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Abstract

We present SemiHand, a semi-supervised framework for
3D hand pose estimation from monocular images. We pre-
train the model on labelled synthetic data and fine-tune it
on unlabelled real-world data by pseudo-labeling with con-
sistency training. By design, we introduce data augmen-
tation of differing difficulties, consistency regularizer, label
correction and sample selection for RGB-based 3D hand
pose estimation. In particular, by approximating the hand
masks from hand poses, we propose a cross-modal consis-
tency and leverage semantic predictions to guide the pre-
dicted poses. Meanwhile, we introduce pose registration as
label correction to guarantee the biomechanical feasibility
of hand bone lengths. Experiments show that our method
achieves a favorable improvement on real-world datasets
after fine-tuning.

1. Introduction
A key challenge of monocular 3D hand pose estimation

is getting sufficient high-quality ground-truth poses. La-
belling real-world data to an accurate enough degree often
requires dedicated interfaces and or multi-view camera rigs.
This makes it non-trivial to gather “in-the-wild” data that is
much sought-after for actual application deployment.

Synthesizing training data is considered an easy alterna-
tive to get accurate labels and has been incorporated into
many learning-based frameworks. Yet there exists a sig-
nificant domain gap between synthetic and real-world im-
ages so the performance of models trained on synthetic data
deteriorates significantly when applied to real-world data.
The favoured approach for reducing the domain gap is a
mix-and-train strategy [12], i.e. mixing multiple real-world
datasets together with synthetic data for training. Such a
strategy depends largely however on the quantity and qual-
ity of the labelled samples in the combined datasets.

What if we tried to learn only from labelled synthetic
data and fully unlabelled real-world data? We target exactly
this scenario and present the first framework for domain-
separated semi-supervised learning for 3D hand pose es-

Figure 1: Pseudo-labelling of SemiHand. Our pseudo-label with
confidence is generated based on the prediction from original
(blue pose), the prediction from perturbation (green pose) and the
corrected prediction (red pose).

timation. A classic approach in semi-supervised learning
is to generate pseudo-labels [16] for the unlabelled data,
usually via a classifier learned from the labelled portion of
the data [16, 25]. The utility of pseudo-labels is highly
variable. Used naively, these labels are even detrimen-
tal to learning because of confirmation bias [1], i.e. , the
classifier over-fits to the pseudo-labels which tend to be
noisy and or inaccurate, so additional corrections are nec-
essary [1, 11, 43, 38]. Additionally, consistency training
with unlabelled data [25, 1, 34] can increase the reliability
of pseudo-labels.

We integrate these concepts and introduce SemiHand, a
framework that considers spatial consistency and biome-
chanical feasibility for semi-supervised hand pose estima-
tion. We propose two consistency losses to encourage the
predictions to be consistent with perturbations and other
modalities. As our labelled and unlabelled data come from
different domains, i.e. synthetic vs real RGB images, there
is the added challenge of domain adaptation to the unla-
belled data. To bridge the domain gap, we propose a cross-
modal consistency and leverage semantic predictions [19]
from an auxiliary task to provide guidance for the predicted
poses. Meanwhile, we regard predictions on real-world data
as noisy labels; further training the network from these pre-
dictions directly may actually be detrimental due to their in-
accuracy. To mitigate the impact of this confirmation bias,
we introduce label correction and sample selection based on
the feasibility so that we train with only corrected pseudo-
labels with high-confidence. We show our pseudo-labelling
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strategy in Fig. 1.
Pseudo-labelling and consistency training are already es-

tablished in semi-supervised classification [16, 25, 1]. How-
ever, extending such concepts for a regression task and in
the context of 3D pose estimation is non-trivial and we are
the first to present a unified framework to do so. For exam-
ple, existing methods [11, 32] primarily learn a noise tran-
sition matrix to correct pseudo-labels; such an approach is
not applicable for regression and we instead focus on the
confidence and feasibility of poses as a selection and cor-
rection criteria. Similarly, consistency training in classifica-
tion simply keeps the predicted categories unchanged under
perturbation. Consistency in 3D pose estimation however
needs to account for the change in label, i.e. the pose after
perturbation. We summarize our contributions below:

• We propose a novel RGB-based hand pose estimation
framework using labelled synthetic data and unlabelled
real-world data; it is the first semi-supervised frame-
work that combines pseudo-labeling with consistency
training for RGB-based hand pose.

• Based on the feasibility of hand poses, we propose a
method for pose registration and sample selection to
correct noisy label outputs and select pseudo-labels of
high confidence for training.

• We propose two consistency losses for 3D pose esti-
mation to encourage the predictions to be consistent
with perturbations and auxiliary modalities.

• Using a pre-trained synthetic model, we are able to
adapt our model to challenging real-world datasets
without any labels. Our results are compelling when
compared to fully supervised frameworks and outper-
form previous works on synthetic image enhancement.

2. Related work
2.1. 3D Hand Pose Estimation

Most recent methods apply deep learning and propose
dedicated network architectures and or training strategies,
e.g. voxel-to-voxel predictions [20], point-to-point regres-
sion [10, 17], and pixel-wise estimations [8, 12]. Other
works like [7] propose a tree-like network structure to cap-
ture the hand’s topology. As for training strategies, existing
works are diverse and have explored multitask learning [5,
4, 41], multi-view constraints for self-supervision [30, 31],
and biomechanical constraints [26] as regularization. In
RGB-based hand pose estimation, datasets are still rela-
tively small and highly variable from each other. As such,
most approaches cannot generalize to other datasets or in-
the-wild scenarios. To improve the cross-dataset general-
ization, existing works like [12] adopt a mix-and-train strat-
egy, i.e. , mix multiple real-world datasets together with

synthetic data for training. Following this approach, most
RGB-based works tend to synthesize more training samples
using a GAN [21] or a generation model [14].

For 2D pose, semi-supervised learning methods like [23]
treat each 2D keypoint independently and select ‘labels’
based on heatmap peaks. For 3D pose, weakly- and semi-
supervised learning explore using weak labels or simply un-
labelled data to improve cross dataset performance. Works
like [4, 2] use 2D pose or the hand mask as weak labels
while projecting the points in 3D to image coordinates.

Self-supervised learning for 3D pose removes even the
requirement of weak labels, The most related works are
for depth-based inputs [6, 30, 31] and human pose esti-
mation [13]. Depth-based works like [6] use point cloud
reconstruction as an auxiliary task to improve the perfor-
mance of 3D hand pose estimation. Beyond that, Wan et
al. [30, 31] introduce model-fitting with differentiable ren-
derers for depth map reconstruction to utilize unlabelled
data. RGB images however are affected by illumination
and complex backgrounds, which prevent direct application
of reconstruction or rendering approaches to RGB. As for
the RGB-based human pose estimation, existing work [13]
focuses on unlabelled multi-view images, which is still a
highly limited scenario.

2.2. Semi-supervised learning

Consistency training and pseudo-labeling has recently
shown much promise for semi-supervised classification [25,
34, 11, 3, 1, 29] and segmentation [43, 9]. Recent semi-
supervised works have achieved comparable performance
to supervised methods with only a fraction of the labels. For
consistency training, works like [34, 9] have explored var-
ious augmentations. The mean teacher strategy [29] accel-
erates consistency training by averaging model weights in-
stead of label predictions. For pseudo-labeling, operations
such as argmax [16], sharpening [3] or thresholding [25]
have been introduced to modify predictions as labels. Oth-
ers [1, 11, 43, 38] treat predictions as noisy labels and in-
troduce label correction to generate pseudo-labels.

Our work is the first to explore pseudo-labelling and con-
sistency learning for hand pose estimation. Several distinc-
tions separate pose estimation from the previous application
of these techniques for image classification and segmen-
tation. Formulation-wise, it is a regression problem that
critically depends on spatial information. Secondly, there
is a clear separation between biomechanical feasible ver-
sus infeasible poses. Therefore, we design a novel pipeline
for semi-supervised hand pose estimation with corrected
pseudo-labels and spatial consistency.

3. Methodology
We present an overview of our framework in Fig. 2. For

pose estimation, let XL = {(xl
i,pi,wi) : i∈ (1, · · · , N)}
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Figure 2: Overview of SemiHand. The model is pre-trained on labelled synthetic data. Consistency training (orange double headed arrow,
see Sec. 3.3) on unlabelled real-world data with perturbation augmentations (see Sec. 3.4) and label correction and sample selection (blue
dash-dotted arrow, See Fig. 1 and Sec. 3.2) together with augmentation of differing difficulties. (see Sec. 3.4).

be N labelled examples, where xl
i is a labelled synthetic

RGB image of a hand, pi = (uvi,di) is its target 2.5D
hand pose, where uv is the the image pixel coordinates
and d is its metric depth relative to the root keypoint, and
wi is a binary mask outlining the overall hand shape. Let
XU = {(xu

j ) : j ∈ (1, · · · ,M)} be M unlabelled ex-
amples, where xu

i is an unlabelled real-world RGB image
of a hand. We aim to estimate the 2.5D hand pose and
its associated hand mask by learning a mapping f in the
form of a neural network parameterized by θ, such that
(p,w) = f(p,w|θ;XL, XU ). In practice, the hand mask
w is obtained by our shared fully convolutional network
though our formulation is sufficiently general that it can also
be learned by a separate network. We optimize a mixed ob-
jective of

L = Lsup(XL) + Lunsup(XU ) + λcLcons(XL, XU ), (1)

where Lsup is the supervised loss, Lunsup(XU ) is an unsu-
pervised loss with pseudo-labels and Lcons(XL, XU ) is a
consistency loss. λc is a hyperparameter. In the following,
we introduce the details of the three losses.

3.1. Supervised Pose Estimation

A standard approach for 3D hand pose estimation is 2.5D
pose regression [12] followed by a lifting into full 3D if
camera intrinsics are known. The main benefit of regress-
ing pose in 2.5D is the pixel-wise representation. This adds
flexibility for multitask learning and can easily be extended
to predict other pixel-wise outputs such as segmentations or
depth maps with fully convolutional networks. The mul-
titasking strategy achieves improvement for hand pose es-
timation [35]. In our work, besides 2.5D pose p, we also
predict hand mask w. We show the details of 2.5D regres-
sion in the supplementary material. Here, we first define

the distance ℓ between two 2.5D poses p1 = (uv1,d1) and
p2 = (uv2,d2) as

ℓ(p1,p2) = ||uv1 − uv2||22 + λd||d1 − d2||22, (2)

where λd is a hyperparameter with a value of 50 in our pa-
per. Given a ground-truth pgt, wgt and corresponding pre-
dictions p, w, the supervised loss is defined as:

Lsup(XL) = ℓ(p,pgt) + λw||w −wgt||1, (3)

where λw is a hyperparameter. In this paper, we adopt the
two-stacked hourglass with 2.5D regression as our back-
bone to estimate 2.5D representation and hand mask.

3.2. Pseudo-labels for Pose Estimation

For now, assume we have some initial network f(θ)

from pre-training. We initialize pseudo-labels p̂ = (ûv, d̂)
of XU using the prediction of f(θ) and fine-tune the model
with corrected pseudo-labels r. With the prediction p from
f(p|θ;XU ), the objective Lunsup(XU ) can be formulated as:

Lunsup(XU ) = 1(C(p̂) ≤ τ)ℓ(p, p̂), where p̂ ∽ M. (4)

Here, 1(·) is the indicator function, C(·) is a function to
estimate the confidence of given pseudo-labels, and τ is
a confidence threshold. Pseudo-labels are often noisy and
may require corrections [18, 11]. In this objective, we con-
strain the pseudo-pose p̂ to be drawn from M, a pose space
whose points are biomechanical feasible poses in which
bone lengths are consistent with the given hand model.
Based on Eq. 4, we introduce a pose registration function
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P (·) to project the pseudo-labels p̂ to corrected poses r and
add a loss to minimize the distance between the prediction
p and r. To prevent degenerate labels r, we add a regu-
larizer to encourage r to remain close to p̂. Adding these
terms, we get

Lunsup(XU ) = 1(C(p̂)≤τ)ℓ(p, p̂)+ℓ(r,p)+ℓ(r, p̂), (5)

with r = P (p̂). For learning the network θ and the pseudo-
labels p̂, We solve the objective iteratively. First, we update
the parameter of the network θ by

Lunsup(XU ) = 1(C(p̂) ≤ τ)ℓ(p, p̂) + ℓ(r,p), (6)

which can be solved by gradient descent. We then estimate
the pseudo-labels p̂ and its correction r based on the previ-
ous prediction p′ and the previous correction r′,

p̂ = argmin
p̂

ℓ(p′, p̂) + ℓ(r′, p̂),

r = P (p̂).
(7)

Label Correction. Estimating the joint locations inde-
pendently is not effective to ensure the biomechanical feasi-
bility of the hand. Inspired by the similarity transformation
of [31], we propose a pose registration function P . More
specifically, we estimate the transformation T with a greedy
approximation based on the hand’s kinematic chain. As
shown in Fig. 4 right, given a template (black) and a predic-
tion (gray), we first align the root by translation, and then
calculate the bone direction (dotted gray line) using the par-
ent node of registered pose and the child node of estimation.
With calculating T of each bone along with the chain of a
hand, we get the registered pose (orange). The proposed
greedy approximation avoids the accumulation of end point
errors and ensure the feasibility of bone lengths without any
training. More details are provided in the supplementary.

Sample Selection. We design the confidence function
C for samples based on the plausibility and stability of the
pseudo-labels p̂ for the unlabelled data xu as below:

C(p̂) = ℓ(T (p̂), f(p|θ; T (xu))) + ℓ(p̂, P (p̂)), (8)

where T is a random perturbation augmentation. The pro-
posed confidence is a sum of the distance between the pre-
diction of perturbed image and its corresponding pseudo-
label, and the distance between the pseudo-label and its cor-
rected pseudo-label.

3.3. Self Consistency for Pose Estimation

For both XL and XU , we introduce a view consistency
term Lvc and a cross-modal consistency term Lcc to improve

Algorithm 1 Semi-supervised hand pose estimation.

Require: Pre-trained model θ0 based on Lsup, threshold τ ,
epoch number K, XL and XU

Ensure: Final model θ and pseudo labels p̂
1: Initialize the pseudo-labels p̂ for XU

2: Initialize the corrected pseudo-labels r for XU

3: for t = 1, . . . ,K epochs do
4: Calculate C(ŷ)
5: Update θ via gradient ascent of Eq. 6 with Lsup(XL)

and Lcons(XL, XU )
6: Update p̂ and r based on Eq. 7
7: end for

generalization. The consistency loss Lcons(XL,XU ) is sim-
ply the sum of the two:

Lcons = Lvc + Lcc. (9)

View Consistency. As shown in Fig. 3, we augment the
training samples by rotating or translating the samples, as
depicted in Sec. 3.4, and encourage transformed 2.5D pre-
dictions to be consistent with predictions of the transformed
samples like existing 2D works [23]. The proposed loss
function, with random perturbation T is:

Lvc = ℓ(f(p|θ; T (x)), (T (f(p|θ;x))))
+ ||f(w|θ; T (x))− (T (f(w|θ;x)))||1.

(10)

This loss encourages more robust and stable predictions for
unlabelled data XU .

Figure 3: Overview of view consistency loss.

Cross-modal Consistency. Zamir et al. [39] observed
that learning with cross-modal consistency improves pre-
diction accuracy. In that regard, different modality repre-
sentations e.g. RGB image, depth map, of the same hand
should be ‘consistent’ in their pose. But how can we en-
force this consistency across these modalities without actual
pose labels? In this case, we incorporate multi-task learn-
ing and estimate multi-modal outputs i.e. pose and mask,
and add a model-fitting energy term. The proposed energy
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function encourages consistency between the 2D pose and
the hand mask, which we find improves pose and overall
generalization. Additionally, we adopt a stop-gradient op-
eration stop(·) to the mask as shown in Fig. 5 to prevent
inaccurate poses from degenerating the masks.

Specifically, we approximate the hand mask with 55 cir-
cles: 9 for each finger and 10 for the palm. The circle hand
model is parameterized as m = {m0, · · · ,m54}, where
mi = (ci, ri) is the ith circle centered at ci with radius ri.
The circle centers are manually defined based on the 2D
pose, while radii are pre-trained from synthetic data. Fig. 4
middle shows an example of the approximated hand mask
and the circles for the little finger.

The cross-modality consistency loss Lcc is the sum of
two standard model-fitting energy terms:

Lcc(uv,w) = Lm2d(uv, stop(w)) + Ld2m(uv, stop(w)).
(11)

The model-to-data term Lm2d is an L1 distance encouraging
the circle-approximated mask to be as similar as possible to
the estimated mask:

Lm2d(uv,w) = ||R(G(uv))−w||1, (12)

where G(·) estimates the centers and radius based on the
2D hand pose and R(·) renders the circles to a hand mask
like [30]. Note that this term has no gradients on the back-
ground of the rendered mask. Hence, we add a data-to-
model term Ld2m to measure the registration error between
the estimated hand model and hand mask:

Ld2m(uv,w) =
∑
g∈Ω

d(w(g), G(uv)), (13)

where Ω is the set of all pixel locations and the distance
function d(·) is defined as:

d(w(g),m)

=


max( min

i∈[0,54]
(||g − ci||2 − ri), 0) if w(g)=1,

max( max
i∈[0,54]

(ri − ||g − ci||2), 0) otherwise.

(14)

Specifically, the distance estimates pixel g’s distance to the
nearest circle mi with radius ri centered at ci. If the pre-
dicted mask value at g is correct, the distance is set to 0.
More details on the consistency loss can be found in the
supplementary material.

3.4. Data Augmentation

Initially, we found that adding view-point consistency
to be non-convergent. We speculated the cause to be mode
collapse, i.e. all the 2D pose predictions gradually move to

Figure 4: Hand model and pose registration. Left: the ground-
truth hand mask; Middle: Our rendered hand mask based on
ground-truth 2D pose (blue points); Right: pose registration of
the template hand (black) to observed joints (grey) to result in a
registered hand (orange). Figure best viewed in colour.

Figure 5: Overview of cross-modal consistency loss. (uv, d) are
2.5D hand outputs; w denotes the hand mask.

the center of the image. A similar phenomenon was ob-
served in FixMatch [25]; they found that data augmenta-
tion of differing difficulties could improve training stabil-
ity. As such, we also adopt two types of data augmentation
like [25], as shown in Fig. 2. Specifically, we introduce di-
versity augmentation for the labelled and high-confidence
pseudo-labelled data and perturbation augmentation for un-
labelled data respectively, which we found to mitigate the
problem of mode collapse.

In all of our experiments, diversity augmentation is sim-
ilar to augmentations used in existing supervised learning
methods [12, 5, 36]. It includes color jitter, translation, ro-
tation, scale, gray-scale and random erasure. Differently,
for unlabelled data, we simply perturb with translations of
[-5,5] pixels or rotations of either [−2◦, 2◦] or 90◦,180◦ and
270◦.

4. Experiments

4.1. Implementation Details

In the experiments, we adopt the two-stacked hourglass
as our backbone. The input and output resolution are both
64×64. We set the hyperparameters from Eqs. 1 to 4 em-
pirically, with λc = 0.1, λd = 50, λw = 100 and τ = 1.5.
For pre-training on the synthetic data, we use an Adam op-
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timizer with an initial learning rate of 10−3 and a batch size
of 32. We train the model for 100 epochs, lowering the
learning rate by a factor of 10 at the 60th and 90th epoch.
For fine-tuning, we use the learning rate 10−4 and a batch
size of 128. We set K to 10. At 5th iteration, we lower the
learning rate to 10−5. The associated algorithm is shown in
Alg. 1.

4.2. Datasets and Evaluation metrics

Our method is trained on one synthetic dataset, the Ren-
dered Hand Pose Dataset (RHD) [44] and evaluated on four
real-world datasets, Stereo Hand Pose Tracking Benchmark
(STB) [40], Dexter+Object Dataset (DO) [28], Hand-3D-
Studio (H3D) [42] and YouTube 3D Hands (YT3D) [15].

To further verify the effectiveness of our proposed
method, we also introduce and evaluate on a new real-world
hand sequence dataset (HSD). HSD is a video dataset with
3D poses annotated in a semi-automated fashion like [45].
It consists of 4 sequences. Each sequence is performed by
one actor and contains 20K frames. We use the first two se-
quences for training and others for testing. More details of
this dataset can be found in the supplementary.

To evaluate the accuracy of estimated poses, we use two
common metrics: (1) mean end-point-error (EPE), measur-
ing the average Euclidean distance between predicted and
ground-truth joints, and (2) area under the curve (AUC) on
the percentage of correct keypoints (PCK) curve based on
certain error thresholds. For a fair comparison with state-of-
the-art, we follow [27, 36], assuming that the global hand
scale and the hand root position are known, and set the mid-
dle finger’s base position as the hand root. For convenience,
we also assume that hand template is given. For H3D and
YT3D, we use 40 mm from STB as reference bone length
defined by [45]. Our default setting is fine-tuning with only
the training data of a (single) real-world dataset’s training
partition. Following the convention of [30], the test data
is withheld completely. Additionally, we use the labels of
these real-world datasets only for evaluation purposes.

4.3. Ablation Study

Baseline. To start with, we first investigate the domain
gap that exists between the synthetic RHD versus the real-
world STB. The pre-trained network, trained and tested on
RHD achieves good performance with a mean EPE 12.08
mm. However, the same network’s errors almost double to
a mean EPE of 23.41 mm and 23.83 mm on the STB train-
ing and testing datasets respectively (see ‘baseline’ method
in Tab. 1). If we train the network only on STB, it is prone to
over-fitting due to the small size of the dataset, so it leads to
a large error on testing data (18.04 mm). If one merges the
training datasets of RHD and STB in a mix-and-train strat-
egy, we can lower this error to 7.32 mm and this serves as
the upper bound in performance for semi-supervised meth-

Method training set testing set
STB train STB test

baseline RHD train(w/) 23.41 23.83
baseline STB train(w/) 5.27 18.04

baseline
RHD train(w/)
STB train(w/) 5.25 7.32

with vc RHD train(w/)
STB train(w/o)

19.98 21.03
with cc 20.59 20.92

with vc+cc 19.18 19.93
with

pseudo-labeling
RHD train(w/)
STB train(w/o) 15.68 16.31

our proposed
RHD train(w/)
STB train(w/o) 13.82 14.60

our proposed
RHD train(w/)
STB test(w/o) 15.83 14.51

our proposed
RHD train(w/)

STB train+test(w/o) 13.78 13.95

Table 1: Ablation study with mean EPE [mm]. w/ and w/o indi-
cates with and without labels for training.

ST
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3D H3D DO

HSD
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M
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m
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Baseline
Baseline with consistency
Baseline with pseudo-labeling
SemiHand

Figure 6: Comparison of baseline, with only consistency train-
ing, with only pseudo-labeling and our proposed SemiHand. Our
proposed two modules both improve the performance with respect
to the baselines, and their combination further leads to a higher
accuracy.

ods.
Impact of our components. We next analyse the per-

formance of our method’s individual components to iso-
late the impact of consistency training and pseudo-labeling.
We fine-tune the pre-trained model with only view con-
sistency loss (with vc), only cross-model consistency loss
(with cc), both consistency losses (with vc+cc) and with
pseudo-labelling in Tab. 1. Each component improves the
performance; adding pseudo-labelling achieves an impres-
sive 7.52 mm improvement on the STB testing set. Com-
bining these components further decreases the error. With
both consistency training and pseudo-labeling, we achieve
a 9.23mm improvement on the STB testing set with fine-
tuning on the unlabelled STB training set.
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Figure 7: AUC: Comparison to state-of-the-art on STB. Our Semi-
Hand improves the baseline’s AUC and achieves comparable per-
formance to other supervised learning methods.
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Figure 8: AUC: Comparison to state-of-the-art on DO. Our Semi-
Hand improves the baseline’s AUC and outperforms some super-
vised learning methods using the mix-and-train strategy.

For further verification, we compare the following: (1)
baseline, (2) baseline with consistency training, (3) base-
line with pseudo-labels and (4) our proposed method on all
real-world datasets (see results in Fig. 6). We can see that
both consistency training and pseudo-labeling can improve
the performance with respect to the baselines. Furthermore,
the combination of our two modules leads to a higher ac-
curacy. With our semi-supervised fine-tuning, we achieve a
decrease in mean EPE of up to 9.2 mm on STB, 22.4 mm
on DO, 6.4 mm on YT3D, 7.46 mm on H3D and 3.3 mm on
HSD as shown in Fig. 6. The full model is comparable to
existing supervised methods.

Impact of training data. In Tab. 1 under ‘our pro-
posed’, we fine-tune the network on different STB sets, i.e. ,
STB train set only, STB test set only and both. We find
that fine-tuning on the testing image directly achieve lower
mean EPE (13.82 mm/13.78 mm versus 15.83 mm for STB
train and 14.51 mm/13.95 mm versus 14.60 mm for STB

test). Moreover, as the amount of unlabelled training data
increases, the mean EPE decreases correspondingly. As
shown in Tab. 1, fine-tuning with both STB train and test
sets outperforms fine-tuning independently. We also verify
this by fine-tuning with different percentages of STB train-
ing data in Fig. 10. We decrease the mean EPE of STB test
set from 17.31mm to 14.60 mm by increasing the percent-
age of unlabelled STB training data during training.

4.4. Comparison to state-of-the-art

We compare our hand pose estimation results with state-
of-the-art methods [2, 21, 12, 33, 37, 36, 4, 27, 22], on STB
and DO as shown in Fig. 7 and 8. We can see that after fine-
tuning, our SemiHand improves the baseline’s AUC signif-
icantly (0.774 to 0.927 for STB, 0.546 to 0.747 for DO).
For STB, our semi-supervised method achieves compara-
ble performance to other supervised learning methods, even
without any labels of STB. The work [21] also reports its
performance training on synthetic data only. As shown in
Fig. 7, ours outperforms [21] by a large margin (0.927 vs.
0.825).

Many existing methods use DO to evaluate cross-dataset
performance. Our proposed semi-supervised method out-
performs most existing supervised methods, even though
they mix-and-train RHD with other synthetic data [2, 21],
STB [40], MPII+NZSL [24] or MVBS [24]. This confirms
our original motivation of exploiting unlabelled RGB im-
ages and improving the accuracy of pose estimation. Note
that [33] does report better performance but they incor-
porate a large-scale (111K) labelled real-world dataset for
training.

With our proposed semi-supervised method, the predic-
tions of unlabelled data will gradually converge. We show
two qualitative examples of the gradual convergence from
the predictions of pre-trained model to our stable predic-
tions in Fig. 9. Interestingly, we also find cases like the
example shown in Fig. 9, where our predictions seem more
accurate than the manually annotated ground-truth, i.e. pre-
dicted keypoints are centered on the finger, while labelled
keypoints lie at the edge of the fingers. Given the saturated
results of state-of-the-art methods on STB, it is likely that
many networks are over-fitting to manual annotation biases
or noise.

4.5. Comparison to weakly-supervised methods

As our SemiHand is the first semi-supervision frame-
work for 3D hand pose estimation from monocular images,
there are no direct comparable methods. We compare in-
stead to a weakly-supervised method [4]. We fine-tune the
pre-trained model on m% STB training data, either with-
out any labels (ours, SemiHand), with ground-truth (strong
supervision) and with weak labels of either 2D poses or
masks. The percentage of STB training set is varied from
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Pre-trained 2nd iteration 6th iteration 10th iteration Ground-truth

Figure 9: Gradual convergence from the prediction of pre-trained model to our final prediction. The arrows indicate the direction and
distance of prediction movement during fine-tuning. For 10thiteration, the optimization converges because the length of arrows become
almost zeros. We highlight the differences between our stable predictions and the ground-truth poses with red boxes. Figure best viewed in
colour.

5% to 100% to compare the mean EPE on STB testing set.
As shown in Fig. 10, when fine-tuning with masks or 2D
poses as weak labels, the weakly-supervised method [4]
achieves 4.0 mm and 7.1 mm improvement on STB test-
ing set respectively. This indicates that 2D pose provides
stronger supervision than simply a mask. Meanwhile, with-
out any labels, our SemiHand achieves a 9.2 mm improve-
ment, demonstrating the effectiveness of our method com-
pared to [4]. Note that we discuss only the relative improve-
ment as we use a different backbone than [4]. Given that
adding even a small amount of labels (as per the fully su-
pervised method) is still better, this encourages us to further
explore the use of unlabelled images.

5. Conclusions
We aim to develop a semi-supervised 3D pose estimation

framework, using labelled synthetic and unlabelled real-
world data. Directly applying the existing semi-supervised
method is nontrivial because pose estimation is a regression
problem that critically depends on spatial information. We
therefore designed a new framework based the pose feasi-
bility and spatial consistency, with pseudo-labels and con-
sistency training. Experiments on different datasets demon-
strate that our approach successfully leverages real-world
RGB images without any labels, paving a path forwards for
learning pose estimation systems with only synthetic labels.
In the future, we would like to explore domain adaptation
methods and more consistencies over time and or multiple
views to further improve the accuracy. Also, we will ex-
plore different frameworks like the teacher-student frame-
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Figure 10: Mean EPE on STB testing data with fine-tuning on dif-
ferent percentage of STB training data. As the amount of training
data increases, SemiHand achieves a similar trend as the weakly-
supervised methods, i.e., the mean EPE decreases correspond-
ingly.

work or the Siamese framework for semi-supervised pose
estimation.
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