
Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Haitao Yang1 Zaiwei Zhang1 Siming Yan1 Haibin Huang2 Chongyang Ma2

Yi Zheng2 Chandrajit Bajaj1 Qixing Huang1

1The University of Texas at Austin 2Kuaishou Technology

Abstract

Developing deep neural networks to generate 3D scenes
is a fundamental problem in neural synthesis with immediate
applications in architectural CAD, computer graphics, as
well as in generating virtual robot training environments.
This task is challenging because 3D scenes exhibit diverse
patterns, ranging from continuous ones, such as object
sizes and the relative poses between pairs of shapes, to
discrete patterns, such as occurrence and co-occurrence
of objects with symmetrical relationships. This paper
introduces a novel neural scene synthesis approach that
can capture diverse feature patterns of 3D scenes. Our
method combines the strength of both neural network-based
and conventional scene synthesis approaches. We use
the parametric prior distributions learned from training
data, which provide uncertainties of object attributes and
relative attributes, to regularize the outputs of feed-forward
neural models. Moreover, instead of merely predicting a
scene layout, our approach predicts an over-complete set
of attributes. This methodology allows us to utilize the
underlying consistency constraints among the predicted
attributes to prune infeasible predictions. Experimental
results show that our approach outperforms existing methods
considerably. The generated 3D scenes interpolate the
training data faithfully while preserving both continuous
and discrete feature patterns.

1. Introduction
3D scene synthesis is a fundamental problem in deep

generative modeling. This task is challenging because 3D
scenes exhibit diverse patterns, ranging from continuous
ones, such as the size of each object and the relative
poses between pairs of shapes, to discrete patterns, such
as occurrence and co-occurrence of objects and symmetric
relations. Moreover, there are also generic geometric
constraints, e.g., synthesized objects in a 3D scene should
not inter-penetrate. Developing neural networks to capture
all feature patterns while enforcing geometric constraints
remains an open problem. Due to the diversity of feature

Figure 1: Randomly generated scenes (left) and their nearest
neighbours (right) in the training set in 3D-FRONT.

patterns and constraints, the popular approach of developing
a single data representation and training approach proves
insufficient.

This paper introduces a novel approach to synthesizing
3D scenes represented as a collection of objects. Each object
is encoded by its attributes such as size, pose, existence
indicator, and geometric codes (c.f. [42, 56]). The theme of
our approach is to look at 3D scene synthesis from hybrid
viewpoints. Our goal is to combine the strengths of different
approaches and representations that can capture diverse
feature patterns and enforce different constraints. We execute
this hybrid methodology at two levels.

First, instead of merely synthesizing the absolute at-
tributes of each individual object, our approach predicts
an over-complete set of attributes which also include relative
attributes (e.g., relative poses) between object pairs. Such
relative attributes better capture spatial correlations among
objects compared to only synthesizing absolute attributes.
From a robust optimization point of view, over-complete
attributes possess generic consistency constraints, e.g., the
relative attributes should be consistent with object attributes.
These constraints allow us to prune infeasible attributes

5630

in synthesis output (c.f. [17, 10, 19, 2, 21, 54, 15, 48, 39,
55, 51]). This approach is particularly suitable for neural
outputs that exhibit weak correlations due to random initial-
ization [55, 14, 38, 29]. We can therefore suppress output
errors effectively by enforcing the consistency constraints
among absolute and relative attributes.

Second, our approach combines the strengths of neural
scene synthesis models and conventional scene generation
methods. Neural models possess unbounded expressibility
and can encode both continuous and discrete patterns.
However, they typically produce single outputs that do not
possess useful signals of uncertainties for synchronizing
object attributes and relative attributes. For example, suppose
we know the uncertainty of object attribute is high. In
such cases, we can replace it with another one based on
the attributes of other objects and the corresponding relative
attributes. Similarly, we can discard a relative attribute if
its uncertainty is high. Our approach addresses this issue
by learning parametric prior distributions of absolute and
relative attributes. Such distributions provide uncertainties
of generated object attributes and relative attributes, offering
rich signals to regularize them and prune outliers. Moreover,
they also help enforce the penetration-free constraints.
We introduce a Bayesian framework to integrate neural
outputs and parametric prior distributions seamlessly. The
hyperparameters of this Bayesian framework are optimized
to maximize the performance of the final output.

We evaluate our approach on 3D-FRONT [12]. We
also provide results on SUNCG [40] to provide sufficient
comparisons with baseline techniques. Experimental results
show that our approach can generate 3D scenes different
from the training examples while preserving discrete and con-
tinuous feature patterns. Our method outperforms baseline
approaches both qualitatively and quantitatively. An ablation
study justifies the design choices of our approach. Our code
is available at https://github.com/yanghtr/Sync2Gen.

2. Related Work
3D scene synthesis has been studied considerably in the

past. We refer to [53] for a recent survey and to [8] for a
recent tutorial on this topic.
Conventional scene synthesis approaches. Non-deep
learning scene synthesis approaches fall into two categories.
The first category applies data-driven and non-parametric
approaches [13, 26, 7, 37, 50, 18]. The advantages of these
methods are that they can handle datasets with significant
structural variability. The downside is that these methods
require complicated systems and careful parameter tuning.
Another category employs probabilistic graphical models
(e.g., Bayesian networks) for assembly-based modeling and
synthesis [31, 6, 22, 11, 5, 9, 30, 23], these methods show
improved performance but reply on hand-crafted modeling
of structural patterns. Moreover, they typically only capture

low-order correlations among the objects. Similar to these
approaches, our approach learns distributions of object
attributes and relative attributes. However, unlike using them
to synthesize 3D scenes directly, we use the distributions to
regularize and prune neural outputs. Most signals of the final
output still come from the neural outputs.
Deep scene synthesis approaches. Recent scene synthe-
sis approaches use deep neural networks. Many of them
focus on recurrent formulations [27, 33, 16, 36, 57, 46, 34,
28, 45] that model relations between objects. These ap-
proaches either explicitly or implicitly utilize a hierarchical
structure among the objects. Another category consists of
feed-forward models [43, 32, 56] that synthesize a scene
layout directly. Our approach advances the state-of-the-art
on neural scene models in two ways. First, we propose
synthesizing both object attributes and relative attributes and
leveraging the underlying consistency constraints to prune
wrong synthesis results. Second, we utilize parametric prior
distributions to regularize synthesized object attributes and
relative attributes further.
Over-complete predictions. Several recent works [48,
39, 55, 51] studied the methodology of first predicting
over-complete intermediate geometric representations and
then aggregating them into the final output. While our
approach also predicts over-complete constraints, i.e., object
attributes and relative attributes. We introduce how to
integrate prior distributions that provide uncertainties of
the predictions. Moreover, the hyperparameters of the
synchronization procedure are jointly optimized.
Synchronization. Our approach is also relevant to recent
works on transformation synchronization [1, 17, 47, 4, 10,
19, 2, 21, 54, 15, 20], which takes relative transformations
among a collection of geometric objects as input and outputs
absolute transformations across the entire object collection.
Our setting’s major difference is to model prior distributions
on the relative attributes (including relative poses), which
provide uncertainties for inputs to arrangement optimization.
Such uncertainties enable us to detect outliers more robustly.

3. Overview
Problem statement. Our goal is to train a variational
auto-encoder that takes a 3D scene as input, maps it to a
latent code, and finally decodes the latent code into the
original input. In this paper, we assume that each scene is an
arrangement of objects. Each object is given by its attributes,
i.e., category label, size, pose, and a vector (i.e., a shape
code) that encodes its geometry. We assume each instance
of the training dataset is pre-segmented into these objects.

Approach overview. Similar to [44, 56], we model each
scene as selecting and deforming objects from a pre-defined
over-complete set of objects. Each object is encoded by a
vector that concatenates its attributes and a binary indicator

5631

Figure 2: Our network has three modules. The first module is a VAE model on object attributes. During testing, our approach
takes a latent code as input and outputs synthesized object attributes. The induced relative attributes are fed into the second VAE
module, which outputs synthesized relative attributes. The third module performs Bayesian scene optimization, combining
synthesized object and relative attributes and parametric prior distributions to output the final object attributes.

that specifies whether an object is selected or not. A scene is
then represented as a matrix, whose columns encode objects.

Unlike standard approaches of designing a feed-forward
network that directly outputs the object attributes (c.f. [44,
56]), our method combines two new ideas for scene synthesis.
First, our generative model outputs object attributes and
relative attributes (e.g., the relative pose between a pair
of objects). As shown in Figure 2, this is done by
learning a VAE to synthesize object attributes. We will
also use the latent space of this VAE to synthesize new
scenes. The induced relative attributes from the synthesized
object attributes are then fed into another VAE to produce
synthesized relative attributes.

The neural outputs provide an over-complete set of
constraints on the final object attributes. We can recover
accurate object attributes by exploring the underlying
consistency constraints among this over-complete set even
though some predictions are incorrect. Second, we learn
prior distributions of object attributes and relative attributes
from the training data. These prior distributions provide
uncertainties of the predictions, which further regularize the
final output. Note that the prior distributions consider both
the continuous variables such as relative poses and discrete
variables such as object counts and co-occurrences.

We introduce a Bayesian scene optimization framework
that seamlessly integrates neural predictions and prior distri-
butions (See Figure 2). This framework exhibits two novel
properties. First, it relaxes object indicators as real variables
and employs continuous optimization to refine the object
attributes. We show how to solve the induced optimization
problem effectively via alternating minimization. Second,
we introduce a simple and practical approach to optimize
hyperparameters of the induced objective function.

Note that our approach decouples training of the neural
synthesis modules and learning of hyperparameters for the
Bayesian scene optimization framework. Specifically, the
neural synthesis modules are trained on a large-scale training
set T . In contrast, the hyperparameters are trained on a
separate small-scale validation dataset Tval. This approach

allows us to alleviate the gap between the distribution of
neural synthesis outputs on the training set and that on the
testing set. We have found that this approach offers better
results than naive end-to-end learning.

4. Bayesian Scene Optimization
This section presents the Bayesian scene optimization

framework, which is the main contribution of this paper. It
integrates the output of the variational auto-encoders which
predict object attributes and relative attributes (see Section 5
for the details) and parametric prior distributions learned
from the training data. In the following, we first introduce
the problem statement of scene optimization in Section 4.1.
We then describe the Bayesian formulation in Section 4.2.
Section 4.3 presents the strategy for solving the induced
optimization problem. Finally, we describe hyperparameter
optimization in Section 4.4.

4.1. Problem Setup

We model a scene as a pre-defined graph G = (V, E),
where graph vertices encode objects and where edges
connect pairs of objects. Each vertex v ∈ V is associated
with a pre-defined class label cv ∈ C, where C denote all
the classes. Scene optimization amounts to recover each
object’s attributes encoded as a vector av and the indicator
zv ∈ {0, 1} that specifies whether v is active or not. In other
words, {zv} characterize which objects appear in a scene,
and {av} specify the scene layout. Note that the precise
parameterization of av will be described in Section 5.1.

Denote av = (aTv , zv)
T . The input to scene optimization

consists of a prediction a0
v associated with each vertex

v ∈ V and a prediction a0
e associated with each edge

e = (v, v′) ∈ E , where the ground-truth ae = φ(av,av′)
encodes the relative attributes between av and av′ (e.g.,
relations between beds and nightstands). The explicit
expression of ae and φ are introduced in Section 5.2. Note
that both a0

v and a0
e are outputs of neural networks.

Besides the vertex predictions {a0
v} and edge predictions

{a0
e}, our approach also utilizes prior distributions learned

5632

from the input data. The predictions and prior distributions
are combined in a Bayesian framework.

4.2. Formulation

We formulate scene optimization as maximizing the
following posterior distribution

P
(
{av}|{a0

v} ∪ {a0
e}
)

∼ P
(
{a0

v} ∪ {a0
e}|{av}

)
· P
(
{av}

)
. (1)

where P ({a0
v} ∪ {a0

e}|{av}) and P ({av}) are total likeli-
hood and prior terms, respectively and ∼ denotes equal up
to a scaling constant.

Likelihood modeling. We model the total likelihood term
by multiplying unary terms and pairwise terms associated
with vertices and edges:

P
(
{a0

v} ∪ {a0
e}|{av}

)
∼
∏
v∈V

P
(
a0
v|av

)
·

∏
e=(v,v′)∈E

P
(
a0
e|av,av′

)
.

Each unary term P
(
a0
v|av

)
measures the closeness between

the prediction a0
v and the corresponding recovery av. We

model the variance and employ a robust norm to handle
outliers:

P
(
a0
v|av

)
∼ exp(−1

2
ρ(‖a0

v − av‖Σ−1
cv
, αcv)) (2)

where ρ(x, α) = x2/(x2 +α) is the Geman-McClure robust
function [3]; ‖x‖A = xTAx; αcv and the covariance matrix
Σcv � 0 are hyperparameters of class cv .

We use a similar formulation to model the pariwise term
associated with each edge e = (v, v′) ∈ E :

P
(
a0
e|av,av′

)
∼ exp(−1

2
ρ(‖a0

e − φ(av,av′)‖Σ−1
ce
, αce)) (3)

where ce = (cv, cv′) denotes the class label of edge e; Σce �
0 and αce are hyperparameters of class ce.

Combing (2) and (3), we arrive at the following formula-
tion for the total likelihood term P

(
{a0

v} ∪ {a0
e}|{av}

)
∼ exp

(
− 1

2

∑
v∈V

ρ(‖a0
v − av‖Σ−1

cv
, αcv)

− 1

2

∑
e=(v,v′)∈E

ρ(‖a0
e − φ(av,av′)‖Σ−1

ce
, αce)

)
(4)

Prior modeling. We model the total prior term by decou-
pling attributes and indicators and by multiplying unary
terms and pairwise terms: P ({av})

∼
∏
v∈V

Pcv (av)
∏

e=(v,v′)∈E

Pce(φ(av,av′))P ({zv}) (5)

Figure 3: Left: scene layout from predicted object attributes.
Middle: scene layout by synchronizing predicted object
attributes and relative attributes, i.e., only likelihood terms
are used. Right: the output of scene optimization that
combines both likelihood terms and prior terms.

where Pcv (av) models the attribute prior of the vertex class
cv;Pce(φ(av,av′)) models the relative attribute prior of the
edge class ce; P ({zv}) denotes the object count prior.

We use generalized Gaussian mixture models (or
GGMMs) to model Pc and P(c,c′):

Pc(av) = Mµc
(av), (6)

P(c,c′)(φ(av,av′)) = Mµ(c,c′)(φ(av,av′)) (7)

where µc and µ(c,c′) denote hyperparameters of the mixture
models. By GGMMs, we mean each mixture component
is associated with an optimal mask to model the self-
penetration free constraint between pairs of objects. Due
to space constraints, we defer details of GGMMs and
visualizations of the resulting GGMMs to the supplementary
material. Note that our approach learns µc and µ(c,c′) from
the training data and refines all the hyperparameters jointly to
maximize the output of our approach. The joint optimization
procedure is explained in Section 4.4.

The prior term P ({zv}) models object counts and object
co-occurrences. Similar to the likelihood term, we model
P ({zv}) as a combination of unary and pairwise terms:

P ({zv}) ∼
∏
c∈C

Pc(zVc)
∏
c,c′∈C

P(c,c′)(zVc , zVc′). (8)

where zVc collects indicators of vertices that belong to the
vertex class c. We again model both Pc and P(c,c′) using 1D
and 2D GGMMs:

Pc(zVc) = Mγc(1TzVc) (9)

P(c,c′)(zVc , zVc′) = Mγ(c,c′)

(
(1TzVc ,1

TzVc′)
)

(10)

Note that we again initialize γc and γ(c,c′) from data and
refine them and other hyperparameters jointly. Please refer to
the supplementary material for visualizations of the resulting
GGMMs.

5633

Substituting (9) and (10) into (8) and combing (6) and
(7), we arrive at the following prior model:

P ({av}) ∼
∏
v∈V

Mµcv
(av)

∏
e=(v,v′)∈E

Mµce
(φ(av,av′))

∏
c∈C

Mγc(1TzVc)
∏
c,c′∈C

Mγ(c,c′)

(
(1TzVc ,1

TzVc′)
)

(11)

4.3. Scene Optimization

Our goal is to find av, v ∈ V that maximize the posterior
distribution defined in (1). The variables consist of primitive
parameters and primitive indicators. Our optimization
strategy relaxes the indicator variables as real variables
zv ∈ R. It then performs alternating optimization to refine
these two categories of variables. This relaxation strategy
not only makes the optimization problem easy to solve but
also facilitates hyperparameter learning (See Section 4.4).

Specifically, when the indicator variables zv, v ∈ V are
fixed, the optimization problem reduces to (we minimize the
negation of the log-posterior)

min
{av}

∑
v∈V

(1

2
ρ
(
‖a0

v − av‖Σ−1
cv
, αcv

)
− log

(
Mµc(av)

))
+

∑
e=(v,v′)∈E

(1

2
ρ
(
‖a0

e − φ(av,av′)‖Σ−1
ce
, αce

)
− log

(
Mµ(c,c′)(φ(av,av′))

))
(12)

The objective function in (12) is continuous in av. We
employ the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (or L-BFGS) algorithm for optimization. The initial
solution is first set as a0

v and then uses the output of the
previous iteration.

When av, v ∈ V are fixed, we solve

min
{zv}

1

2

∑
v∈V

ρ
(
‖a0

v − av‖Σ−1
cv
, αcv

)
−
∑
c∈C

log
(
Mγc(1TzVc)

)
+

1

2

∑
e=(v,v′)∈E

ρ
(
‖a0

e − h(av,av′)‖Σ−1
ce
, αce

)
−
∑
c,c′∈C

log
(
Mγ(c,c′)(1

TzVc ,1
TzVc′)

)
(13)

We employ the same strategy as (12) for optimization. Our
experiments suggest that 20-30 alternating iterations are
sufficient. Figure 3 shows typical examples, where relative
attributes and prior terms provide effective regularizations
for object attributes.

4.4. Joint Hyperparameter Learning

In this section, we present an approach that learns hyper-
parameters of the scene optimization formulation described
above. Specifically, to make the notations uncluttered, let

Φ = {Σc, αc, µc, γc} ∪ {Σ(c,c′), α(c,c′), µ(c,c′), γ(c,c′)}

collect all the hyperparameters. Let x and y denote the
inputs {a0

v} ∪ {a0
e} and the optimal solution to {av} to (1).

Finally, we denote the objective function in (1) as f(Φ,x,y).
Our goal is to train Φ using a validation set Tval :=

{(xi,ygt
i)} and a regularization loss l(Φ). Each (xi,y

gt
i) is

computed by feeding ygt
i as the input to the encoder modules

and setting xi as outputs of the decoder modules. The
regularization term l(Φ) combines all the loss terms that
learn hyperparameters of the prior distributions, i.e., (6), (7),
(9), and (10). We defer the explicit expression of l(Φ) to the
supplementary material.

The performance of scene optimization depends on
whether the ground-truth solution is a local minimum and
whether the prediction modules’ initial solution reaches this
local minimum through optimization. We introduce a novel
formulation that only involves function values of f to enforce
these two constraints:

min
Φ

l(Φ) +
∑

(xi,y
gt
i)∈Tval

E
yi∼N (ygt

i ,rmI)(
max

(
f(Φ,xi,y

gt
i)− f(Φ,xi,yi) + δ, 0

)
(14)

+ λs E
y′i∼N (yi,rsI)

(
f(Φ,xi,yi)− f(Φ,xi,y

′
i)
)2)

(15)

where N (y, rI) is the normal distribution with mean y
and variance rI . Specifically, (14) forces the ground-
truth solution to be a local minimum. (15) prioritizes that
the loss surface of f is smooth, and therefore the local
minimum has a large convergence radius. We determine
the hyperparameters rm, rs, δ, and λs via cross-validation to
minimize the L2 distances between the optimized object
attributes and the ground-truth object attributes on the
validation set Tval.

5. Attribute Encoding and Synthesis
This section describes the details of predicting initial

object attributes and relative attributes. In Section 5.1, we
present the encoding of object attributes and the correspond-
ing network architecture. Section 5.2 then presents the
encoding of relative attributes and the corresponding network
architecture. Finally, we present the training procedure for
the neural models described above in Section 5.3.

5.1. Object Attributes

We use a similar approach as [42, 56] to encode a 3D
scene as a collection of object attributes av and object
indicators zv . Each object attribute av is encoded as a vector
in R12. The elements of av include size parameters sv ∈
R3, orientation parameters rv ∈ R3, location parameters
tv ∈ R3, and shape codes dv ∈ R3. The size parameters
sv = (sxv , s

y
v, s

z
v)
T encode the scalings of v aligned with the

axis of the coordinate system associated with each object

5634

v. rv = (θxv , θ
y
v , θ

z
v) collects the Euler angles that specify

the orientation (i.e., a rotation) of v in the world coordinate
system. tv specifies the location of v in the world coordinate
system. Finally, dv is obtained in two steps. The first step
uses the pre-trained model [49] to obtain a latent code for
each object’s shape. The second step then performs PCA
among latent codes of all the objects in training set to obtain
the coordinates of the top-3 principal vectors. During testing,
we use the synthesized code to search for the closest object
in the training set.

Let Nc be the maximum number of objects of each object
class c ∈ C. We parameterize a 3D scene using a matrix
AC ∈ R13×(

∑
c∈C Nc), where the columns of AC are av =

(av, zv)
T of the corresponding objects.

We adopt the variational auto-encoder (or VAE) architec-
ture in [56]. The network design utilizes sparsely connected
layers to alleviate the overfitting issue. As shown in Figure 2,
we will sample the latent space of this VAE to synthesis 3D
scenes. Specifically, the decoder of this VAE synthesizes
object attributes. As we will discuss shortly, the output is
then fed into another network to output relative attributes.
The object attributes are optimized by feeding the the neural
outputs into the scene optimization framework described in
Section 4.

5.2. Relative Attributes

Unlike object attributes, relative attributes are forced to
capture patterns between pairs of objects, e.g., adjacent
objects. Like object attributes, we encode the relative
attributes ae of each edge e = (v, v′) as ae = (se; re; te).
Here se ∈ R9 denotes the pairwise differences between the
three scales of sv and those of sv′ . re ∈ R3 denotes the
Euler angles of v′’s pose in the local coordinate system of
v. te ∈ R3 denotes the center of v′ in the local coordinate
system of v. The entire set of relative primitive parameters
is encoded using a tensor AE ∈ R

∑
c∈C Nc×

∑
c∈C Nc×15.

As shown in Figure 2, the network architecture of this
module mimics the U-Net [35]. It is conceptually similar
to an auto-encoder with two major differences. First, we do
not sample the code space to synthesize relative attributes.
Second, its input consists of relative attributes induced
from predicted object attributes, which are expected to be
noisy. The role of this U-Net is to produce rectified relative
attributes. Please refer to the supplementary material for
details.

5.3. Network Training

Training attribute synthesis modules extends the standard
approach for training VAEs (c.f. [25]). Let hφ and gθ11 be
the encoder and decoder components of the VAE module
for synthesizing object attributes. With gθ22 we denote the
U-Net module for synthesizing relative attributes. Here φ
and θ = (θ1, θ2) denote the network parameters. Consider

a training set T = {(AV ,AE)} where AV and AE denote
encoded object attributes and relative attributes, respectively.
We solve the following optimization problem to determine
the optimized network weights φ and θ:

min
φ,θ

1

|T |
∑

(AV ,AE)∈T

(
λE‖gθ22 (gθ11 (hφ(AV)))−AE‖2

+ ‖gθ11 (hφ(AV))−AV‖2
)

+ λKLKL
(
{hφ(AV)}|Nd)

whereNd is the normal distribution associated with the latent
space of the object attribute VAE. The same as [25], the
last term forces the latent codes of the training instances to
match Nd. This paper sets λE = 1 and λKL = 0.01. We
use ADAM [24] for network training.

6. Results

This section presents an experimental evaluation of our
approach. In Section 6.1, we describe the experimental setup.
In Section 6.2, we demonstrate the results of our approach
and compare it with baseline methods. We analyze each
component of our approach in Section 6.3. Please refer to
the supplementary material for more results and baseline
comparisons.

6.1. Experimental Setup

Dataset. We perform experimental evaluation on the new
large-scale 3D scene dataset 3D-FRONT [12]. We also
include the results on SUNCG [41], on which most works
have evaluated. Following [56], we consider bedrooms
and living rooms in both datasets and train scene synthesis
models from each room type in each dataset. For all
datasets, each room type contains 4000 training scenes and
the maximum number of objects per class is four. Each room
type contains 30 object classses for the SUNCG dataset and
20 object classes for the 3D-FRONT dataset. More details
of the datasets are in the supplementary material.

Baseline approaches. We consider five baseline ap-
proaches D-Prior [46], Fast [34], PlanIT [45], GRAINS [28],
and D-Gen [56]. They represent state-of-the-art in 3D scene
synthesis.

Evaluation metrics. We consider two ways to evaluate
scene synthesis approaches. The first is a perceptual study,
where we employed 10 non-experts to judge the visual
quality of 100 synthesized 3D scenes. We compare our
results with those of each method and count the percentage
of our results that are more plausible than each baseline. The
second metric assesses distributions of relative attributes of
the generated scenes (c.f [56]).

5635

(a) 3D-FRONT Bedroom (b) 3D-FRONT Livingroom

Figure 4: Randomly generated scenes using our method on 3D-FRONT [12].

6.2. Analysis of the Results

Figure 4 shows randomly generated scenes using our
approach. We can see that the generated scenes contain
rich sets of objects, meaning our approach can generate
complex scenes. The scene layouts are highly plausible from
multiple perspectives, including the shape of each object,
the spatial relations among multiple objects, and object co-
occurrence. Moreover, the generated scenes are diverse.
Figure 1 shows that our generated scenes are different from
the closest scenes in the training set. These results show that
our approach captures diverse feature patterns of scenes and
exhibits strong generalization ability.

Table 1 provides a perceptual study between our ap-
proach and baseline approaches. We can see that our
approach outperforms all baseline approaches considerably
(the top performing baseline [45] utilizes additional inputs).
The improvements are consistent across all the categories.
Moreover, our approach is even competitive against the
visual quality of the 3D scenes in the training set. These
statistics demonstrate the superior performance of our
approach. Please refer to the supplementary material for
visual comparisons between our approach and baseline
approaches.

Currently, synthesizing one scene takes 2∼5 seconds on
a desktop with a 3.2G Hz CPU, 32G main memory, and a
2080 Ti GPU. The majority of the computation is spent on
scene optimization, which runs on the CPU.

6.3. Analysis of Our Approach

We proceed to analyze the benefits of utilizing relative
attributions and prior distributions. As shown in Figure 3,
using relative attributes can alleviate the issue of conflict-
ing object attributes such as the relative poses between

Ours vs. other methods
Room Type D-Prior Fast GRAINS PlanIT D-Gen GT
SUN-bed 56.7±6.3 53.6±5.8 65.4±4.1 52.5±6.8 58.8±4.6 43.8±5.2

SUN-living 55.2±4.9 52.1±4.9 88.3±5.2 51.1±4.7 57.1±5.1 44.2±4.8
3DF-bed 58.1±4.3 56.7±5.9 60.1±6.3 54.4±5.3 54.5±6.3 49.7±5.3

3DF-living 72.8±6.4 73.1±4.4 89.2±5.1 68.9±6.6 64.3±5.9 47.1±4.5

Table 1: Percentage (± standard error) of forced-choice
comparisons in which scenes generated by our method are
judged as more plausible than scenes from another source.
Higher is better. Our approach consistently outperforms
baseline approaches.

nightstands and beds. The optimized object locations
are more plausible than those from the synthesized object
attributes. However, it does not fully address issues such
as penetrating objects and redundant objects. Imposing the
prior distribution improves the object layout considerably,
leading to penetration-free and less-crowded scene layouts.

Figure 5 shows additional visual comparisons between the
synthesized attributes and the output of scene optimization.
Again, we can see that the improvements are multi-faceted.
Our approach improves the objects’ locations and adds
and deletes objects properly to exhibit more plausible
object co-occurrences. Such improvements are justified
in Figure 6, which compares the distributions of relative
attributes induced from synthesized object attributions and
scene optimization counterparts. We can see that those
obtained from scene optimization match the underlying
ground truth more closely than those induced from the
synthesized object attributes. Such improvements come
from relative attributes and modeling both the continuous
prior distributions such as relative poses and discrete prior
distributions such as joint distributions of object count pairs.

In the supplementary material, we provide results to
show that even with the scene optimization framework,

5636

(a) 3D-FRONT Bedroom (b) 3D-FRONT Livingroom

Figure 5: Visual comparisons between output of the prediction module (top) and output of the synchronization module
(bottom).

Figure 6: Distributions of relative translation. Top: distribution of the training data. Middle: distribution derived from predicted
absolute parameters. Bottom: distribution derived from the optimized absolute parameters after synchronization.

synthesizing relative attributes is critical. This is because the
prior distributions have rich local minimums. Utilizing the
relative attributes enables us to obtain better initial solutions
for scene optimization.

Scene optimization can change the scene layout consid-
erably, e.g., adding/removing objects. The supplementary
material also shows that it is challenging to achieve similar
results using off-the-shelf scene optimization techniques,
e.g., [52]. We can understand this as relative attributes,
which are unavailable in other techniques, serve as a critical
information source for our approach.

7. Conclusions and Limitations

We have shown that predicting relative attributes and
learning prior distributions provide effective regularizations
for synthesizing 3D scenes. The generated results preserve
diverse feature patterns of 3D scenes and exhibit strong
generalization behavior. Experimental results show that our
approach outperforms prior state-of-the-art scene synthesis

techniques.
Our approach has a couple of limitations. First, unlike

end-to-end synthesis, our approach employs an optimization
module to generate the final output. Therefore, computing
the derivatives between the final output and the latent param-
eter (e.g., using the implicit function theorem) becomes more
complex than end-to-end networks. One way to address this
issue is to realize scene optimization using a graph neural
network. Another limitation of our approach is that it does
not enforce symmetries among objects, which are available
in indoor scenes. An interesting question is how to detect and
enforce symmetries during scene optimization automatically.

Acknowledgements. Chandrajit Bajaj would like to ac-
knowledge the support from NIH-R01GM117594, by the
Peter O’Donnell Foundation, and in part from a grant from
the Army Research Office accomplished under Cooperative
Agreement Number W911NF-19-2-0333. Qixing Huang
would like to acknowledge the support from NSF Career
IIS-2047677 and NSF HDR TRIPODS-1934932.

5637

References
[1] Angular synchronization by eigenvectors and semidefinite

programming. Applied and Computational Harmonic Analy-
sis, 30:20–36, 2011 2011. 2

[2] Chandrajit Bajaj, Tingran Gao, Zihang He, Qixing Huang,
and Zhenxiao Liang. SMAC: simultaneous mapping and
clustering using spectral decompositions. In Proceedings
of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, pages 334–343, 2018. 2

[3] Jonathan T. Barron. A general and adaptive robust loss
function. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 4331–4339. Computer Vision Foundation
/ IEEE, 2019. 4

[4] Avishek Chatterjee and Venu Madhav Govindu. Efficient
and robust large-scale rotation averaging. In ICCV, pages
521–528. IEEE Computer Society, 2013. 2

[5] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen
Giguere, and Thomas Funkhouser. Attribit: Content creation
with semantic attributes. In Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technology,
UIST ’13, pages 193–202, New York, NY, USA, 2013. ACM.
2

[6] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas
Guibas, and Vladlen Koltun. Probabilistic reasoning
for assembly-based 3d modeling. ACM Trans. Graph.,
30(4):35:1–35:10, July 2011. 2

[7] Siddhartha Chaudhuri and Vladlen Koltun. Data-driven
suggestions for creativity support in 3d modeling. In ACM
SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages
183:1–183:10, New York, NY, USA, 2010. ACM. 2

[8] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning generative models of 3d structures.
Computer Graphics Forum, 39(2):643–666, 2020. 2

[9] Kang Chen, Yu-Kun Lai, Yu-Xin Wu, Ralph Martin, and Shi-
Min Hu. Automatic semantic modeling of indoor scenes from
low-quality rgb-d data using contextual information. ACM
Trans. Graph., 33(6):208:1–208:12, Nov. 2014. 2

[10] Yuxin Chen, Leonidas J Guibas, and Qi-Xing Huang. Near-
optimal joint object matching via convex relaxation. Interna-
tional Conference on Machine Learning (ICML), pages 100 –
108, 2014. 2

[11] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas
Funkhouser, and Pat Hanrahan. Example-based synthesis of
3d object arrangements. ACM Trans. Graph., 31(6):135:1–
135:11, Nov. 2012. 2

[12] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li,
Zengqi Xun, Chengyue Sun, Yiyun Fei, Yu Zheng, Ying Li,
Yi Liu, Peng Liu, Lin Ma, Le Weng, Xiaohang Hu, Xin Ma,
Qian Qian, Rongfei Jia, Binqiang Zhao, and Hao Zhang. 3d-
front: 3d furnished rooms with layouts and semantics. CoRR,
abs/2011.09127, 2020. 2, 6, 7

[13] Thomas Funkhouser, Michael Kazhdan, Philip Shilane,
Patrick Min, William Kiefer, Ayellet Tal, Szymon
Rusinkiewicz, and David Dobkin. Modeling by example.
ACM Trans. Graph., 23(3):652–663, Aug. 2004. 2

[14] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel,
Levent Sagun, Stéphane d’Ascoli, Giulio Biroli, Clément
Hongler, and Matthieu Wyart. Scaling description of
generalization with number of parameters in deep learning.
CoRR, abs/1901.01608, 2019. 2

[15] Leonidas J. Guibas, Qixing Huang, and Zhenxiao Liang. A
condition number for joint optimization of cycle-consistent
networks. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 1005–1015, 2019. 2

[16] David Ha and Douglas Eck. A neural representation of sketch
drawings. CoRR, abs/1704.03477, 2017. 2

[17] Qixing Huang and Leonidas Guibas. Consistent shape
maps via semidefinite programming. In Proceedings of
the Eleventh Eurographics/ACMSIGGRAPH Symposium on
Geometry Processing, pages 177–186, 2013. 2

[18] Qixing Huang, Hai Wang, and Vladlen Koltun. Single-
view reconstruction via joint analysis of image and shape
collections. ACM Trans. Graph., 34(4):87:1–87:10, July 2015.
2

[19] Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, and
Qixing Huang. Translation synchronization via truncated
least squares. In I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages
1459–1468. Curran Associates, Inc., 2017. 2

[20] Xiangru Huang, Zhenxiao Liang, and Qixing Huang. Uncer-
tainty quantification for multi-scan registration. ACM Trans.
Graph., 39(4), July 2020. 2

[21] Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie,
Leonidas J. Guibas, and Qixing Huang. Learning transforma-
tion synchronization. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8082–8091,
2019. 2

[22] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne
Koller, and Vladlen Koltun. A probabilistic model for
component-based shape synthesis. ACM Trans. Graph.,
31(4):55:1–55:11, July 2012. 2

[23] Z. Sadeghipour Kermani, Z. Liao, P. Tan, and H. Zhang.
Learning 3d scene synthesis from annotated rgb-d images.
Comput. Graph. Forum, 35(5):197–206, Aug. 2016. 2

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 6

[25] Diederik P. Kingma and Max Welling. Auto-encoding varia-
tional bayes. In Yoshua Bengio and Yann LeCun, editors, 2nd
International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. 6

[26] Vladislav Kreavoy, Dan Julius, and Alla Sheffer. Model com-
position from interchangeable components. In Proceedings
of the 15th Pacific Conference on Computer Graphics and
Applications, pages 129–138, Washington, DC, USA, 2007.
IEEE Computer Society. 2

[27] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive

5638

autoencoders for shape structures. ACM Trans. Graph.,
36(4):52:1–52:14, July 2017. 2

[28] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri,
Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen,
Daniel Cohen-Or, and Hao Zhang. Grains: Generative
recursive autoencoders for indoor scenes. ACM Trans. Graph.,
38(2), Feb. 2019. 2, 6

[29] Etai Littwin, Ben Myara, Sima Sabah, Joshua Susskind,
Shuangfei Zhai, and Oren Golan. Collegial ensembles. 2020.
2

[30] Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qix-
ing Huang, Niloy J. Mitra, and Thomas Funkhouser. Creating
consistent scene graphs using a probabilistic grammar. ACM
Trans. Graph., 33(6):211:1–211:12, Nov. 2014. 2

[31] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-
generated residential building layouts. ACM Trans. Graph.,
29(6):181:1–181:12, Dec. 2010. 2

[32] C. Nash and C. K. I. Williams. The shape variational
autoencoder: A deep generative model of part-segmented
3d objects. Comput. Graph. Forum, 36(5):1–12, Aug. 2017.
2

[33] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah D.
Goodman. Neurally-guided procedural models: Amortized
inference for procedural graphics programs using neural net-
works. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pages
622–630, USA, 2016. Curran Associates Inc. 2

[34] Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexible
indoor scene synthesis via deep convolutional generative
models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6182–6190, 2019. 2, 6

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2015 - 18th International Conference
Munich, Germany, October 5 - 9, 2015, Proceedings, Part III,
2015. 6

[36] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kaloger-
akis, and Subhransu Maji. Csgnet: Neural shape parser for
constructive solid geometry. CoRR, abs/1712.08290, 2017. 2

[37] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu.
Structure recovery by part assembly. ACM Trans. Graph.,
31(6):180:1–180:11, Nov. 2012. 2

[38] Ravid Shwartz-Ziv and Alexander A. Alemi. Information in
infinite ensembles of infinitely-wide neural networks. CoRR,
abs/1911.09189, 2019. 2

[39] Chen Song, Jiaru Song, and Qixing Huang. HybridPose:
6D Object Pose Estimation Under Hybrid Representations.
In Conference on Computer Vision and Pattern Recognition,
pages 428–437, 2020. 2

[40] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang,
Manolis Savva, and Thomas Funkhouser. Semantic scene
completion from a single depth image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1746–1754, 2017. 2

[41] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang,
Manolis Savva, and Thomas Funkhouser. Semantic scene

completion from a single depth image. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. 6

[42] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 1466–1474.
IEEE Computer Society, 2017. 1, 5

[43] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2635–2643, 2017. 2

[44] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and
Jitendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2626–2634, 2017. 2, 3

[45] Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva,
Angel X Chang, and Daniel Ritchie. Planit: Planning and
instantiating indoor scenes with relation graph and spatial
prior networks. ACM Transactions on Graphics (TOG),
38(4):1–15, 2019. 2, 6, 7

[46] Kai Wang, Manolis Savva, Angel X Chang, and Daniel
Ritchie. Deep convolutional priors for indoor scene synthesis.
ACM Transactions on Graphics (TOG), 37(4):70, 2018. 2, 6

[47] Lanhui Wang and Amit Singer. Exact and stable recovery
of rotations for robust synchronization. Information and
Inference: A Journal of the IMA, 2:145–193, December 2013.
2

[48] Peng Wang, Xiaohui Shen, Bryan C. Russell, Scott Cohen,
Brian L. Price, and Alan L. Yuille. SURGE: Surface
Regularized Geometry Estimation from a Single Image. In
Advances in Neural Information Processing Systems 29, pages
172–180, 2016. 2

[49] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 82–90, 2016.
6

[50] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen.
Fit and diverse: Set evolution for inspiring 3d shape galleries.
ACM Trans. Graph., 31(4):57:1–57:10, July 2012. 2

[51] Zhenpei Yang, Siming Yan, and Qixing Huang. Extreme
relative pose network under hybrid representations. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2452–2461, 2020. 2

[52] Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri
Terzopoulos, Tony F. Chan, and Stanley J. Osher. Make
it home: Automatic optimization of furniture arrangement.
ACM Trans. Graph., 30(4), July 2011. 8

5639

[53] Song-Hai Zhang, Shao-Kui Zhang, Yuan Liang, and Peter
Hall. A survey of 3d indoor scene synthesis. Journal of
Computer Science and Technology, 34(3):594–608, 2019. 2

[54] Zaiwei Zhang, Zhenxiao Liang, Lemeng Wu, Xiaowei Zhou,
and Qixing Huang. Path-invariant map networks. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11084–11094, June 2019. 2

[55] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. CoRR, abs/2006.05682, 2020. 2

[56] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo,
Alexander Huth, Etienne Vouga, and Qixing Huang. Deep
generative modeling for scene synthesis via hybrid represen-
tations. ACM Trans. Graph., 39(2):17:1–17:21, 2020. 1, 2, 3,
5, 6

[57] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and
Derek Hoiem. 3d-prnn: Generating shape primitives with
recurrent neural networks. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 900–909, 2017. 2

5640

