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Abstract

What makes free-hand sketches appealing for humans
lies with its capability as a universal tool to depict the visual
world. Such flexibility at human ease, however, introduces
abstract renderings that pose unique challenges to com-
puter vision models. In this paper, we propose a purpose-
made sketch representation for human sketches. The key
intuition is that such representation should be abstract at
design, so to accommodate the abstract nature of sketches.
This is achieved by interpreting sketch abstraction on two
levels: appearance and structure. We abstract sketch struc-
ture as a pre-defined coarse-to-fine visual block hierarchy,
and average visual features within each block to model ap-
pearance abstraction. We then discuss three general strate-
gies on how to exploit feature synergy across different lev-
els of this abstraction hierarchy. The superiority of explic-
itly abstracting sketch representation is empirically vali-
dated on a number of sketch analysis tasks, including sketch
recognition, fine-grained sketch-based image retrieval, and
generative sketch healing. Our simple design not only yields
strong results on all said tasks, but also offers intuitive fea-
ture granularity control to tailor for various downstream
tasks. Code will be made publicly available.

1. Introduction

Sketches are different to photos. They exhibit a severe
lack of visual cues, often made up of just a few coarse
strokes other than full of color and texture. The remarkable
thing is however despite its abstract nature, humans are still
acute to recognizing sketches somewhat equally well to that
for a full-blown color photo — one only needs to observe
a smiley face to tell the emotion other than seeing a true
photo. It is precisely this abstract nature that triggered much
of the research on human sketches [13, 42, 56, 19, 16, 58].
With the proliferation of touchscreen devices, this interest
has also resulted in a series of practical applications, from
sketch-based image retrieval [55, 39, 57, 12, 4], to sketch to
photo synthesis [59, 40, 7, 17, 6].
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Figure 1: We represent human sketch based on the insight
of sketch abstraction as a process happening on two fronts:
appearance and structure.

At the very core of all such advancements is learning a
feature representation that is most suitable for sketch data.
The early days saw the use of HoG [9] descriptors re-
purposed for sketch [14, 13, 37]. Coming to the deep era,
sketch representation learning mainly takes two streams: (i)
CNNs that treat sketches as pixel-maps [56, 12, 36], and
(i) RNNs that utilize the temporal stroke-by-stroke nature
of sketches [19, 38, 30]. They each have its pros and cons,
though what none of them did was accommodating for the
abstract nature of sketches at design. This is also evident in
that similar to how HoG was re-purposed for sketch, such
CNN and RNN-based approaches were also mainly small
deviations from their original photo forms [56, 19].

In this paper, we set out to change that. We aim to de-
sign a sketch feature learning scheme that directly tackles
the abstract nature of sketches. Our key intuition is there-
fore the actual feature learning should resemble that of an
abstraction process. We envisage this abstraction process to
happen on two fronts — appearance and structure. We take
the appearance abstraction process as just feature averaging
within a local visual block, and abstract sketch structure as
a hierarchy of multi-granularity grid blocks (see Figure 1).

Such representation of sketch data has a nice interpre-
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tation. By abstracting appearance into a visual mean, fea-
ture learning is better regularized beyond individual draw-
ing variations. Structural abstraction can then happen by
traversing a coarse-to-fine hierarchy of these aggregated
features. Figure 1 illustrates the feature embedding of the
rabbit category learned by our model. By projecting similar
features into their respective visual instances, one can see
how our proposed representation groups thematically simi-
lar sketches as a clear sign of appearance abstraction taking
place (e.g., over rabbit pose), and how different abstraction
level focuses on summarizing different visual patterns (e.g.,
rabbit head vs. ears).

More specifically, at each level along the abstraction hi-
erarchy, we divide a sketch into a pre-defined number of
grid blocks. The sketch visual feature for each block is then
computed as the mean of a collection of visual patches cen-
tered around sampled stroke points (see Figure 2). Naively
aggregating appearance features across this hierarchy how-
ever does not work — we need to encourage information ex-
change across granularity levels to fully benefit from the
said abstraction process. For that, we discuss three general
aggregation strategies and find that hierarchical modeling
with graph learning works best. Another intriguing property
of our sketch representation is we can now control feature
granularity and tailor model behaviors based on the target
task. By increasing levels in the hierarchy, finer-grained
visual feature representation can be achieved (Section 5).
We show our method, albeit being simple, achieves state-
of-the-art results on the task of sketch recognition. It can
also be plug-and-play as a competitive sketch-specific fea-
ture extractor for a range of different applications such as
sketch-based image retrieval and sketch healing.

The contributions of this work are as follows: (i) we pro-
vide a new method for representing human sketch data via
explicit appearance and structure abstraction. (ii) a solu-
tion is introduced to foster the feature synergy in the multi-
granularity modeling of sketch structure. (iii) the efficacy of
our sketch-specific abstract representation has been demon-
strated on diverse sketch analysis tasks, including sketch
recognition, fine-grained sketch-based image retrieval and
generative sketch healing.

2. Related Work

Our related works fall in the general field of representa-
tion learning and modeling for human sketches. We sum-
marize the most relevant three categories of works here.

Vector vs. raster Being a distinctive modality to photo,
sketch is the result of human creation through a temporally
iterative process. However, the way how many previous
studies [27, 42, 29, 37, 55, 23, 35, 31] treat sketch comes
no difference as that of an image — they rasterize a vector
sketch and feed it into a contemporary deep convolutional

neural network (CNN) for visual learning. The reason is
of course partly due to the convincingly representational
power of CNN that has dominated various vision tasks.
What’s more important is the lack of a general-purpose al-
ternative to the ImageNet pre-training model in the temporal
domain that ensures competitive performance under sketch
data scarcity. Thanks to the availability of large-scale sketch
dataset [ 19], there is a very recent resurgence of research in-
terest of representing sketches in its original vector format
[33, 32, 30, 10, 38]. These stems from the need of gener-
ative control of human sketches which otherwise proved to
be extremely challenging using CNN-based methods [44].
Endeavors then extended to the discriminative domain as
well and yield promising result [30, 38] with the advent of
transformers [51]. Our approach combines the best of two
worlds that leverages both the stroke-level information in
vector sketch and the representational capability of CNN
that takes raster visual patch as input.

Category vs. instance This dichotomy corresponds to
how a sketch is created — rendered based on a category-
name [13, 19] or a (real or mental) picture of a specific
object instance [55, 39]. A sketch can thus present differ-
ent granularities of visual cues (e.g., prototypical vs. spe-
cific object detail) and reflect different instantaneous mental
process (e.g., drawing for recognizability vs. resemblance).
In practice, these two sketch variations are utilized for the
development of different tasks, i.e., category-level (many
sketches have same ground-truth objective) [42, 56, 41] or
fine-grained (a sketch corresponds to one definitive answer)
sketch analysis [39, 28, 24]. In this paper, we show the ef-
ficacy of the proposed method is generally applicable to ei-
ther sketch, and in both discriminative and generative tasks.

Sketch modeling In line with more general-purpose vi-
sion research, most sketch studies focus on invariant feature
representation engineering or learning [5, 13, 25, 56, 41] to
advance the benchmark performance of sketch tasks. Sim-
ilarly, with great strides made in the field of neural image
synthesis [49], models on generating sketches from either a
vector sketch [19, 10, 16] or raster photo [44, 52] begin to
emerge, including a generative agent that exhibits human-
level performance at a Pictionary-like sketching game [3].
More recent works have attempted to leverage insights from
the human sketching process. The two most explicit model
of sketching to our best knowledge are [33, 34]. [33] ab-
stracts sketch by estimating which constituent strokes can
be safely removed without affecting recognizability. [34]
identifies different human sketching behaviors in contour
and detail rendering and argues that both parts can only be
modeled effectively when they are factorized. These works
albeit on abstraction, carry an entirely different focus of ab-
stract sketch generation. We on the other handle model ab-
straction at design for the more general task of sketch rep-
resentation learning.
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Figure 2: Schematic of our proposed framework with the choice of h(-) as graph convolutional network. More details in text.

3. Methodology

A sketch is a sequence of N stroke points s =
(s1, 82, ..., 5N ). To assign each s; with its associated visual
patch, a sketch is also rendered as a raster image x and a
local visual patch p; is cropped centered around s;. p; then
serves as the visual correspondence surrounding the recep-
tive field of a stroke point and faithfully presents the draw-
ing behaviors. We abstract a sketch structure by building a
coarse-to-fine block hierarchy with ¢ levels to organize the
raw visual cues for more efficient learning. At each level [,
we divide x into [ x [ grid blocks. This then introduces K
multi-granularity visual blocks a = (ay, as, ..., ax ), where
K = Y], 1? and each aj, owns its unique group of p;s
based on the geological proximity. The goal of this paper is
to learn a CNN feature extractor f(-) and a parameterized
feature aggregator h(-) that turns (z, s,a) into synergistic
single visual representation F'(x, s, a) for different down-
stream sketch analysis tasks. A schematic of our framework
is demonstrated in Figure 2.

3.1. Defining an Abstraction Model

Structural Abstraction As said, our choice of abstract-
ing the structure of a sketch is to uniformly divide z into a
across different granularities. Such representation, although
seemingly simplistic, is intuitively amenable to structural
deformations and thus vital for sketch modeling. Formally,
given a raster sketch x of size W x H and one ay, at the [*"
level along the structural hierarchy, we obtain the central
H

coordinates of aj, with width and length [ %], [£]:

clar) = (05 +4) x 71,054 5) < ) )

where ¢ € {0,1,....,1 —1},5 € {0,1,....,1 — 1} and [] is
the ceiling function to ensure real integer coordinate. The
actual values of ¢ and j depend on the location of a; and
l. Ifl = 2 and ay represents the upper left quadrant,

i = 7 = 0. Each stroke point s; is then linked to their cor-
responding level-specific ¢(ay) based on coordinate-wise
nearest neighbor. It’s worthy to note when ¢ > 1, we have
multiple values of [ which means a s; can belong to multi-
ple grid blocks and play different roles based on the specific
abstraction level.

Appearance Abstraction

responds to a set of stroke points {s; € ag}, it is straight-
forward to feed the respective sampled patches p;s into f(-)
and extract their representations. Such practice however be-
comes less feasible in practical implementations. As the
number of p;s one ay, attaches can be as many as few tens,
this calls for the same number of forward passings of f(-)
and creates optimization barriers. To this end, we intro-
duce the popular Region Of Interest (ROI) pooling layer
[18], which utilizes single feature map of the original im-
age and generates representation for each patch proposal di-
rectly from it — thus saving the need for multiple inferences
via f(-). We then abstract the appearance within ay, by av-
eraging the visual features of all its belonging stroke points,
denoted as mean{ROI(f(x),p;)}i—{s;cas}- Our way of
appearance abstraction can be seen as resorting to a visual
mean that cancels out the the variance in abstract drawings.
Such reasoning leads to our preference say over seeking a
visual max, which is sensitive to uncommon strokes, and
computationally known to bias on detecting textures not
present in sketch data [15]. To further compensate the in-
evitable loss of precision brought by the boundary approxi-
mation in ROI pooling, and provide the same global context
along the feature hierarchy, we reinforce each ay with f(z)
and derive our final formulation for a;:

m(ak) = f((E) + mean{ROI(f(w)7pi)}i={s¢-6ak} 2
3.2. Designing Feature-Aggregator 5(-)

Given that each a; now cor-

To aggregate m(a) into one single representation re-
quires more than simple element-wise fusion. Recall the
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two key characteristics of m(ay): (i) It is the mean repre-
sentation of all stroke points within a grid block of a certain
location and size. This makes each m(ay,) dramatically dif-
ferent. (ii) each m(ay) (e.g., I = 2) can contain the same
stroke points with others (e.g., {a; € | = 4}). This indi-
cates possible connections between m(ay) at different ab-
straction level, which can be beneficial if modeled properly.
We draw inspirations from such analysis and put forward
three choices of solutions.

h(-) as graph message passing  Graph construction: We
treat each m(ay) as a graph node and explore their dy-
namics via graph convolutional networks (GCN). Top-down
nearest neighbor along the abstraction hierarchy is used to
construct the edge links between nodes. That is, for each
ay, corresponding to a value of [, we will connect it with all
other grid blocks within an abstraction level of [ + 1. An
adjacency matrix £ € R *K can then be formed, where
each entry e; ; = 1 represents the establishment of a link
between a; and a;, and zero-valued otherwise. For self-
connection e;;, we simply set its value to 0.5 for regular-
ization purpose. Graph learning: we choose [26], a popu-
lar variant of GCN that executes a simple layer-wise prop-
agation rule via the first-order approximation of spectral
graph convolution. Specifically, assume X© as the origi-
nal node feature matrix with each row vector as m(ay ), and
h(X?) = X* computed after ¢t GCN layers, we formulate
our representation learning as follows:

X' = ReLU(D ZED > X'"'W?) 3)

where £ = F + I, D = Zj E~1-j, Wtis a layer-wise
learnable weight matrix. We obtain our final representation
F(z, s,a) with a mean aggregator.

h(-) as relational critic [48,2] We can also directly pre-
dict the compatibility between every two m(ay) with a non-
negative scalar and leverage it as a critical guidance for
multi-granularity feature aggregation. The idea is then to
concatenate the features, (m(a;), m(a;))i jen,k],i-j» and
feed it into MLP for relational identification. This results in
a matrix M = RE*(E=1) with each entry M;; formulated
as: softplus(Wa(concat(Wi(m(a;)), Wi(m(a;))))).
W1, Wy are two learnable weight matrices. We obtain our
final representation F'(z,s,a) by computing a weighted
sum of features with reference to M:

F(z,s,a) =

K-1
>3 M+ concat (Wi (m(a;)), Wi(m(ay))) @

i=1 j=1

h(-) as feature extrapolation [47]  Our last approach
sees {m(ax)}r=12.. K as asequence of inputs at different
time steps in a recurrent neural network (RNN). This means
rather than attempting to best interpolate between the fea-
tures of different grid blocks, like the two choices of h(-)

above, we rely on the inner mechanism of RNN (LSTM
[22] in this paper) to extrapolate a new representation based
on its past experience. We take the output of the final time
step as our final representation F'(z, s, a).

3.3. Deploying F(z, s, a) to Downstream Tasks

Category-level recognition F'(z,s,a) is used here for
sketch recognition. We append a fully-connected layer ¢(+)
to transform the dimension of F'(z, s,a) to the number of
categories C required to discriminate. With the one-hot la-
bel y, our training objective is then to minimize the cross-
entropy softmax loss common for classification problem:

exp?(F(@.5.0)e

L.=yl
y Og(Zle exp?(F(@5.a)u

®)

Instance-level retrieval To examine the efficacy of the
proposed method for instance-level sketch analysis, we ap-
ply F(z,s,a) to the problem of fine-grained sketch-based
image retrieval (FG-SBIR) [29]. Given a sketch as input,
FG-SBIR aims to find one particular photo that shares sim-
ilar instance-level visual traits. We take f(-) as the shared
network backbone for both sketch and photo, i.e., Siamese
network, and optimize it under triplet ranking loss, which
are two near-ubiquitous choices in the FG-SBIR literature
[55, 39]. This leads to our training objective as:

Lyyi = max(0,

A+ d(F(z,s,a), f(p")) — d(F(,s,a), f(p‘)))@

where A is a hyper-parameter and if the two photos are
ranked correctly within the margin, the triplet term will be
not penalized. Note that since photo can’t be organized in
vector format, we obtain its features using f(-) only. d(-, )
is the ¢5 distance between its two elements.
Healing partial sketches By removing a fraction of
points from s, the goal of sketch healing task is to gener-
ate a novel and complete sketch stroke-by-stroke that best
resembles this corrupted partial input 3, other than filling in
the missing parts. To maximally demonstrate the efficacy of
our approach, we take F'(Z, §, a) as conditional latent vec-
tor input, and feed it to the same generative LSTM decoder
adopted by almost all contemporary sketch generative mod-
els without any changes [19, 8, 46]. Assume the generative
decoder as gy, we derive our formulation as:

Lheat = minEq(z|§) [logpé’(SWV/L,a(F(ia 8, CL))] (N

where W, , are two fully-connected layers that transform
F(&, 3, a) to two vectors that uniquely determine the mean
and variance of an i.i.d Gaussian distribution. In practice,
what pp models is more than the offset distance (Ax, Ay)
between two consecutive stroke points. Pen states are also
estimated including touching, lifting and ending. Readers
please refer to [19] for more details.
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4. Experimental Settings

To pinpoint the advantages of our approach, we control
all baselines and ablated variants to use the same network
backbone of ResNet-50 [20] and optimization strategy,
wherever possible. Learning rates and hyper-parameters are
not grid-searched for optimal performance. Only training
iterations may vary across methods and datasets.

Dataset and pre-processing Dataset: QuickDraw [19]
is by far the largest free-hand sketch dataset, which is col-
lected via an online game and where the players are asked
to draw objects belonging to a particular object class in
less than 20 seconds. It contains 345 object categories
with each containing 70K training samples, 2.5K valida-
tion and 2.5K testing samples. For the recognition task:
we sample 7K samples within each category as our train-
ing set. This gives us a total of 2.415M training data,
which is slightly smaller than that in [38] (2.5M). We use
all the testing samples (862K) for evaluation. For the gen-
erative healing task: following the category selection princi-
ple of [ 1!, we choose 7 categories including airplane,
angel, bear, bird, butterfly, cat, pig. For re-
trieval task: QMUL_Shoe_V2 and QMUL_Chair_V2 [1] are
two largest single-category product-level FG-SBIR datasets
to date with 6,648 and 2,000 sketch-photo paired data re-
spectively. Of them, we follow the standard split that uses
5982 and 964 pairs for training and the rest for testing.
Pre-processing: It requires more care when we work with
sketch data in both vectorized and rasterized forms. The
length of human sketching sequence varies from a few to
thousands, which can destabilize learning and raise mean-
ingless inference time. We thus restrict the maximum length
of s as N,,4, and when N is larger than N,,,,, we start
sampling. To ensure sampling uniformity, we continue to
divide a sketch into grid blocks and sample one stroke point
within each (skip if all its stroke points have been sampled).
Such division strategy is conducted from coarse to fine un-
til the total number of sampled points reaches the limits,
Ninaz- We set Ny o, = 20 throughout our experiments.

Implementation details All experiments are conducted
on a single NVIDIA V100 GPU with f(-) initialized with
the pre-trained weights from ImageNet [ 1]. We use Adam
optimizer for training both recognition and healing tasks
with initial learning rate as 1e-3 for 5 epochs and decreased
to le-4 for another 5 epochs. We use a batch size of 128 for
both tasks. To ensure the gradient stability of the genera-
tive LSTM decoder in our healing task, we clip the gradient
when it exceeds the numerical value 1. Due to the relative
smaller size of FG-SBIR dataset, we follow the tradition

'Some QuickDraw categories are less prominent for a learning objec-
tive than others. For example, categories like 1ine,circlehexagon
naturally present very little intra-category variations and thus does not
serve as competitive data when validating a model’s generative capability.

of FG-SBIR community [55, 36] and adopt SGD optimizer
with momentum value 0.9 throughout. We train 50K and
30K iterations on QMUL_Shoe_V2 and QMUL_Chair_V2
respectively with a triplet batch size of 16. A is set to 0.1.
To offset the data bias introduced by human sketching, e.g.,
stroke width, blurriness, we process all sketch data with a
one-stop post-processing solution via [43]. The size of sam-
pled local visual patch p; we extract for each s; is 32 x 32
if without explicitly mentioned.

Competitors Recognition: ResNet-50 is our network
backbone, and that by building our method directly on top
explicitly demonstrates the efficacy of our abstract mod-
eling of human sketches. SketchMate [53], SketchGCN
[54] and SketchFormer [38] are three contemporary sketch
recognition methods with various advanced designs, includ-
ing dual-branch networks, designing static-dynamic graph
convolutions and stacking transformer layers. We include
three variants of the proposed method based on the different
choices of feature-aggregator h(-), namely Ours-Graph,
Ours-Critic and Ours-Extrapolate. Without further ab-
lation, we take ¢ = 2 (K =1+ 2 x 2 = 5) throughout our
recognition experiment. Retrieval: we compare with two
FG-SBIR baselines, Siamese-Tri [55] and Siamese-Tri-SA
[45]. Siamese-Tri is the pioneering FG-SBIR work that
still underpins the basis of contemporary FG-SBIR mod-
els. We differ from it by extracting sketch representation
with our F'(x, s,a) and keep the photo feature learning un-
changed with f(z). Siamese-Tri-SA advances Siamese-Tri
by introducing spatial attention module in network back-
bone and modifying the heuristics-based triplet ranking loss
to a learnable higher-order energy function. Like recog-
nition task, we also include our own three variants under
different choices of h(-), but we take a different value of
g = 3 since we believe task requires instance-level differen-
tiation naturally requires a finer-grained structural abstrac-
tion. Generation: Our competitors comprise of three exist-
ing works for vector sketch generation, SketchRNN [19],
SketchPix2seq [8] and SketchHealer [40]. SketchRNN is
the pioneering work for generative sketch modelling using
deep learning methods with a encoder-decoder architecture.
Subsequent works focus on improving the RNN encoder of
SketchRNN, with CNN and GCN alternatives in Sketch-
Pix2seq and SketchHealer respectively. Our F'(z, s, a) can
also be seen as an attempt to advance generative sketch en-
coder and thus directly comparable. Since sketch healing
task takes corrupted partial sketch as input, smaller grid
blocks will be inevitably suffered more by the visual discon-
tinuities. We therefore take ¢ = 2. We empirically validate
on a corruption level of sketch with 30% throughout, i.e., §
is always formed by randomly removing 30% stroke points
from s. Finally, we regard Ours-Graph as our full model,
i.e., Ours, because of its superior performance across three
sketch analysis tasks.
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5. Analysis for Discriminative Tasks

Our first discovery is that introducing explicit abstrac-
tion model for sketch feature learning can be a simple but
highly effective performance booster for sketch discrimina-
tive tasks. With as few as one abstraction level, it is able to
consistently outperform the baselines and achieves compet-
itive results. Below is a more detailed analysis with refer-
ence to Table 1, 2, 3 and 4.

What does the competitiveness of ResNet-50 tell us? It
is somehow surprising to see that by fine-tuning a sim-
ple prototypical ImageNet pre-trained model (ResNet-50)
leads to significantly better performance over some base-
lines (SketchGCN [46], SketchFormer [38]) specifically de-
signed for the sketch recognition task. A closer inspection
reveals the reason behind: these methods all aim to di-
rectly utilize either the absolute or relative coordinates of
human sketches for feature learning. It is then natural to
disregard CNNs and adopt transformer or dynamic graph
pooling layer that inherently admit sequence input. These
attempts originate from the observation that compared with
static photos, human sketching is a temporal process and the
dynamics in between should be beneficial if mined properly.
Our approach shares the intuition on using vector sketches
(as per the input s) but also advocates the representational
power of CNN (as per f(x)), i.e., striving the best from both
worlds (vector and raster).

Does the choice of /(-) matter? Yes. The conclu-
sion is evident from the poor performance of non-learning
based methods (Ours-Mean/Max/Concat), which are detri-
mental and worse than baselines (ResNet-50). By introduc-
ing learnable parameters (Ours-Graph/Critic/Extrapolate),
positive impact begins to emerge but the learning strategy
still matters. The fact that Ours-Critic is even inferior to
Ours-Extrapolate (an RNN model only implicitly exploits
the dynamics between abstraction levels), further shows that
how delicate a choice of h(-) can be. Ours-Graph comes to
the rescue by graph learning on a hierarchical affinity matrix
which is more fitting given the nature of our representation
— a coarse-to-fine abstraction of sketch data.

Are more abstraction levels always better?  From Ta-
ble 3, we can see that different tasks demand different ab-
straction levels. For tasks requiring finer-grained visual dis-
crimination, more abstraction levels with local control are
naturally called into play, and indeed proved so in our em-
pirical evaluation — best FG-SBIR performance is obtained
with ¢ = 3 compared with ¢ = 2 for that in recognition
task. On the other hand, we argue that the size of sketch
data is another key factor that determines the best value of
¢: only when the visual source is large enough can it be able
to support more abstraction levels. We validate the effect of
input sizes in Table 4 and the result confirms our hypothe-
sis. With input size enlarging from (W = 224, H = 224),

ResNet-50  SketchMate [53]  SketchGCN [54]  SketchFormer [38]
C876% 7944% 731% 7834%
_Ours-Graph __ Ours-Critic __ Ours-Extrapolate ___Ours-Mean

81.51% 80.42% 80.91% 77.41%

Ours-Max Ours-Concat

Co780% 7822%

Table 1: Comparisons of performance for sketch recogni-
tion task. Numbers reported represent top-1 classification
accuracy.

Dataset
Method

QMUL_Shoe_ V2  QMUL_Chair_V2
Acc@1 Acc@10 Acc@1 Acc@10

Siamese-Tri [55] 30.83 79.28 45.25 89.64

_ Siamese-Tri-SA [45] ____31.08__ 8003 _ 4724 = 90.85
Ours-Graph 32.33 79.63 52.89 94.88
Ours-Critic 31.07 79.63 47.60 90.08

_Ours-Extrapolate 3159 _ 80.71 _ 49.22 = 90.44
Ours-Mean 29.13 80.48 43.24 89.25
Ours-Max 29.58 79.88 44.00 90.42
Ours-Concat 30.18 80.78 44.83 90.41

Table 2: Comparisons of performance for FG-SBIR task.
Acc@K represents whether the correct photo corresponding
to the query is within the first K position in the ranking list.

Level
m (@=1,K=1) (q=2,K=5) (q=3,K=14) (q=4, K=30)

Recognition 80.04% 81.51% 80.31% 80.07%

FG-SBIR (Shoe) 30.93% 31.23% 32.33% 31.52%
FG-SBIR (Chair) 46.47% 47.64% 52.89% 50.41%

Table 3: Effects of different abstraction levels ¢ for two
sketch discriminative tasks under our full model.

performance of ¢ = 4 gets increasingly improved and sur-
passes that of ¢ = 2 and ¢ = 3 for recognition and FG-
SBIR task respectively, when the dimension of visual input
reaches (W = 512, H = 512).

What does abstraction at feature-level looks like? In
Figure 3, we further carry out model visualization to show
how different abstraction levels in our model capture differ-
ent perspectives of visual traits and offer insights on how
better feature learning is taking place. We start with a set of
sketch samples from one category and extract their features
from a random ay, at each abstraction level [. We cluster the
level-specific features using t-SNE [50] and visualize the
sketches close in the embedding space. We can observe that
our learned representation aligns well to our abstract model-
ing of sketch data with clear sign of hierarchical behaviors.
At = 1 our model recognizes the general shapes and poses
of an objects, and gradually moves onto discern and sum-
marize more subtle and local visual patterns as [ increases —
a strong evidence for appearance abstraction.
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Figure 3: Qualitative evidence of abstraction happening at feature level. We visualize the sketch samples that are close in the
feature embeddings across different abstraction levels. More details in text.

.. (q=2, K=5) 81.51%
Recognition (q=4. K=30) 30.07%
_ _ ’77:777777777@#§R;H5777793§%’
(=224, W=22d) - FGSBIR(Shoe) (g k=30) 31520
. (q=3, K=14) 52.89%
FG-SBIR (Chair) 47 /=) 1%
e (q=2, K=5) 81.67%
Recognition  (q=4.K=30) __ 80.90%
3 3 ) (@=3,K=14) 32.34%
(H=384, W=384) FG-SBIR (Shoe) (q=4. K=30) 32.90%
L ot e (q=3,K=14) © 53.63%
FG-SBIR (Chair) (q=4, K=30) 5381%
e (q=2, K=5) 81.89%
Recognition  (q=4.K=30) __ 82.05%
~ ~ ) (q=3, K=14) 3327%
(H=SILWSSID) - FGSBIR(Shoe) (g k=30)  33.51%
. (q=3, K=14) 54.07%
FG-SBIR (Chair) A7 = 1250

Table 4: Impact of larger sketch size on the best abstraction
levels for two sketch discriminative tasks. ¢ = 2 and ¢ = 3
correspond to the best ¢ value for recognition and FG-SBIR
respectively when H=W=224.

6. Analysis for Generative Tasks

Quantitative results  Evaluating image synthesis models
remain an open question with few existing advanced met-
ric like FID [21] designed for natural images only. Conse-
quently, most previous studies on generative human sketch
modeling either run human perceptual studies or explore
computational metrics to predict human perceptual simi-
larity judgment. We perform both quantitative evaluations.
Computational metric: Given a corrupted partial sketch,
we measure the generative healing capability of different

models by testing the recognizability of their synthetic out-
comes. The results in Table 5 show that our model out-
performs all competitors. Particularly, the significant gap
between Ours and SketchRNN and SketchPix2seq echoes
our findings in discriminative task analysis in Sec. 5 that
it is critical to leverage both sequential nature and CNN-
based visual learning for robust sketch representation. Hu-
man perceptual study: We first form a test set for human
study with 50 unseen sketches randomly selected across
all 7 object categories. Each sketch is subjected to man-
ual corruption before feeding into four methods for healing
effect. We recruit 10 human judges and ask each to com-
plete 100 comparative trials. In each trial, each worker is
shown one corrupted partial sketch input and four synthetic
sketches from different methods with orders randomized,
and asked to choose one generation result based on two cri-
teria: (i) correspondence: which sketch is a more faithful
resemblance of the corrupted input; (ii) naturalness: which
sketch after healing is more visually pleasant with natural
sketching curves and less discontinuities. In Table 6, we can
see that our model is preferred over the other competitors,
drawing the same conclusion as our computational metric.

Qualitative results Figure 5 shows some examples pro-
duced by our method and other competitors. Following ob-
servations can be made: (i) our method is not only able
to heal the corrupted partial sketch input with a complete
novel sketch rendition just like humans do, but can also
able to keep the general appearances and structures, e.g.,
cat whiskers and nose. (ii) the visualization aligns well
with the quantitative evaluation that the superiority of our
method over SketchRNN and SketchPix2seq is significant,
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Figure 4: Qualitative comparisons on sketch healing tasks. Input corruption level is at 30%. Illustrations here have never

been seen by its corresponding model during training.

Figure 5: Comparisons of typical sketches generated by our methods under different abstraction levels. Larger ¢ value means

finer structural abstraction with finer-grained visual control.

SketchRNN [19]  SketchPix2seq [8] SketchHealer [46] Ours

37.14% 33.25% 58.67% 60.01%

Table 5: Recognition accuracy of s from generative healing
of 5 under different methods.

SketchRNN [19]  SketchPix2seq [8] SketchHealer [40] Ours

13.83% 11.44% 35.51% 39.22%

Table 6: Preference of humans on the sketch healing results
under different methods. Chance is at 25%.

and despite the gap becomes less evident when comparing
with SketchHealer, it is still able to identify our advanta-
geous subtleties with a zoom-in look. e.g., the beak of the
bird and antennas of the butterfly. (iii) the effect brought
with explicit abstraction of sketch data is clearly manifested
in the rendering of more regularized visual structures, e.g.,
the airplane rudder and the angel wings. We further demon-
strate the effects of different abstraction levels on the gener-
ative model behavior in Figure 5, and draw the same conclu-
sion throughout the paper — more abstraction levels, finer-
grained visual learning control.

7. Conclusion

We recognized the need for learning sketch representa-
tions that specifically capture their inherent abstract nature.
We presented a simple yet very effective representation by
factorizing the sketch abstraction process into appearance
and structure. We explored different frameworks that best
learn a synergistic feature across multiple granularity levels.
We are able to control the expressive granularity a sketch
representation, and tailor solutions for different target tasks.
Albeit with its simple design, we report state-of-the-art per-
formance on a variety of sketch tasks, echoing the impor-
tance of modeling sketch abstraction at design. Last but not
least, we hope this paper can trigger potential discussions
on how to interpret the abstract nature of human sketch data
and model accordingly for efficient sketch representation.
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