
Self-Supervised Cryo-Electron Tomography Volumetric Image Restoration from
Single Noisy Volume with Sparsity Constraint

Zhidong Yang1,2,3, Fa Zhang1,∗, Renmin Han2,*

1High Performance Computer Research Center, ICT, CAS
2Research Center for Mathematics and Interdisciplinary Sciences, Shandong University

3University of Chinese Academy of Sciences

Abstract

Cryo-Electron Tomography (cryo-ET) is a powerful tool
for 3D cellular visualization. Due to instrumental limita-
tions, cryo-ET images and their volumetric reconstruction
suffer from extremely low signal-to-noise ratio. In this pa-
per, we propose a novel end-to-end self-supervised learning
model, the Sparsity Constrained Network (SC-Net), to re-
store volumetric image from single noisy data in cryo-ET.
The proposed method only requires a single noisy data as
training input and no ground-truth is needed in the whole
training procedure. A new target function is proposed to
preserve both local smoothness and detailed structure. Ad-
ditionally, a novel procedure for the simulation of electron
tomographic photographing is designed to help the evalua-
tion of methods. Experiments are done on three simulated
data and four real-world data. The results show that our
method could produce a strong enhancement for a single
very noisy cryo-ET volumetric data, which is much better
than the state-of-the-art Noise2Void, and with a competitive
performance comparing with Noise2Noise. Code is avail-
able at https://github.com/icthrm/SC-Net.

1. Introduction
Cryo-ET is a powerful technique for the visualization

of cellular ultrastructure and macromolecules in three-
dimensional space, where 3D structures can be recon-
structed from a series of 2D images (tilt series) taken from
different angles [6, 9]. However, due to instrumental limita-
tions, cryo-ET volumetric images always suffer from ex-
tremely low Signal-to-Noise Ratio (SNR). To restore the
corrupted ultrastructure from noisy 3D volume is an essen-
tial task in cryo-ET data analysis.

Recently, trainable Deep Neural Network (DNN) based
image restoration model has attracted much attention be-
cause of its excellent performance, which can be divided
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into two categories: clean-target-based supervised learning
model and self-supervised learning model. The supervised
learning model needs plenty of “noisy-clean” image pairs to
train a reliable model. Although supervised learning model
is able to achieve very good performance with clearly de-
fined datasets, it cannot well handle the real-world noisy
data whose ground-truth or noisy pattern is unavailable, for
example, the cryo-ET data. To improve this, self-supervised
model is proposed. Self-supervised model does not need
ground-truth information during training, in which the su-
pervisory information is observed from the original noisy
data. Recently, Noise2Noise (N2N) [19] and Noise2Void
(N2V) [17] have emerged as two main branches of self-
supervised restoration model. Specifically, N2V is able to
perform single-image training. However, for the images
with very high noise, the results produced by N2V may still
be too noisy, especially for the 3D volumetric image.

Here, we mainly focus on the image restoration of volu-
metric data in cryo-Electron Tomography (cryo-ET). One
possible data enhancement strategy is to first filter the
2D projections and then build a denoised 3D tomographic
volume [21]. Although such procedure can produce a
smoothed tomography, its output is usually over-smoothed
and loses a lot of fine-grained structures. Because the filter-
ing operation on 2D projections cannot strictly keep the 2D-
to-3D relationship defined by Fourier-slice-theorem [24], it
is more reasonable to directly operate on the 3D cryo-ET
volumetric image [6]. However, it is very hard to acquire a
large number of homogeneous volumetric images for a spe-
cific kind of specimen in cryo-ET, which hampers the appli-
cation of restoration models relied on large training dataset.

In this paper, we propose a self-supervised deep learn-
ing model, the Sparsity Constrained Network (SC-Net), to
directly restore cryo-ET 3D volumetric image from only a
single noisy data. By combining the structure information
from raw noisy volume and local smoothness information
from smoothed representation, our proposed model can sup-
press high-frequency noise and preserve ultrastructure de-
tails in a self-supervised manner, requiring only one single
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Figure 1: The Architecture of SC-Net. The workflow starts with a set of projections, which will be (i) reconstructed to
generate a raw noisy volumetric image, (ii) filtered and reconstructed to generate a smoothed volumetric image, respectively.
SC-Net adapts a blind-spot replacement on the noisy volume for model training and utilizes the local smooth (sparsity)
information extracted from the smoothed volume to guide the training.

noisy data as input during training. Experiments done on
both simulated and real-world datasets show that SC-Net
can produce strong enhancement for noisy input, much bet-
ter than the ones produced by Noise2Void trained on sin-
gle noisy input and competitive with the ones produced by
Noise2Noise (3D) trained on hundreds of tomograms.

The main contributions are as follows:
• A self-supervised volumetric image restoration archi-

tecture is proposed, by adapting a blind-spot approach
with sparsity constraint extracted from a self-lifted rep-
resentation of the input data (shown in Figure 1).

• Up-sampling block is first introduced to self-
supervised restoration network as a module for aug-
mentation to preserve structure details and prevent the
output from being over-smoothed.

• A new combined loss function is devised in our im-
age restoration model, in which the sparsity informa-
tion in self-lifted representation is used to enforce local
smoothness in structure restoration.

• A general procedure for the simulation of electron to-
mographic photographing and imaging is proposed,
for the ease of quantitative analysis.

2. Related Work
The restoration of degraded image is an essential task for

the data analysis in cryo-ET, which is also one of the main
problems in the field of computer vision.

2.1. Traditional Volumetric Image Restoration

Several traditional filtering methods have been adapted
for the restoration of volumetric image in cryo-ET, such as
the multiscale transformation [29], non-linear anisotropic

diffusion [8, 7], bilateral filtering [14, 25], and iterative
median filtering [31]. These methods work on the recon-
structed tomographic data, trying to suppress the noise and
strengthen the ultrastructure with predefined smooth as-
sumption. On the contrary, reconstruction methods with
specified filtering are proposed to improve volumetric im-
age quality by introducing the predefined smooth or sparsity
assumption in the reconstruction procedure [5, 33]. Non-
local methods such as BM4D [3, 4, 20] have also been
applied in 3D volumetric image denoising and restoration
and show quite good performance. The non-local methods
introduce the idea of “Grouping” by block-matching and
collaborative filtering, assuming that the expectancy of the
noise will converge to zero when enough image patches are
collected and reweighted.

2.2. Learning-based Image Restoration

At the beginning, learning-based image restoration
methods are proposed in a supervised fashion. Early in
2008, neural network has already been applied to image de-
noising and restoration [13]. Then, with the development
of deep neural network (DNN), a neural network model
called DnCNN is proposed [34], which is based on resid-
ual blocks [12] and trained on a set of “noisy-clean” image
pairs, showing excellent performance in image restoration.
In the same year, the encoder-decoder network is introduced
to image denoising and shows its effectiveness [22]. Fol-
lowing these works, noise prior is introduced in supervised
training to enhance model performance on real-world noisy
data [35, 10]. In recent times, inspired by non-local net-
work [32], non-local blocks are adapted to image restoration
model, achieving a good performance on image denoising,
super-resolution, and other related tasks [36].

4057



Although supervised methods have achieved great suc-
cess, its model training requires clean image as reference,
which is hard to be satisfied when noise model is un-
known. To overcome this problem, several self-supervised
approaches have been proposed. [30] firstly states that a
generator network is sufficient to capture plenty of low-level
image statistics prior for any learning. By applying statisti-
cal reasoning to signal reconstruction, Noise2Noise realizes
image restoration with only corrupted examples [19]. Given
the known noise distribution and intensity, an enhanced
N2N approach is proposed [23]. To capture the statistic in-
formation, a number of training data are required in N2N.
Meanwhile, an image training procedure with blind-spot re-
placement is proposed in Noise2Void [17], leading to a di-
versity of self-supervised models [1, 18, 27]. Especially,
the blind-spot replacement approach supports model train-
ing with only a single noisy image.

Inspired by Noise2Noise [19], learning-based image
restoration has also been introduced to cryo-ET, i.e., the
Topaz-Denoiser [2]. Similar to other N2N methods, the
training of Topaz also requires a large dataset. Neverthe-
less, unexpected artifacts usually occur for a specific image
which is quite different from images in training dataset.

3. Preliminaries
To simplify the discussion, we assume that a projection

image In(x, y) in cryo-ET is a discrete observation of the
projection Pn(x, y) with additive Gaussian noise N(x, y),
i.e. In = Pn +Nn. Consequently, we have:

Lemma. The additive Gaussian noise in 2D projection re-
mains as Gaussian noise in 3D reconstruction.

V (x) = Φ(x) +N(x), (1)

where V (x) is notated as a volumetric image reconstructed
from series of In, Φ(x) is the ideally clean image recon-
structed from Pn and N(x) is noise in 3D space. This is
the theoretical basis of our SC-Net. Detailed proof can be
found in Supplementary Material S1.

4. Method
According to Section 3, a pseudo clean volume can be

obtained by suppressing the noise in projections before re-
construction, providing an estimation of the smoothness and
sparsity of the ideal 3D volumetric image, which is the basic
idea of our Sparsity Constrained Network (SC-Net).

4.1. Process Overview

The workflow starts with the projections of a cryo-ET
data, which will be (i) reconstructed to generate a raw noisy
volumetric image, (ii) filtered and reconstructed to generate
a smoothed volumetric image, respectively. Then, these two
volumes will be fed into SC-Net.

Input Target

n×n×n Volume

Figure 2: Volumetric blind-spot replacement. The n×n×n
region around an interested voxel is taken into account in
blind-spot training instead of one single voxel.

4.2. Network Architecture

SC-Net is a UNet-based encoder-decoder network [28],
whose detailed architecture is shown in Figure 1. SC-Net
adapts a 3-depth encoder and decoder network. An up-
Sampling Block (2× up-sampling) before the encoder lay-
ers is adapted to lift the receptive field and protect structure
information from over-smooth. A basic convolutional block
consists of a 33 Conv3D layer with a stride of 2, a Batch-
norm3D layer and a LReLU with k = 0.1. The up-sampling
block adapts a 2× nearest interpolation and the down-
sampling block adapts a 0.5× nearest down-sampling.

SC-Net accepts the raw noisy volumetric image and the
smoothed volumetric image as input. These two volumes
will then be clipped into a set of corresponding small over-
lapped patches (L3 voxels for each patch) respectively. A
volumetric blind-spot replacement strategy is applied on the
noisy volume patches for model training, and a sparsity
representation extractor is specifically designed to extract
the local smooth information from the smoothed volume
patches to guide the training.

4.3. Main Components

Smoothed Volume Generation. A 2D filter is adapted
on the input projections to produce a smoothed volumetric
image V̂ (x) which can provide sparsity information to rep-
resent smoothness in an ideal volumetric image.

Volumetric Blind-spot Replacement. Cryo-ET volu-
metric image is composed of strong coherent ultrastruc-
tures, which makes single-pixel blind-spot strategy pro-
posed in Noise2Void unsuitable. Here, a volumetric blind-
spot strategy is devised. At each training iteration, the volu-
metric blind-spot approach randomly selects a set of voxels
from the volumetric patch V (x). For each selected voxel,
its (n − 1)-neighbouring voxels will be taken into account
in the receptive field together with the selected voxel, re-
placed by a n × n × n region randomly selected from its
local neighbouring area (as shown in Figure 2). The re-
placed volumetric patch V bs(x) along with the raw input
patch V (x) compose a training pair at each iteration.

Sparsity Representation Extractor. The sparsity in-
formation residing in the smoothed volume could provide
a guidance in image restoration. A gradient (first-order

4058



Sparsity on y-axis

Smooth 
Representation

Element-wise sum

Patch-base convolution

Operator on x-axis

Operator on y-axis

Input Image

Sparsity on x-axis

Figure 3: Details of sparsity representation extractor. Patch
convolution with Sobel kernel is used to extract the sparsity.

derivative) based sparsity representation extractor is de-
signed to capture these supervision information (as shown
in Figure 3). The sparse representation extracted by Sobel
kernel will be integrated and fed into the network to guide
the training.

4.4. Loss Function

A combined loss function is introduced to SC-Net for
both noise suppression and structure preservation.

Volumetric Reconstruction Loss. Due to the lack of
training data, it is hard for a network to converge to clean
signal in a low-shot self-supervised training. Based on the
blind-spot strategy, a volumetric reconstruction loss func-
tion is introduced here, i.e.,

Lrec = ||M � fθ(V bs
i (x))−M � Vi(x)||22, (2)

where V bs
i (x) is the patch obtained by blind-spot replace-

ment on the ith image patches, fθ(V bs
i (x)) is the output of

our network model, � is the Hadamard product and M is
a 3D mask to indicate whether a voxel (x, y, z) in V bs

i (x)
has a blind-spot replacement or not,

M(x,y,z) =

{
1 if V bs

i (x, y, z) has been replaced,
0 if V bs

i (x, y, z) has not been replaced.
(3)

That is, here we only focus on the replaced voxels after
blind-spot replacement, which makes our model preserve
the structure information from the noisy input but not con-
verge to the noise.

Sparsity-Guided Smoothing Loss. The first-order
derivative of an image is sensitive to extreme changes.
Hence it will produce a sparse representation if an image
is smooth enough. Based on this truth, we introduce a first-
order derivative-based loss function named sparsity-guided
smoothing loss to transfer the sparsity of smoothed image
into output image.

We adapt Sobel operator as a function to map net-
work output and smoothed volume V̂ (x) to their first-order
derivative separately, which is formulated as

Ds(V̂ (x)) = |Gx ⊗ V̂ (x)|+ |Gy ⊗ V̂ (x)|, (4)

where ⊗ is notated as convolution operator, Gx and Gy are
the Sobel operator on x-axis and y-axis separately. Thus,
the sparsity-guided smoothing loss can be defined as

Lsmooth = ||Ds(fθ(V bs
i (x)))−Ds(V̂ (x))||22. (5)

Expectancy Constraint Loss. To overcome the mean
shifting problem (an unstable shifting in pixel value distri-
bution) in blind-spot inference trained with insufficient data,
a loss function named expectancy constraint loss is devised
to let the expectancy of the output image approximate to the
one of smoothed image.

Firstly, we need to compute mean of network output and
that of smoothed image by patches with kernel size of S3

which can represents local smoothness. We name this as
local expectancy, notated as µV . This is formulated as

µV = V (x)⊗ 1S , (6)

where ⊗ is convolution operator, 1S is a convolutional ker-
nel with size of S3 and all elements are 1

S3 .
Analogously, we calculate the global expectancy of µfθ

and µV̂ , both of which are computed with all available pix-
els in an image, and notate these two global expectancy
as E(µfθ ) and E(µV̂ ), respectively. Finally, E(µfθ ) and
E(µV̂ ) will be the input of expectancy constraint loss func-
tion. Detailed formulation can be defined as

Lexp = ||E(µfθ )− E(µV̂ )||22. (7)

Combined Loss Function. Additionally, a regulariza-
tion loss Lreg = ||∇fθ(V bs

i (x))||1 (∇ is the first-order
gradient of an image) is introduced in our loss function to
prevent over-fitting during training. And the complete loss
function of our model is define as

L = λ1Lrec + λ2Lsmooth + λ3Lexp + λ4Lreg. (8)

5. Experiments
We evaluated the performance of SC-Net on three sim-

ulated datasets and four real Cryo-ET datasets, and com-
pared our method with Topaz-Denoiser 3D (a 3D version of
Noise2Noise) [2], 3D version of Noise2Void [19], BM4D
[20] and low-pass filter, resulting in a detailed quantitative
empirical analysis. The sources of datasets can be found in
Supplementary Material S2.

5.1. Network Training Details

SC-Net was implemented by PyTorch [26]. For all the
experiments, the model was trained on two NVIDIA GTX
2080 GPUs, online for single noisy data each time. The
batch size was set to 2 with 1283 patch size during train-
ing. The model was trained by 15 epochs for each noisy
data, where the optimizer is Adam [15] with β1 = 0.5 and
β2 = 0.999. The learning rate was set to 0.0004. For Eq.
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Figure 4: The workflow to prepare a simulated dataset. The
2D filter keeps the same with the one in SC-Net.

8, the parameters were set as λ1 = 0.6, λ2 = 0.1, λ3 =
0.2, and λ4 = 0.01 when training with Lexp, and set as
λ1 = 0.8, λ2 = 0.1, λ3 = 0.0, and λ4 = 0.01 when
training without Lexp. For 3D reconstruction, we used the
tilt program in IMOD [16] to get volumetric image from
2D projections. We used a pretrained model of Topaz De-
noiser [2] trained with a large-scale image volume dataset
as our 2D filter. During model training, the size of volumet-
ric blind-spot replacement was set to 3×3×3, and the ratio
of replaced voxels in a volumetric patch was set to 10%.

5.2. Preparation of Simulated Dataset

A novel procedure for the preparation of simulated
dataset with ground-truth is proposed (shown in Figure 4).
Given a raw tilt series, a noisy volumetric image can be re-
constructed from this tilt series. Here, the tilt program in
IMOD [16] is used to get the volumetric image (other sim-
ilar software [11] is also selectable for the volumetric re-
construction). Then a Gaussian filter (notated as “Filtering”
in Figure 4) with σ = 2 is applied to this noisy volumet-
ric image. The filtered image is regarded as ground-truth
volume.

After this, we re-project this ground-truth volume to get
a series of reprojections which will then be normalized and
regarded as the ground-truth projections. Thus, different
kinds of additive noise can be added to ground-truth pro-
jections to provide simulation with different noise levels.
Here, it should be noted that the noise is added to the 2D
projections but not reconstructed 3D volume.

5.3. Experiments on Simulated Data

The experiments on simulated dataset were conducted on
three data1, named SARS-ConoraVirus, Synapse and Adhe-
sion Belt. We mainly evaluated the image restoration per-

1All the quantitative analysis on the simulated volumetric image are
measured with PSNR (dB)/SSIM (Supplementary Material S3).

SARS 18.27/0.189 Synapse 21.34/0.238 Belt 18.64/0.212

Figure 5: Examples of the noisy reconstructed volumetric
data (metrics: PSNR (dB)/SSIM), in which the volumes are
reconstructed from projections with AWGN (σ = 20).

Table 1: PSNR results on simulated dataset. For each col-
umn, the top and second values are highlighted.

Methods
Belt Synapse SARS

10 15 20 10 15 20 10 15 20

Noisy 22.76 23.44 18.64 27.79 26.02 21.34 23.72 22.75 18.27

Topaz 28.06 27.90 25.63 31.72 32.85 27.53 30.1 33.07 29.39

BM4D 29.36 30.11 28.61 31.06 36.02 32.90 36.32 34.46 32.36
LPF 25.84 22.39 16.93 29.05 27.24 24.55 24.18 24.14 17.97
N2V 23.38 25.63 21.87 26.48 17.97 21.29 22.48 22.26 17.35

Ours (no Lexp) 32.38 27.36 26.46 32.33 28.58 31.73 32.23 31.01 27.58
Ours 28.61 25.68 23.41 30.03 27.55 29.02 34.64 27.36 32.79

Table 2: SSIM results on simulated dataset. For each col-
umn, the top and second values are highlighted.

Methods
Belt Synapse SARS

10 15 20 10 15 20 10 15 20

Noisy 0.423 0.282 0.212 0.503 0.316 0.238 0.401 0.270 0.189

Topaz 0.979 0.974 0.968 0.990 0.986 0.980 0.970 0.960 0.950

BM4D 0.798 0.662 0.541 0.950 0.897 0.829 0.883 0.793 0.682
LPF 0.470 0.329 0.266 0.575 0.388 0.269 0.481 0.345 0.234
N2V 0.547 0.389 0.304 0.475 0.355 0.239 0.385 0.261 0.179

Ours (no Lexp) 0.922 0.910 0.899 0.928 0.904 0.840 0.905 0.886 0.780
Ours 0.914 0.899 0.870 0.932 0.916 0.860 0.906 0.886 0.852

formance on additive white Gaussian noise (AWGN) with
intensity σ = 10, 15 and 20. Figure 5 shows the noisy re-
construction examples with AWGN (σ = 20), where the
demonstrated images are selected from the middle slice of
the tomograms along the direction of x-, y- and z-axis. De-
tails about the visualization rules can be found in Supple-
mentary Material S4.

SC-Net were compared with the other single-image-
based methods and Topaz (trained on large dataset). Figure
6 shows the visual results of these methods2, while Table
1 and Table 2 show the quantitative analysis on these re-
sults. Judging from Figure 6, we can find that the results of
SC-Net are very close to the ground-truth. Judging from the
PSNR values in Table 1, we can find that the BM4D and SC-
Net perform the best among these five methods, and BM4D
performs the best in most cases. It is reasonable that the

2Enlarged results are available in Supplementary Material S5.1.
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Figure 7: Local enlarged results of the simulated data with
AWGN (σ = 20).
simulation is done with AWGN and the Wiener filter used
in BM4D is specially optimized for AWGN. Judging from
the SSIM values in Table 2, we can find that scores of SC-
Net rank the best among single-image-based methods. In
addition, the introduction of expectancy constraint makes a
contribution to structure enhancement, as the improvement
of SSIM values shown in Table 2.

It is promising that SC-Net outperforms the other single-
image-based N2V methods in both quantitative analysis and
visual comparison, which means that the introduction of
sparsity-guided smoothing loss can improve restoration per-
formance of blind-spot inference. Also, SC-Net can provide
more stable structure preservation than BM4D.

5.4. Comparisons between Topaz

Topaz is a 3D N2N restoration model trained on hun-
dreds of tomograms. Quantitative results in Table 2 show
that Topaz performs better on SSIM value because Topaz
is a large data-driven model, with which enough smoothing

representation is possible to be learned. However, SC-Net
still performs better than Topaz on PSNR in most cases,
which means that our SC-Net has strong ability in struc-
ture restoration even trained with single noisy image. For
data-driven methods, unexpected artifacts usually occur for
specific images which are different from images in training
dataset. Figure 7 gives such examples, which shows ob-
vious grid artifacts in the results from Topaz. Additionally,
training cost of our SC-Net is significantly lower than Topaz
as we implement single-image training.

5.5. Real-world Datasets

Four real-world datasets were tested in our experiment:
Centriole, Mitochondria, Vesicle and VEEV. Centriole is a
tilt series of 64 projections ranging from -61.0◦ to +65.0◦

at 2◦ intervals. The size of each tilt image is 1024 × 1024
px with 1.01 nm/px. Mitochondria is a tilt series of 120
projections ranging from −52.0◦ to 59.0◦ at 1◦ interval.
The size of each tilt image is 1024 × 1024 px with 0.8
nm/px. Vesicle is a tilt series of 120 projections ranging
from −59.0◦ to +60.0◦ at a 1◦ interval. The size of each
tilt image is 1024×1024 px with 0.8 nm/px. VEEV is a tilt
series of 21 projections ranging from -50.0◦ to +50.0◦ at 5◦

intervals. The size of each tilt image is 1536×2048 px with
0.2 nm/px. The tomographic volumes for these specimens
were reconstructed by the tilt program in IMOD [16].

5.6. Experiments on Real Cryo-ET Data

Figure 8 shows the visual results of the experiments on
real cryo-ET datasets, where the 3D-style visual results are
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Figure 8: Visual results of the real data on y-slice.

provided in Supplementary Material S5.2. Judging from the
visual results, we can find that SC-Net performs almost the
best. And both SC-Net and Topaz (N2N) perform better
than BM4D. It is reasonable for the performance degener-
ation of BM4D on real cryo-ET data, in which the Wiener
filter is not robust to real-world complex noise.

As ground-truth is unavailable in real-world situations,
we decide to evaluate the performance of SC-Net by
FSCe/o. The Fourier shell correlation comparison between
two volumetric images calculated from the even and odd
projection images respectively (FSCe/o) is a popular reso-
lution measure in the field of cryo-ET. FSCe/o is adapted
from FSC. The definition of FSC is as follows:

FSC(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r |F1(ri)|2

∑
ri∈r |F2(ri)|2

, (9)

where F1 is complex factor for volume 1, F ∗2 conjugate of
the structure Factor for volume 2, and ri is the individual
voxel element at radius r.

Assuming that SNR for each map from a half reconstruc-
tion is with half signals of that of the full reconstruction,
FSCe/o is calculated as

FSCe/o(r) =
2FSC(r)

FSC(r) + 1
. (10)

Table 3: Resolution estimated by FSC−1e/o(0.5) (Angstrom,
Å). For resolution of a tomogram, the lower is the better.

Dataset Vesicle Mitochondria Centriole VEEV

Noisy 30.06 23.05 57.74 9.36
BM4D 29.44 22.32 57.37 9.35
Topaz 30.42 23.09 55.16 6.8
N2V 30 23.02 57.67 9.36
Ours 22.66 14.80 38.21 8.31

Figure 9: Examples of FSCe/o curves. Blue dash line in the
figure points out the position of r = 0.5.

Table 3 shows the FSC−1e/o(0.5) resolution calculated on
the four real-world data. Except for the FSC−1e/o(0.5) of
VEEV, which is calculated with subtomogram sized by
602 × 100, all the others are calculated with subtomograms
sized by 5122 × 100. Results show that SC-Net achieves
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almost the best resolution among four image restoration
methods except for VEEV dataset. VEEV dataset is com-
posed of ice and virus particles, in which the structure infor-
mation is limited. Thus SC-Net may have problem in spar-
sity extraction while Topaz is trained on large dataset and
has sufficient feature information. However, SC-Net can
preserve more detailed membrane structures without intro-
ducing grid artifacts. Figure 9 presents FSC−1e/o curves for
Centriole and Vescicle, which shows that our SC-Net can
perform image restoration with higher self-consistency and
introduce fewer false signal comparing with other methods.

5.7. Ablation studies

To further clarify the effectiveness of our model, we
conducted ablation studies on up-sampling block, 2D fil-
ter of smoothed volume generation and loss function
Lsmooth. These experiments were conducted on the sim-
ulated datasets Adhesion Belt and Synapse.

Study on Up-sampling block (UPB). We tested the
original SC-Net (i.e., with UPB) and the SC-Net without
UPB (i.e., non-UPB). Figure 10 shows the visual compari-
son and Table 4 shows the quantitative analysis of the output
from these two models. From Figure 10 we can find that the
results of SC-Net with UPB contain more detailed structure
than the one without UPB. And From Table 4 we can find
that the PSNR value of SC-Net without UPB has a drop of
0.77 dB for Adhesion Belt, and 5.08 dB for Synapse.

Study on Sparsity Representation Extractor. Here,
2D Topaz (N2N) Filter is replaced by BM3D. Figure 11
shows the visual results and Table 5 shows the quantitative
results on Adhesion Belt and Synapse data trained with the
tested two models. Results show that our SC-Net can still
generate a result with noise smoothness despite the filter has
changed. That is, our model is robust to different projection
filters, which is a verification of SC-Net’s model stability.

Study on Lsmooth. We trained and tested SC-Net with
a complete loss function in Eq. 8 and with a loss function
excluding Lsmooth (i.e., Non-Lsmooth). Results show that
Lsmooth can provide strong improvement in noise removal
when the training data is not sufficient. Complete results
are available in Supplementary Material S5.3.

Table 4: PSNR(dB)/SSIM results for ablation study on Up-
Sampling Block (UPB) under the noise with σ=15.

Dataset Noisy Non-UPB With UPB

Synapse 26.02/0.316 22.47/0.868 27.55/0.916
Belt 23.44/0.282 24.91/0.881 25.68/0.899

Table 5: PSNR(dB)/SSIM results for ablation study on
BM3D and Topaz Filter under the noise intensity σ=10.

Dataset Noisy BM3D-Filter Topaz-Filter

Synapse 27.79/0.503 28.10/0.948 30.03/0.932
Belt 22.76/0.423 33.30/0.826 28.61/0.914

Ours (Non-UPB) 24.91 Ours (UPB) 25.68Ground Truth

Ground Truth Ours (Non-UPB) 22.47 Ours (UPB) 27.55
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Figure 10: Visual comparisons between non-UPB SC-Net
and SC-Net. (AWGN: σ = 15, metric: PSNR (dB)).

Ground Truth Noisy 22.76Topaz-Filter 28.61BM3D-Filter 33.30

Ground Truth Topaz-Filter 30.03BM3D-Filter 28.10 Noisy 27.79
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Figure 11: Visual comparisons between the results of SC-
Net with smoothed volume filtered by BM3D and Topaz
(AWGN: σ = 10, metric: PSNR (dB)).

6. Conclusion

In this article, we proposed the SC-Net, a novel self-
supervised network for cryo-ET volumetric image restora-
tion from single noisy data. SC-Net can make a balance
between structure preservation and noise suppression to
produce better image restoration. Comprehensive results
proved that SC-Net could produce a strong enhancement for
a single very noisy cryo-ET volumetric data, which is much
better than Noise2Void and with a competitive performance
comparing with Topaz.
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