D tasks. There exist two representative
approaches, i.e., 1) projecting image object detection results
into 3D space to assist 3D box prediction [34, 48, 25] and 2)
concatenating the image feature with each point in the 3D
scene as the extra information for the 3D tasks [24, 14, 44,
41, 32]. ImVoteNet [32] fuses the image object detection
results with 3D points.

Previous studies use 2D image semantics as the extra in-
puts to 3D tasks and thus require the extra 2D information
in both training and inference. Despite the performance im-
provement, the extra 2D inputs potentially limit the appli-
cation scenarios since the 2D information either does not
exist in inference or requires tedious pre-processing, such
as 2D-3D matching and 2D object detection. In this study,
we explore using 2D semantics only in training to assist 3D
visual grounding.
Image visual grounding. 3D visual grounding is related to
the image visual grounding task [19, 30, 54, 28]. There are
mainly two approaches in image visual grounding, namely
the one- and two-stage frameworks. The one-stage meth-
ods [50, 37, 49, 8] fuse the language query with each
pixel/patch in image and predict grounding boxes densely
at all spatial locations. The two-stage methods [54, 45, 53]
first generate object proposals based on the visual objec-
tiveness. The methods then compare each proposal with the
language query to select the grounding prediction.
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We follow previous 3D grounding studies [1, 4, 17] and
experiment with our proposed SAT on a two-stage frame-
work introduced in Section 3. We focus on using 2D se-
mantics to assist 3D grounding in this study and leave the
exploration of alternative frameworks to future studies.

3. 3D Grounding Transformer
Before introducing our proposed 2D semantics assisted

training (SAT), we first overview the problem modeling of
the 3D visual grounding task, and a transformer-based net-
work architecture that we experiment on, named the 3D
grounding transformer.

3.1. 3D visual grounding inputs

The input to the 3D visual grounding task is a 3D scene
S ∈ RN×6 in the form of RGB-XYZ point clouds with N
points and a natural language query with K words. In the
training stage, SAT takes the extra input of 2D semantics
extracted from the original ScanNet videos [7] to ease joint
representation learning. We detail how SAT represents and
utilizes 2D semantics in following sections.

3.2. Embedding for all modalities

3D scene embedding. Following previous studies [1, 4,
17], we assume the access to M 3D object proposals (in the
form of point cloud object segments) in scene S. The pro-
posals are either generated with ground truth objects as in
Referit3D [1] or by a detection network [33] as in Scan-
Ref [4]. After getting the proposals, we normalize each
object’s center and size [43], and encode the point cloud
segment of each proposal into a feature vector xpcm with
PointNet++ [35, 1, 4, 43]. We obtain the d-dimensional
3D proposal embedding {O1, · · · , OM} with two learned
linear transforms, where

Om = LN(W1x
pc
m) + LN(W2x

offset
m ).

xpcm is the PointNet++’s output feature. xoffset
m is a 4D vector

with the normalization offset, i.e., the center offsets (x, y, z)
and the original size r for proposal m. W1, W2 are learned
projection matrices. LN(·) is layer normalization [3].
2D semantics embedding. For each 3D proposal m, we
project its point clouds onto L sampled frames in the origi-
nal ScanNet videos [7] and get the corresponded 2D image
semantics (image region, 2D bounding box, object class).
In sampled frame l ∈ {1, · · · , L}, we represent the 2D se-
mantics for proposal m by its visual feature xROI

m,l (Region
of interest feature from a visual genome [23] pre-trained
Faster-RCNN detector [39]), semantic feature xclsm,l (one-
hot class vector), and geometric feature xgeom,l (2D bounding
box coordinates and frame’s camera pose). We obtain the
d-dimensional 2D semantics Im,l with linear transforms:

Im,l = LN(W3x
ROI
m,l +W4x

cls
m,l) + LN(W5x

geo
m,l), (1)

where W3, W4, W5 are learned projection matrices and
LN(·) is layer normalization. We note that a 3D proposal
Om corresponds to multiple 2D semantic feature vector
Im,l obtained from different frames l. We randomly choose
one of Im,l, l ∈ {1, · · · , L} as the corresponding 2D se-
mantics in each epoch of training in SAT. We refer to the
sampled d-dimensional 2D semantic vector as Im, which
corresponds to the 3D proposal Om.
Text embedding. Given a query with K words, we embed
the text input with a pre-trained BERT model [9] into a set
of d-dimensional word feature vectors {Q1, · · · , QK}. We
fine-tune the BERT text encoder during training.

3.3. Fusion and grounding module

After respectively embedding each modality into multi-
ple d-dimension feature vectors, we apply a stack of trans-
former layers [42] to fuse the input modalities (query words,
3D objects proposals, and if training 2D semantics). We de-
note the transformer’s output features at the language, 3D
proposal, and 2D semantics positions as FQ, FO, and F I .

An output grounding module that consists of two fully
connected layers projects fused features {FO

1 , · · · , FO
M}

into a set of M grounding scores {SO
1 , · · · , SO

M}, respec-
tively. The object proposal m with the highest grounding
score is selected as the final grounding prediction.

4. 2D Semantics Assisted Training (SAT)

SAT learns auxiliary alignments between the 2D object
semantics and the objects in 3D scenes/language queries
to assist 3D visual grounding. Figure 2 overviews SAT in
training and inference with the 3D grounding transformer.

We study two technical problems in SAT. First, in Sec-
tion 4.1, we propose the auxiliary training objectives that
align 2D semantics with the 3D scene and language query.
Second, in Section 4.2, we introduce the 2D semantics en-
coding method that generates the fused feature F I from 2D
inputs I . We use F I in computing the auxiliary losses.

4.1. Training objectives

In addition to the main training objective between the 3D
scene and language query, SAT introduces auxiliary training
objectives to align 2D semantics with the 3D scene and lan-
guage query. We apply the “visual grounding loss” between
the query and 3D/2D visual inputs. We propose an “object
correspondence loss” between the 3D and 2D objects.
3D visual grounding loss. We first introduce the main vi-
sual grounding loss LO

VG between the 3D scene and lan-
guage query [27, 50, 1, 4]. Visual grounding loss LV G

is a softmax loss over grounding scores SO
m for proposals

m ∈ {1, · · · ,M}. The proposal with the highest Intersec-
tion over Union (IoU) with the ground truth region is la-
beled 1 and all remaining ones have label 0 (the highest IoU

1858



(a) SAT Training 

(b) Inference

3D object proposals

Fusion Module (Multi-modal Transformer)

Query words | Label 
words 2D image semantics

3D grounding

0/1

Fusion Module (Multi-modal Transformer)

... ...

......

... ...

3D object proposals

... ...

3D object proposals

Query words

2D image semantics

object correspondence

1

1

1

1

1

1

0

0

1

Attention mask

1

1

0

1

1

0

0

0

0

Attention mask

2D image semantics

"It is the office chair, 
next to the one in 
front of the monitor."

...

Query words

...

Attention mask

3D object proposals

Query words

1 1

1 1

1

1

1

1

0

1

1 1 0

1

0

1

0

0

0

1 1 0

"It is the office chair, 
next to the one in 
front of the monitor."

Query words

Prevent from Attending

Attention mask

Prevent from Attending
3D grounding
2D grounding ( , )

Figure 2. The proposed 2D semantics assisted training (SAT) for 3D visual grounding. (a) In training, SAT takes 2D semantics as extra
input and helps 3D visual grounding with the auxiliary objectives of 2D visual grounding LI

V G and object correspondence prediction Lcor .
(b) In inference, SAT does not require 2D inputs and is easy to use. SAT’s attention mask prevents query words and 3D proposals from
attending on 2D image semantics I in training (top five rows of the mask), avoiding performance drop in inference when I is not available.

equals 1.0 when experimented with ground truth object pro-
posals). LO

VG encourages the model to generate high scores
for positive proposals. In inference, the proposal with the
highest score SO is selected as the final prediction.
2D visual grounding loss. We apply the 2D ground-
ing loss LI

V G with the same form as LO
VG between the

2D semantics and language query. A separate ground-
ing head with two fully connected layers projects the
fused features {F I

1 , · · · , F I
M} into the 2D grounding scores

{SI
1 , · · · , SI

M}. LI
V G is the softmax loss computed over SI .

Object correspondence loss. The proposed object corre-
spondence loss learns the correspondence between the ob-
jects in 3D scenes and the ones in 2D images. We design the
object correspondence loss as a triplet loss [18, 10, 45, 26]:

Lcor =

M∑
m=1

{[
α− s(FO

m , F
I
m) + s(FO

m , F
I
i )
]
+

+
[
α− s(FO

m , F
I
m) + s(FO

j , F
I
m)
]
+

}
,

where s(·) is the similarity function. We use the inner prod-
uct over the L2 normalized feature FO and F I as s(·) in
our experiments. α is the margin with a default value of
0.1. i, j are the index for the hard negatives where i =
argmaxi 6=ms(F

O
m , F

I
i ) and j = argmaxj 6=ms(F

O
j , F

I
m).

We compute the object correspondence among the 3D and
2D object proposals m within each sample (3D scene). We
do not construct negatives across different 3D scenes.

We optimize the model with the following loss function:

L = LO
VG+LI

V G+Lcor ∗wcor+(LO
cls+L

Q
cls)∗wcls, (2)

where wcor is the weight for the object correspondence loss
with a default value of 10. In addition to 3D/2D ground-
ing loss LV G and object correspondence loss Lcor, we add
query and object classification losses LQ

cls and LO
cls as in

Referit3D [1]. The query feature Q0 and proposal feature
O are projected with fully connected layers to predict the
object classes for the language query and 3D proposals. We
follow the classification loss weight wcls of 0.5 [1]. Abla-
tion studies on the losses are in the supplementary material.

4.2. 2D semantics encoding

SAT uses the fused 2D semantic feature F I to compute
2D visual grounding loss LI

V G and object correspondence
loss Lcor. In this subsection, we introduce how to encode
F I from 2D semantics I . We show that a simple yet ef-
fective approach to encode F I is by introducing proper at-
tention masks in the multi-modal transformer. Specifically,
we adopt the same stack of transformer layers to jointly en-
code the three input modalities Q, O, and I . We design
the attention mask in Figure 2 (a) such that FQ and FO do
not directly attend to 2D inputs I (the top five rows of the
mask). In this way, the proposed mask prevents the model
from directly using 2D inputs I for grounding prediction
and thus avoids the performance drop in inference when I
is not available. Meanwhile, the proposed attention mask al-
lows the model to reference both 2D semantics I and other
input features Q and O when generating F I (the bottom
three rows of the mask).

We find that both properties of the proposed mask, i.e.,
masking 2D inputs I from FQ and FO, and referencing Q
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and O when generating F I , are critical to SAT’s success.
We discuss alternative methods as follow. 1) Methods that
do not mask I from FQ and FO will leak 2D inputs to FO

and partially rely on I to generate the grounding prediction
in training. Therefore, the grounding accuracy drops catas-
trophically in inference when no 2D inputs I are available.
2) Encoding FQ/FO and F I independently with Q/O and
I avoid the 2D input leakage. However, without referencing
the scene contextQ andO, the 2D feature F I fails to gener-
ate relevant object representations that effectively help 3D
visual grounding. We show related ablations in Section 5.4.

5. Experiments
5.1. Datasets

Nr3D. The Natural Reference in 3D (Nr3D) dataset [1] aug-
ments the indoor 3D scene dataset ScanNet [7] with 41, 503
natural language queries annotated by Amazon Mechanical
Turk (AMT) workers. There exist 707 unique indoor scenes
with targets belong to one of the 76 object classes. There
are multiple but no more than six distractors (objects in the
same class as the target) in the scene for each target. The
dataset splits follow the official ScanNet [7] splits.
Sr3D/Sr3D+. The Spatial Reference in 3D (Sr3D)
dataset [1] contains 83, 572 queries automatically generated
based on a “target”-“spatial relationship”-“anchor object”
template. The Sr3D+ dataset further enlarges Sr3D with the
samples that do not have multiple distractors in the scene
and ends up with 114, 532 queries.
ScanRef. The ScanRef dataset [4] augments the 800 3D
indoor scenes in the ScanNet [7] dataset with 51, 583 lan-
guage queries. ScanRef follows the official ScanNet [7]
splits and contains 36, 665, 9, 508, and 5, 410 samples in
train/val/test sets, respectively.

5.2. Experiment settings

Evaluation metric. We follow the experiment settings
in Referit3D [1] and ScanRef [4] for experiments with
ground truth and detector-generated proposals, respectively.
Specifically, Referit3D [1] assumes the access to ground
truth objects as the 3D proposals and converts the grounding
task into a classification problem. The models are evaluated
by the accuracy, i.e., whether the model correctly selects
the referred object among M proposals. We choose this
“using ground truth proposal” setting as the default setting
and present the results on all experimented datasets (Nr3d,
Sr3d, and ScanRef).

Alternatively, ScanRef [4] adopts a 3D object detec-
tor [33] to generate object proposals. On the ScanRef
dataset, we also evaluate models using Acc@kIoU, i.e., the
fraction of language queries whose predicted box overlaps
the ground truth with IoU> kIoU. We experiment with the
IoU threshold kIoU of 0.25 and 0.5. For clarity, we present

the experiments with ground truth proposals in the main pa-
per and postpone the experiments of “SAT with detector-
generated proposals” to the supplementary material.
Implementation details. We set the dimension d in all
transformer layers as 768. We experiment with a text trans-
former with 3 layers and a fusion transformer with 4 lay-
ers [15, 52]. The text transformer is initialized from the first
three layers of BERTBASE [9], and the fusion transformer is
trained from scratch. We sample 1024 points for each 3D
proposal from its point cloud segment and encode the pro-
posal with PointNet++ [35]. We follow the max sentence
length and proposal numbers in Referit3D [1] and Scan-
Ref [4] when experimented on Nr3D/Sr3D and ScanRef,
respectively. The model is trained with the Adam [21] op-
timizer with a batch size of 16. We set an initial learning
rate of 10−4 and reduce the learning rate by a multiplicative
factor of 0.65 every 10 epochs for a total of 100 epochs.
Compared methods. We compare SAT with the state-of-
the-art methods [1, 4, 17, 55] and the non-SAT baseline.
“Non-SAT” adopts the same “3D grounding transformer”
architecture used in “SAT.” The only difference is that “non-
SAT” does not include 2D semantics in training and thus
does not use the auxiliary losses LI

V G and Lcor. With the
same network architecture and experiment settings, “non-
SAT” is a directly comparable baseline to “SAT.” The per-
formance difference shows how much SAT could help the
3D visual grounding task.

5.3. 3D visual grounding results

Nr3D. Table 1 reports the grounding accuracy on the
Nr3D [1] dataset. Both “non-SAT” and “SAT” use the 3D
grounding transformer introduced in Section 3. For SAT’s
reported accuracy, we encode 2D semantics I from the vi-
sual feature xROI , object semantic feature xcls, and geo-
metric feature xgeo following Eq. 1. We postpone the ab-
lation studies on the types of 2D semantics to Section 5.4.
Different columns show the results with different training
data, i.e., using Nr3D’s training set only, or jointly training
with Sr3D/Sr3D+’s training set. We take “SAT-Nr3D” as
the default setting and refer to it as “SAT.” We refer to the
experiments with extra data as “SAT w/ Sr3D/Sr3D+.”

The top five rows of Table 1 show that our baseline “non-
SAT” already achieves comparable performance to the state
of the art (non-SAT: 37.7%, InstanceRefer [55]: 38.8%).
By effectively utilizing 2D semantics in training, our pro-
posed SAT improves the non-SAT baseline accuracy from
37.7% to 49.2%, with the identical model architecture and
inference inputs. SAT also outperforms the state-of-the-art
accuracy [55] of 38.8% a large margin of +10.4%. Jointly
using the Sr3D/Sr3D+ training data further improves the
grounding accuracy. As shown in the last row, “SAT w/
Sr3D+” improves “SAT-Nr3D” from 49.2% to 56.5%.

Analyses reveal that SAT learns a better 3D object repre-
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Table 1. The 3D grounding accuracy on Nr3D [1] with different train-
ing data (Nr3D training set only or with extra data from Sr3D/Sr3D+).

Method Nr3D w/ Sr3D w/ Sr3D+
V + L [1] 26.6±0.5% - -
Ref3DNet [1] 35.6±0.7% 37.2±0.3% 37.6±0.4%
TGNN [17] 37.3±0.3% - -
IntanceRefer [55] 38.8±0.4% - -
non-SAT 37.7±0.3% 43.9±0.3% 45.9±0.2%
SAT (Ours) 49.2±0.3% 53.9±0.2% 56.5±0.1%

Table 2. The 3D grounding accuracy on Sr3D [1] with different train-
ing data (Sr3D training set only or with extra data from Nr3D).

Method Sr3D w/ Nr3D
V + L [1] 33.0±0.4% -
Ref3DNet [1] 40.8±0.2% 41.5±0.2%
TGNN [17] 45.0±0.2% -
IntanceRefer [55] 48.0±0.3% -
non-SAT 47.4±0.2% 50.1±0.1%
SAT (Ours) 57.9±0.1% 60.7±0.2%

Table 3. The accuracy on ScanRef [4] with different training data
(ScanRef training set only or with extra data from Nr3D/Sr3D+).

Method ScanRef w/ Nr3D w/ Sr3D+
Ref3DNet [1] 46.9±0.2% 47.5±0.4% 47.0±0.3%
non-SAT 48.2±0.2% 50.2±0.1% 51.7±0.1%
SAT (Ours) 53.8±0.1% 57.0±0.3% 56.5±0.2%

sentation with the assist of 2D semantics, which leads to the
11.5% improvement over the non-SAT baseline. The im-
provement brought by Sr3D/Sr3D+ mainly comes from bet-
ter modeling the spatial relationships in queries. We present
these analyses in Section 6.
Sr3D. Table 2 shows the grounding accuracy on Sr3D [1].
We draw similar conclusions from Table 2 as in Table 1 that
1) SAT significantly improves the grounding accuracy from
47.4% to 57.9%, 2) SAT outperforms the previous state of
the art [1, 17, 55] by large margins, and 3) extra training data
(Nr3D) further boosts the accuracy from 57.9% to 60.7%.
ScanRef. Table 3 reports the grounding accuracy on the
ScanRef dataset [4] with ground truth object proposals. We
observe a significant improvement of “SAT” over the non-
SAT baseline (SAT: 53.8%, non-SAT: 48.2%). Extra train-
ing data from Nr3D and Sr3D+ further improves the accu-
racy from 53.8% to 57.0% and 56.5%, respectively.

In addition to the ground-truth object proposals [1], we
experiment with the proposal setting in ScanRef [4] that
generates proposals with a 3D detector [33]. To apply SAT,
we first compute the ground truth 2D semantics offline. In
training, we match each predicted 3D proposal with a 2D
semantics object that has the largest IoU with the 3D pro-
posal. We then evaluate the models with the Acc@0.25
and Acc@0.50 metrics. SAT achieves the Acc@0.25 and
Acc@0.50 of 44.54% and 30.14%, outperforming the non-
SAT baseline of 38.92% and 26.40% by a large margin. We
introduce the details of “SAT with detector-generated pro-
posals” in the supplementary material.

5.4. Ablation studies

Multi-modal transformer masks. SAT’s attention mask
in the multi-modal transformer has two properties, i.e., 1)
masking 2D semantics I from FQ and FO, and 2) refer-
encing contextQ andO when generating F I . We verify the
importance of both properties with the ablation studies in
Table 4. In training, we replace our proposed transformer’s

Table 4. Ablation studies on 2D semantics embedding with differ-
ent transformer attention masks. The gray mask color indicates
prevent from attending. SAT’s attention mask is in Figure 2 (a).

Training mask A Training mask B

1

1

1

1

1

1

1 1 1

1

0

1

0

0

1

1 1 0

Prevent from Attending

Method Accuracy
non-SAT 37.7±0.3%
SAT-mask A 33.9±0.2%
SAT-mask B 43.9±0.2%
SAT (Ours) 49.2±0.3%

Table 5. Ablation studies on different types of 2D semantics inputs
as in Eq 1. We highlight the default “SAT” setting by underline.

+xgeo +xcls +xROI Acc.
(a) - - - 37.7±0.3%
(b) 3 - - 39.4±0.3%
(c) 3 3 - 48.1±0.2%
(d) 3 - 3 46.5±0.1%
(e) - 3 3 43.2±0.2%
(f) 3 3 3 49.2±0.3%

attention mask in Figure 2 (a) with the alternative masks
A/B in Table 4. In inference, the model removes the ex-
tra 2D semantics input and follows the standard inference
setting as in Figure 2 (b).

Mask A does not mask 2D semantics I from FQ and
FO. We observe that the model directly relies on the ex-
tra 2D inputs I for grounding prediction. Consequently, the
grounding accuracy drops catastrophically to 33.9% when
no 2D inputs are available in inference. Mask B encodes F I

with 2D semantics I alone. Without referencing the scene
context in Q and O, the 2D feature F I fails to provide a
relevant object representation and is thus less effective in
helping 3D visual grounding. Although outperforming the
non-SAT baseline accuracy of 37.7%, “SAT-mask B” per-
forms much worse than the SAT with our proposed attention
mask (SAT-mask B: 43.9%, SAT: 49.2%).
Types of 2D context inputs. Table 5 shows the ablation
studies on the types of 2D semantics. The combination of
xROI , xcls, and xgeo are projected into a d-dimension 2D
semantics feature I following Eq. 1.

Compared with the non-SAT baseline accuracy of 37.7%
in row (a), SAT with any 2D semantics significantly boosts
the grounding accuracy (rows (b-f)). Jointly using visual
feature xROI , semantic feature xcls, and geometric feature
xgeo achieves the best accuracy of 49.2%, as in row (f).
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6. How does SAT help?
In this section, we analyze how does SAT help 3D visual

grounding. We draw three major conclusions: 1) SAT learns
a better 3D object representation FO with the assist of 2D
semantics I , leading to consistent performance improve-
ments over samples with different target classes, number of
distractors, query lengths/types, etc. (Section 6.1). 2) Train-
ing with the extra data in Sr3D/Sr3D+ mainly benefits the
queries with spatial relationship referring (Section 6.2). 3)
The performance gap between SAT and the methods that re-
quire extra 2D inputs in inference is small, indicating the ef-
fectiveness of SAT in utilizing 2D semantics (Section 6.3).
Finally, we present qualitative examples in Section 6.4.

6.1. Linear probing
How could SAT achieve the large improvement over the

non-SAT baseline and the state of the art? We conjecture
that SAT learns a better 3D representation FO for noisy ob-
ject point clouds with the assist of 2D semantics. Conse-
quently, we observe consistent 3D grounding accuracy im-
provements on samples with different target object classes,
number of distractors, query lengths/types, etc., as shown in
the performance breakdown in the supplementary material.

We use linear probing [56, 13, 6] to evaluate the qual-
ity of the learned 3D object representations FO in differ-
ent models. Specifically, we keep the pre-trained ground-
ing network fixed and train a linear classifier that maps
each proposal feature FO

m into one of Nr3D’s 607 object
classes. Because no classification annotation is seen dur-
ing the grounding network training, we evaluate learned
representations FO by the object classification accuracy.
Similar to the use of linear probing in representation learn-
ing [56, 13, 6], we consider a higher linear probing accuracy
the indicator of a better 3D object representation FO.

Table 6 shows the linear probing accuracy on Nr3D. SAT
improves the linear probing accuracy from 35.7% to 60.1%,
compared with the non-SAT baseline. The significant im-
provement supports the conjecture that SAT learns a better
3D object representation with 2D semantics in training. We
observe similar improvements in the full fine-tuning setting,
where all layers are updated for object classification. It is
worth noting that SAT’s effectiveness in generating better
3D object representations may hold the promise of bene-
fiting not only 3D vision-language tasks such as ground-
ing [1, 4] and captioning [5], but also 3D semantic under-
standing tasks such as 3D scene graph prediction [2, 43].

6.2. Spatial relationship referring
Our second observation is that the extra data in

Sr3D/Sr3D+ helps the queries with spatial relationship re-
ferring. On Nr3D’s subset with spatial queries (76.7% of
the samples), the extra Sr3D+ training data leads to an 8.4%
improvement on “SAT-Nr3D” from 48.4% to 56.8%. In

Table 6. Linear probing accuracy on Nr3D.
Method Linear probing Full fine-tuning
non-SAT 35.7% 63.4%
SAT 60.1% 65.4%
SAT w/ Sr3D+ 61.7% 67.6%

contrast, the improvement is only 3.9% on the remaining
samples (from 50.9% to 54.8%). Furthermore, we observe
larger improvements on subsets that contain the frequently
appeared spatial words in Sr3D/Sr3D+, e.g., “closest” of
+11.5% and “farthest” of +13.5%.

6.3. 2D semantics as extra inputs
In this subsection, we compare SAT with the methods

that require extra 2D inputs in both training and inference.
We design two methods that directly use 2D semantics as
extra inputs, namely the “2D input aligned” and “2D input
unaligned.” Both methods use the same network architec-
ture as SAT and take extra 2D inputs in both training and in-
ference. For “2D input aligned,” we concatenate 2D seman-
tics Im with 3D proposal feature Om and use the extended
proposal feature as Om in both training and inference. The
input sequence length for “2D input aligned” is M + K.
We train “2D input aligned” with the main grounding loss
LO
VG and the classification loss Lcls in Eq. 2. For “2D input

unaligned,” we input 2D semantics Im as extra input tokens
to the multi-modal transformer in both training and infer-
ence. The input sequence length for “2D input unaligned”
is 2M +K. We train “2D input unaligned” with the same
loss L in Eq. 2 as SAT.

Table 7 shows the experiment results on Nr3D with no
2D semantics (upper portion), with 2D inputs only in train-
ing (middle portion), and in both training and inference
(bottom portion). The “hard” subset contains more than 2
distractors and remaining samples belong to “easy.” We ob-
serve a marginal accuracy gap of 1% between “SAT” and
“2D input aligned/unaligned” (“overall” in row (e): 49.2%,
rows (h,i): 50.3%). The comparable performance indicates
SAT’s effectiveness in utilizing 2D semantics to help 3D
visual grounding. Meanwhile, SAT does not require extra
2D inputs in inference as “2D input aligned/unaligned,” and
thus is easier to use.

6.4. Qualitative insights
The left four examples of Figure 3 show representative

failure cases of “non-SAT” that can be corrected by “SAT.”
We group common cases into three scenarios. 1) Object:
SAT improves non-SAT by better recognizing the object
classes. Non-SAT occasionally fails to ground the head
noun and generates the object prediction in a different class,
e.g., “bed” instead of the referred “desk” in Figure 3 (a).
2) Relationship: We observe that SAT is better in mod-
eling relationships in language queries, despite no specific
modules are proposed in SAT for relationship understand-
ing. For example, in Figures 3 (b,c), SAT correctly under-
stands the relationship “attach to” and “over.” We conjec-
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Table 7. The benefit of using 2D semantics in 3D visual grounding. The upper/middle/bottom portion of the table shows the results that
do not use 2D semantics/use only in training/use in both training and inference (as extra inputs). The results with extra training data
(Sr3D/Sr3D+) are shown in gray. Our SAT (#(e)) shows comparable performance to oracles that require 2D inputs in inference (#(h,i)).

Extra 2D semantics
Overall Easy Hard View-dep. View-indep.

data Train Test
(a) Ref3DNet [1] - 7 7 35.6±0.7% 43.6±0.8% 27.9±0.7% 32.5±0.7% 37.1±0.8%
(b) TGNN [17] - 7 7 37.3±0.3% 44.2±0.4% 30.6±0.2% 35.8±0.2% 38.0±0.3%
(c) IntanceRefer [55] - 7 7 38.8±0.4% 46.0±0.5% 31.8±0.4% 34.5±0.6% 41.9±0.4%
(d) non-SAT - 7 7 37.7±0.3% 44.5±0.5% 31.2±0.2% 34.1±0.3% 39.5±0.4%
(e) SAT (Ours) - 3 7 49.2±0.3% 56.3±0.5% 42.4±0.4% 46.9±0.3% 50.4±0.3%
(f) SAT w/ Sr3D (Ours) Sr3D 3 7 53.9±0.2% 61.5±0.1% 46.7±0.3% 52.7±0.7% 54.5±0.3%
(g) SAT w/ Sr3D+ (Ours) Sr3D+ 3 7 56.5±0.1% 64.9±0.2% 48.4±0.1% 54.4±0.3% 57.6±0.1%
(h) 2D input aligned - 3 3 50.0±0.1% 62.0±0.2% 38.5±0.3% 44.7±0.3% 52.6±0.3%
(i) 2D input unaligned - 3 3 50.3±0.4% 58.5±0.7% 42.4±0.5% 48.1±0.4% 51.3±0.5%
(j) 2D input aligned Sr3D+ 3 3 59.7±0.1% 71.0±0.3% 48.8±0.5% 52.9±0.3% 63.1±0.2%
(k) 2D input unaligned Sr3D+ 3 3 61.0±0.3% 69.0±0.6% 53.2±0.3% 58.4±0.3% 62.2±0.5%

Query

Non-SAT

SAT (Ours)

GT

Rendered
scene

(d) The bed with 
the white and 
green bedding.

(a) The bigger 
brown desk to the 
left of the bed.

(b) The shelf that 
is attached to the 
desk.

(c) The set of kitchen 
cabinets over the 
kitchen sink.

(e) Facing the wall 
select the table on 
the right.

(f) The chair that 
is facing the desk.

bed shelf kitchen cabinets bed

table

chair

desk shelf kitchen cabinets bed

table

chair

desk shelf kitchen cabinets bed

coffee table office chair

Figure 3. The failure cases of non-SAT that can be corrected by SAT (the left four examples), and SAT’s representative failure cases (the
right two examples). The green/red/yellow colors indicate the correct/incorrect/ground truth boxes. The object class for each box is shown
in text next to the 3D box. We provide rendered scenes in first row to better visualize the scene layout. Best viewed zoomed in and in color.

ture that SAT learns a better object representation for both
foreground and background objects, which benefits the re-
lationship modeling. 3) Color and shape: SAT also per-
forms better in understanding color and shape-related lan-
guage queries, e.g., “white and green” in Figure 3 (d).

The right two examples of Figure 3 show SAT’s repre-
sentative failure cases. Figure 3 (e) shows a failure case
that requires understanding “facing the wall.” Although
SAT improves both view-dependent and independent sam-
ples (c.f . Table 7 “View-dep.” column), view understanding
remains an unsolved problem. Figure 3 (f) shows a fail-
ure case caused by ambiguous queries. The model predicts
the “chair facing the desk” instead of the referred “office
chair facing the desk” in the ground truth. We observe that
the model and human annotators occasionally confuse ob-
jects in similar categories, such as chair/office-chair (Fig-

ure 3 (f)), table/coffee-table (Figure 3 (e)), etc.

7. Conclusion
We have presented 2D semantics assisted training (SAT)

for 3D visual grounding. SAT uses 2D semantics in training
to assist 3D visual grounding and eases joint representation
learning between the 3D scene and language query. With
identical network and inference inputs, SAT beats the non-
SAT baseline by 11.5% in absolute accuracy. SAT leads
to the new state of the art on multiple datasets and outper-
forms previous works by large margins. Analyses show that
SAT effectively uses 2D semantics to learn a better 3D point
cloud object representation that helps 3D visual grounding.
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