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Abstract

Contrastive learning has been widely used to train
transformer-based vision-language models for video-text
alignment and multi-modal representation learning. This
paper presents a new algorithm called Token-Aware
Cascade contrastive learning (TACo) that improves con-
trastive learning using two novel techniques. The first is the
token-aware contrastive loss which is computed by taking
into account the syntactic classes of words. This is mo-
tivated by the observation that for a video-text pair, the
content words in the text, such as nouns and verbs, are
more likely to be aligned with the visual contents in the
video than the function words. Second, a cascade sampling
method is applied to generate a small set of hard nega-
tive examples for efficient loss estimation for multi-modal
fusion layers. To validate the effectiveness of TACo, in
our experiments we finetune pretrained models for a set of
downstream tasks including text-video retrieval (YouCook2,
MSR-VTT and ActivityNet), video action step localization
(CrossTask), video action segmentation (COIN). The results
show that our models attain consistent improvements across
different experimental settings over previous methods, set-
ting new state-of-the-art on three public text-video retrieval
benchmarks of YouCook2, MSR-VTT and ActivityNet.

1. Introduction
Aligning or grounding language to videos is a challeng-

ing topic in the context of vision-language (VL) research
as it requires the model to understand contents, dynamics,
and causality presented in videos [3]. Inspired by the suc-
cess of BERT [10] in natural language processing, there is a
growing interest in applying transformer-based multi-modal
models for video-text alignment and representation learn-
ing [40, 39, 59, 32, 14, 27]. These models are typically
pretrained on large amounts of noisy video-text pairs using
contrastive learning [34, 33], and then applied in a zero-
shot manner or finetuned for various downstream tasks,
such as text-video retrieval [51], video action step localiza-
tion [60], video action segmentation [42], video question
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Figure 1: The proposed token-aware cascade contrastive
learning pipeline. We compute three contrastive losses: 1)
sentence-level loss L1 over all negative examples; 2) token-
level loss L2 on content words (noun, verb) over all nega-
tive examples; 3) sentence-level loss L3 over hard negative
examples sampled based on L1 and L2 online.

answering [43, 26] and video captioning [57].
In this paper, we present a new variant of con-

trastive learning, Token-Aware Cascade contrastive learn-
ing (TACo) to improve the video-text alignment for both
large-scale pretraining and downstream specific tasks. As
the name indicates, TACo makes two modifications to the
conventional contrastive learning used in video-language
domain. The first is the token-aware contrastive loss which
is computed by taking into account the syntactic classes of
words. This is motivated by the observation that, given
a video and its corresponding text, content words, such
as nouns and verbs, are more likely than function words
to be aligned with (or grounded to) visual contents in the
video. Conventional contrastive learning typically compute
the loss after aggregating over all the words in the text and
frames in the video (loss L1 or L3 in Fig. 1). In contrast,
the token-aware contrastive loss is computed using only a
subset of words whose syntactic classes belong to a pre-
defined set (e.g., nouns and verbs), which forces the ground-
ing of individual words to the video (loss L2). For example,
we pay particular attention to the words “add”, “tomatos”,
“pan” and “stir” in Fig. 1.
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The second technique we introduce is a cascade sam-
pling method to find a small set of hard negative exam-
ples for training the multi-modal fusion layers. Consider
a batch of K video-text pairs. For each of the video-text
pairs, the ideal case is that we use the remaining K − 1
negative videos or texts to compute the contrastive loss af-
ter multi-modal fusion. However, the cost of computing the
contrastive loss quickly becomes prohibitive when it is cou-
pled with multi-modal fusion layers, considering its high
complexity O(K2 × L2) where L is total number of visual
and textual tokens. A conventional way to address this is
using random sampling to select a small subset of negative
pairs. In this paper, instead of random sampling, we pro-
pose a cascade sampling method as shown in the top-right
of Fig. 1 to efficiently select a small set of hard negative
examples on the fly during training. It leverages the video-
text alignment scores computed in L1 and L2 before multi-
modal fusion layers, and helps to learn the multi-modal fu-
sion layers more effectively without any extra overhead.

We perform a comprehensive empirical study to val-
idate the effectiveness of TACo in both pretraining and
dataset-specific scenarios. We apply TACo and different
variants of contrastive losses to train or pretrain and fine-
tune on various downstream tasks including text-video re-
trieval (YouCook2, MSR-VTT and ActivityNet) [57, 51,
12], video action step localization (CrossTask) [60] and ac-
tion segmentation (COIN) [42]. Our results show that TACo
improves the text-video retrieval performance over current
state-of-the-art across three benchmarks. Furthermore, the
learned multi-modal representation and video representa-
tion can be effectively transferred to CrossTask and COIN,
and achieve better or comparable performance to current
state-of-the-art methods.

2. Related work
Video-language pretraining. Realistic application sce-
narios around videos have prompted emergence of vari-
ous video-language tasks, such as text-video retrieval [29,
54, 52], video question answering [20, 26], video caption-
ing [53, 58], etc. Inspired by the success of BERT for large-
scale pretraining in language domain [10], transformers
have been employed in the video-language domain [40, 59,
32, 27] as well as image-language domain [41, 31, 56, 28].
Combined with large scale datasets, e.g. Howto100M [34]
this approach has proven to be effective on various down-
stream tasks. Depending on the tasks of interest, some ap-
proaches train a multi-modal transformer using a combina-
tion of multiple losses including video-text alignment [40,
59, 32, 27], masked token (words/frames/objects) predic-
tion [40, 59, 32], and frame order prediction [27], etc.
Some other approaches exploited various contrastive learn-
ing techniques to directly optimize the feature space with-
out multi-modal fusion [34, 33, 30, 14]. In most of previ-

ous works, these two approaches were explored separately.
Very recently, an updated version of [32] used two indepen-
dent alignment losses before and after multi-modal fusion in
a single framework. In this paper, however, these two losses
cooperate closely with each other during training in that the
earlier stage helps to discover the hard negatives while the
multi-modal layers with more capacity help to tackle those
hard samples particularly.

Video-text alignment. Aligning videos to text requires the
model to understand motion and temporal coherence. Some
works have relied on attention mechanisms to extract key
information from videos [44, 54], while others preserve vi-
sual information by composing pairwise joint representa-
tion using 3D tensors [52] or use multi-level video encoders
to separately encode the spatial and temporal cues [11].
These models usually rely on a rank or margin loss to learn
the correct alignment for video-text pairs. Another line
of work learns fine-grained or hierarchical alignment be-
tween videos and texts [55, 48, 6]. In [48], the authors
proposed a fine-grained alignment by extracting the nouns
and verbs from action phrase in a sentence and projecting
them into a shared space with videos. Alternatively, the au-
thors in [6] extract a hierarchical semantic graph and apply
graph reasoning to achieve the alignment at different lev-
els. Similar ideas have been also proposed in the image-
text alignment by decomposing the images and texts into
sub-tokens [25, 49]. Thus far, it has not been studied how
these task-specific architectures can be integrated into large-
scale pretraining. In this paper, we are the first to propose
a simple yet effective token-aware contrastive loss for fine-
grained alignment for pretraining and downstream tasks.

Negative sampling. Key to efficient contrastive training
is a good source of negative examples. Most of current ap-
proaches use random sampling strategies for training video-
text alignment [59, 32]. However, in the domain of image-
text retrieval, a few works tried hard negative sampling to
choose the hardest negatives for training. In [2, 13], the
authors computed the alignment scores for all image-text
pairs in a mini-batch and use the hardest negative sample
to compute the marginal loss. However, this strategy can
only be applied without multi-modal fusion. In those mod-
els which have multi-modal fusion layers for better repre-
sentations [31, 8], the authors instead compute the match-
ing score offline and then use it to sample hard negatives
for finetuning image-text retrieval model, which however is
difficult for large-scale pretraining due to the high compu-
tational cost. In this paper, our cascade hard negative min-
ing is particularly designed to address these issues as we
efficiently select the hard negative samples online before
multi-modal fusion and send them to the fusion layers for
computing the loss. As we will show in our experiments,
this technique can be seamlessly applied to both large-scale
pretraining and downstream tasks.
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3. Method

3.1. Framework

As depicted in Fig. 1, our model has three components:
Video encoding module fθv . It is implemented by a stack
of self-attention layers parameterized by θv . Here, we as-
sume the input video features have been already extracted
using some pre-trained models such as 2D CNN (e.g.,
ResNet [18]) or 3D CNN (e.g., I3D [4], S3D [50]). Given
the input video embeddings, video encoder starts with a lin-
ear layer to project them to the same dimension d as fol-
lowing self-attention layers. We denote the output of our
video encoder for a video clip by a sequence of m features,
x = {x1, ..., xm} ∈ Rm×d. The number of features m de-
pends on the choice of sampling frame rate and the video
feature extractor, which we will discuss in Sec. 4.
Language encoding module fθt . We use pretrained tok-
enizer [47] and BERT [10] to tokenize the input texts and
extract textual features, respectively. Given a raw sentence,
we append a “[CLS]” and “[SEP]” to the beginning and
end, respectively. At the top, we can obtain a sequence
of n textual features y = {y1, ..., yn} ∈ Rn×d. We en-
sure the output feature dimension of video encoder to be
identical to that of language encoder. During training, we
update the parameters θt in our language encoder to adapt
to the texts in specific domain, e.g., cooking instructions in
YouCook2 [57].
Multi-modal fusion module fθm . It also consists of self-
attention layers with learnable parameters θm. It takes video
features x ∈ Rm×d and text features y ∈ Rn×d from two
separate modalities as inputs and output the (m + n) fea-
tures z = {z1, ..., z(m+n)} ∈ R(m+n)×d. To help it to dis-
tinguish the video and language tokens, we use a token type
embedding layer to learn two embeddings and add them to
the visual and textual tokens, separately. Similar to original
Transformer [46], we include a positional embedding layer
to encode the absolute token positions in the input sequence.

The above three components comprise our video-text
alignment model which is then trained with the proposed
token-aware cascade contrastive loss. We start with a brief
review of conventional contrastive learning and then intro-
duce the proposed technique.

3.2. Contrastive learning: a revisit

Given a set of N video-text pairs {(vi, ti)}Ni=1, our goal
is to learn an optimal scoring function s such that paired
video and text (vi, ti) have higher scores than all the other
unmatched pairs (vj , tk), j 6= k. From the probabilistic
perspective, aligning vi to ti is equivalent to maximizing
the conditional probability p(vi|ti) while minimizing the
probability for all negative pairs p(vj |ti), j 6= i. Accord-

ing to [15, 36], p(vj |ti) can be approximated by:

p(vj |ti) ∼
exps(vj ,ti)∑N
k=1 exp

s(vk,ti)
(1)

where s(v, t) is the alignment score between v and t; the
denominator is a sum over all possible videos, which is a
partition function for normalization. Adding cross-entropy
loss on p(vj |ti), we can then derive the NCE loss [15]:

Lnce =

N∑
i=1

− log p(vi|ti)

∼
N∑
i=1

− log

(
exps(vi,ti)

exps(vi,ti) +
∑
k 6=i exp

s(vk,ti)

) (2)

The denominator in Eq. 2 requires a sum over all videos
in a dataset, which is intractable in practice. Therefore, we
usually compute the NCE loss on a mini-batch of K(K �
N) video-text pairs sampled from the whole dataset. Ide-
ally, we want to learn the parameters θ = {θv, θt, θm}
of the model to minimize the above NCE loss, such that
∆ = s(vi, ti) − s(vj , ti) is maximized over all tuples
(ti, vi, vj), j 6= i. A number of previous works used the
above formula for contrastive learning [33, 59]. Mean-
while, there are some variants of computing contrastive loss
in video-langauge representation learning. For example,
[27, 14] omits the denominator and incorporate a margin
s.t. s(vi, ti) > s(vj , ti) + δ, ∀j 6= i in a mini-batch. [32]
optimizes binary cross-entropy (BCE) by assigning (vi, ti)
a positive label (1) and other pairs a negative label (0).

3.3. TACo: our approach

The way of using contrastive learning in previous works
has two issues. First, the loss is computed at sentence-
level by taking ‘[CLS]’ token [14] or the maximum over
all tokens [33] in a sentence. Clearly, the content words
(e.g., nouns, verbs) are more likely to align with the visual
contents or concepts in the videos compared with function
words (e.g., stop words). Second, the high computational
cost in multi-modal fusion layers hinder the usage of large
batch of negative samples, which however is essential to
contrastive learning [33, 17, 7]. Motivated by these two is-
sues, we introduce TACo, a simple yet effective method to
improve the contrastive learning. We elaborate below how
these contrastive losses are computed.

Given the K video-text pairs {(vi, ti)}Ki=1 in a mini-
batch, we first use our video encoder fθv and lan-
guage encoder fθt to obtain a batch of video features
X = {x1, ..., xK} ∈ RK×m×d and text features Y =
{y1, ..., yK} ∈ RK×n×d, respectively. Then, we average
all tokens of a video clip vi to get x̄i ∈ R1×d, and take the
first ‘[CLS]’ token for each text ti to get ȳi ∈ R1×d. Based
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on x̄ and ȳ, we compute the sentence-level contrastive loss:

L1 = −
K∑
i=1

log

(
expx̄i·ȳi/τ1

expx̄i·ȳi/τ1 +
∑
j 6=i exp

x̄j ·ȳi/τ1

)
(3)

where τ1 is a scalar temperature parameter. In Eq. 3, the
computation is simply a number of dot-products between
video and text features. Giving such efficiency, we can use
all the K − 1 negative samples in a mini-batch to compute
the loss. Through this, we optimize θv and θt so as to project
the video and text samples into an aligned feature space.

The ‘[CLS]’ token and average of video tokens in Eq. 3
overlooks the differences across tokens and frames, and thus
may not provide the pressure to push individual tokens (e.g.,
nouns and verbs) to ground on the specific video contents.
To encourage correct alignment, in addition to the sentence-
level loss, we introduce a token-level contrastive loss:

L2 = −
K∑
i=1

∑
p∈Pi

log

 exps(xi,y
p
i )/τ2

exps(xi,y
p
i )/τ2 +

∑
j 6=i

exps(xj ,y
p
i )/τ2


(4)

where τ2 is another scalar temperature parameter; Pi is the
indices of tokens of interest in i-th text, and ypi is the p-th
token embedding in i-th text. s(·) measures the similarity
between video features and specific token embedding ypi . It
first computes the dot-product between ypi ∈ R1×d and all
m video tokens x ∈ Rm×d, and then take the maximum
over m scores to get the final alignment score. Through
Eq. 4, the model uses individual tokens as anchors to align
with video, which is complementary to the sentence-level
loss in Eq. 3. Similar to Eq. 3, we can compute this token-
level contrastive loss efficiently, and thus use all the K − 1
negative samples. As a whole, these two losses are used to
optimize θv and θt in a token-aware manner.
Token of interest. In Eq. 4, we need to decide which tokens
should be included in Pi. In this paper, we heuristically
select nouns and verbs as the targets considering they are
more “concrete” in the videos. In practice, nouns or verbs
usually have different discriminativeness even if they are all
the same type. For example, “man” is a noun but is less in-
formative than “gymnast”. To reflect this, we further assign
different words with different weights by computing their
inverse document frequency (idf) [21]. A higher idf means
it is more unique across the corpus, and hence will weigh
more when computing the token-level contrastive loss. An-
other practical issue for computing the loss is that the tokens
are usually sub-words due to the BERT tokenizer. Hence,
for all tokens that belongs to the same word, we will assign
the same weights accordingly.

After computing the token-aware contrastive loss, we
feed the features from separate modalities to multi-modal
fusion layers to enable more interactions between them two.
Similar to previous work [59], we take the feature corre-
sponding to the “[CLS]” in the (m+ n) outputs. We regard

this as the summary of two modalities and then compute the
contrastive loss:

L3 = −
K∑
i=1

log

 expw·z
cls
i,i

expw·z
cls
i,i +

∑
j 6=i exp

w·zclsj,i

 (5)

where zclsj,i is the multi-modal fusion output for “[CLS]” to-
ken taking xj and yi as inputs; w ∈ R1×d is the parame-
ter in a linear layer1. Based on Eq. 5, we optimize all pa-
rameters in our model θ = {θv, θt, θm} in collaboration
with Eq. 3 and Eq. 4.

In Eq. 5, a practical challenge is that we can hardly use
all (K − 1) negative samples in the mini-batch, due to the
high computational and memory cost in the multi-modal fu-
sion. The O(d(m+ n)2) complexity of self-attention layer
makes it intractable to pass all K ×K pairs into the multi-
modal layers. Previous work solved this by performing ran-
dom sampling to cut the number of negative samples to K ′.
However, randomly choosing negative samples may result
in sub-optimal learning since the pairs are scarce. We there-
fore introduce a cascade sampling strategy to find hard neg-
atives instead of random ones.
Cascade hard negative sampling. To reduce the compu-
tational cost in Eq. 5, we choose among all possible video-
text pairs a small subset which are most difficult. However,
computing the alignment scores for all pairs using Eq. 5 and
then select the hard negatives is a “chicken-and-egg” prob-
lem. Instead, we propose to use the similarities between all
video-text pairs computed in Eq. 3 and Eq. 4 as the guid-
ance. Specifically, for each text-video pair (vj , ti), we take
their global similarity x̄j · ȳi computed in Eq. 3 and token-
level similarity by aggregating

∑
p∈Pi

s(xj , y
p
i ) for all to-

kens of interest in ti. Then we sum the two similarities as
the alignment score for the given pair. For each text, we
choose the top K ′ aligned negative videos and vice versa.
The resulting 2K × (K ′ + 1) pairs are then fed into the
multi-modal fusion layers. Through this strategy, we can ef-
fectively select the difficult negative samples on the fly at no
extra cost. Since the multi-modal fusion layers has more ca-
pacity (parameters) to distinguish these hard negatives from
positive ones, our sampling strategy naturally prompts the
cooperation between the three contrastive losses.

Finally, we present a comprehensive comparison to dif-
ferentiate our model with previous works with respect to the
used contrastive learning method in Table 1.

3.4. Objective

The training objective in our method is finding optimal
θ = {θv, θt, θm} by minimizing the combination of the
above three contrastive losses:

arg min
θv,θt,θm

N∑
i=1

(L1 + λtL2 + L3) (6)

1for clarity, we omit the bias term in the formula
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Method Token-aware Early stage Later stage Cascade Loss

VideoBert [40] 7 7 3 7 BCE
CBT [39] 7 7 3 7 NCE
TJVE [34] 7 3 7 7 Margin
MIL-NCE [33] 7 3 7 7 NCE
ActBert [59] 7 7 3 7 BCE
UniVL [32] 7 3 3 7 NCE
MMT [14] 7 3 7 7 Margin
TACo(Ours) 3 3 3 3 NCE

Table 1: A comparison of video-language pretraining meth-
ods regarding contrastive learning strategies. “Early stage”
and “Later stage” mean computing the loss before and after
multi-modal fusion, respectively. “Cascade” means using
cascade hard negative sampling.

where λt is the weight of token-level loss (0.5 by default).
During inference, we make the prediction by summing the
alignment scores from all the three scoring functions.

4. Experimental setup

4.1. Datasets

In our experiments, we train and evaluate our model on
the following established benchmarks:
• YouCook2 [57] consists of 2k videos about routine cook-
ing activities of 89 recipes. Each video contains multiple
video clips annotated with text descriptions by human anno-
tators. Following [34, 33], we train our models on the train-
ing split, and report the text-video retrieval performance on
around 3.5k validation clips.
• MSR-VTT [51] contains 10k video clips associated with
200k sentences. There are two validation splits used in pre-
vious work. In [30, 14], the training set has 9k clip-text pairs
with the remaining 1k pairs for evaluation, which we denote
by split1. In [52, 34, 33], 1k clip-text pairs are sampled from
the 3k pairs in test set for evaluation, while the original 7k
pairs are used for training. We denote this by split2. We
report text-video retrieval results using both splits.
• ActivityNet [24]. It consists of 20K YouTube videos, each
of which is associated with multiple human-annotated cap-
tions. Following [55, 14], we concatenate all the captions
for a video into a paragraph and evaluate the paragraph-
video retrieval on the “val1” split.
• Howto100M [34]. We compare with previous work under
the pretraining protocol on Howto100M [34, 33, 59, 32]. It
was collected from YouTube and contains over 1.2M nar-
rated videos associated with automatically generated tran-
scripts. Each video contains over 100 clips on average.

To further verify the transferrability or our learned multi-
modal representation from Howto100M, we also evalu-
ate the action step localization and action segmentation on
CrossTask [60] and COIN [42], respectively.

4.2. Settings
Previous work use a variety of different video and lan-

guage representations which we find significantly affect the
final performance. We summarize different choices below:
• Video representations. For 2D CNN, Resnet-152 [18]
is used to extract feature map and then globally pooled to
2048-d [34, 32]. For 3D features, commonly used mod-
els are I3D [5], R(2+1)D [45] and S3D [50]. In [59],
the authors further extract objects from the video clips.
In [30, 14], the authors use collaborative experts to extract
features from audio, scene, OCR, face, speech, etc.
• Language representations. There are primarily four vari-
ants: 1) GoogleNews pretrained word2vec (w2v) [35] used
in [30, 34, 33]; 2) LSTM or Bidirectional LSTM [19];
3) pretrained BERT [10] used in [40, 59, 32, 14] and 4)
OpenAI-GPT [37] used in [30].

In this paper, we use a pretrained BERT-base model for
language representation as in [59, 32]. For video features,
following [34, 33, 32], we extract 2D CNN features using
Resnet-152 (R-152) pretrained on ImageNet [9]. For 3D
CNN features, we use I3D (with Resnext-101 backbone)
pretrained on Kinetics-400 [22] and S3D [50] pretrained on
Howto100M [33]. The off-the-shelf pretrained weights are
provided by [16] and [33]. For simplicity, we denote them
by I3D-X101 and S3D-HM in the following.

Another discrepancy among different methods is the
number of self-attention layers used in the model. In [59],
the authors use 12 multi-modal self-attention layers while
6 video encoder layers and 2 multi-modal fusion layers are
used in [32]. Differently, 4 multi-modal self-attention layers
are used in [14]. In this paper, for all our ablation studies
below, we use 1 and 2 self-attention layers for our video
encoder and multi-modal fusion, respectively. To compare
with previous work on specific dataset, we use 2 video
encoding layers. While pretraining the model with large-
scale dataset Howto100M [34], we increase to 4 video en-
coding layers for comparable model capacity to previous
works [59, 32, 14]. Note that this largest model is still
smaller than or on par with the aforementioned methods.

4.3. Implementation details
For YouCook2 and MSR-VTT, the maximum number of

video and text tokens are set to 48 and 30, respectively. For
paragraph-video retrieval on ActivityNet, we set them both
to 256. The 2D R-152 feature is extracted for one frame
per second, and then globally pooled to 2048-d. For 3D
CNN features, we follow [34] to sample video frames at 24
fps and extract an I3D-X101 feature every 16 frames. This
results in 1.5 2048-d feature per second. For Eq. 3 and 4,
we set the temperatures τ1 and τ2 both equal to 1.
Training on separate datasets. In this setting, we train
models from scratch using the training set provided in
YouCook2, MSR-VTT and ActivityNet separately. We train
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YouCook2 MSR-VTT (split1)

Video Representation R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑MR↓
R-152, Baseline 4.1 13.2 19.4 81.0 16.4 42.6 55.8 8.0
R-152, Ours 4.6 14.1 20.4 71.0 18.9 46.2 58.8 7.0

I3D-X101, Baseline 2.1 8.1 12.7 125.0 14.7 40.83 53.2 9.0
I3D-X101, Ours 2.6 8.9 13.2 115.0 20.6 44.0 56.9 7.0

R-152+I3D-X101, Baseline 4.2 13.5 20.0 75.0 16.6 45.4 58.5 7.0
R-152+I3D-X101, Ours 4.7 14.3 21.9 68.0 23.1 50.5 64.0 5.0

S3D-HM, Baseline 13.8 37.2 51.1 10.0 18.7 47.2 62.2 6.0
S3D-HM, Ours 16.1 40.3 52.2 9.0 23.9 51.4 65.0 5.0

R-152+S3D-HM, Baseline 13.3 35.8 48.9 11.0 21.4 48.1 61.5 6.0
R-152+S3D-HM, Ours 15.8 39.8 52.4 10.0 24.5 52.8 65.5 5.0

Table 2: Text-video retrieval performance on YouCook2
and MSR-VTT with different feature types. S3D pretrained
on HowTo100M outperforms others with large margin.

the model for 30k iterations with batch size 128. For each
training sample, we use our cascade sampling strategy to
sample 8 hard negatives. We use Adam [23] as the opti-
mizer with initial learning rate 1e−4. A linear learning rate
decay is applied after 5k warm-up iterations. The weight
decay is set to 1e−5.
Pretraining and finetuning. We pretrain our model on
Howto100M [34]. Since the original annotated video clips
in Howto100M are usually short with a few seconds, we
merge the adjacent clips so that the resulted text has at least
10 words. We use Adam [23] as the optimizer with ini-
tial learning rate 1e−4. We train the model for 500k itera-
tions with batch size 64, and also sample 8 hard negatives
for each sample using our cascade sampling strategy. After
pretraining, we finetune the pretrained models on different
datasets using the same setting as above except for a lower
initial learning rate 2e−5 and less finetuning iterations 20k.
Evaluation metrics. For text-video retrieval, we use Re-
calls at different points (Recall@n or Rn, with n as a spe-
cific number) and Median Rank (MR) as the metrics follow-
ing previous works [59, 32]. In all tables, we use ↑ or ↓ to
indicate higher or lower is better, respectively.

5. Results
We first evaluate text-video retrieval performance and

then study whether the learned representations can be trans-
ferred to other tasks on CrossTask and COIN.

5.1. Text-video retrieval
5.1.1 Comparing with baselines
We first show the comparisons with baselines to inspect the
effects of different components in our model.
Video representations. We train our model with differ-
ent video representations as described above and compare it
with the baseline model which has identical architecture but
merely trained with L3 as depicted in Eq. 5. The baseline

YouCook2 MSR-VTT (split1)

Losses Cascade R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓
L1 n/a 14.1 35.7 48.8 11.0 22.9 49.7 61.7 6.0
L3 n/a 13.3 35.8 48.9 11.0 21.4 48.1 61.5 6.0
L1 + L3 7 13.9 37.4 50.7 10.0 22.5 50.8 64.1 5.0
L1 + L3 3 15.0 38.7 51.3 10.0 23.7 51.3 63.9 5.0
L1 + L2 + L3 3 15.8 39.8 52.4 10.0 24.5 52.8 65.5 5.0

Table 3: Text-video retrieval performance with different
technique ensembles. It shows that using our proposed two
techniques produce best results. All experiments use R-
152+S3D-HM video features.

YouCook2 MSR-VTT (split1)

Token of Interest R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓
None 15.0 38.7 51.3 10.0 23.7 51.3 63.9 5.0
det+adp 14.7 38.5 51.2 10.0 23.3 51.0 63.5 5.0
noun 15.4 39.3 51.8 10.0 24.0 51.8 65.1 5.0
verb 15.3 39.0 51.4 10.0 23.9 52.1 64.8 5.0
noun+verb 15.8 39.8 52.4 10.0 24.5 52.8 65.5 5.0

Table 4: Text-video retrieval performance with different to-
kens of interest for computing token-level contrastive loss.
“det” means determiner; “adp” means adposition. We use
the same video features as in Table 3.

contrastive learning method has been adopted in a number
of previous works [59, 32]. This comparison can verify the
effectiveness of our proposed contrastive learning method
considering two models have exactly the same number of
parameters. In Table 2, we can see our proposed method
outperforms baseline across all feature types introduced in
Sec. 4.2 on both YouCook2 and MSR-VTT. Note that our
model uses exactly the same number of parameters to the
baseline model. These consistent improvements demon-
strate the effectiveness and generalization ability of our pro-
posed method. As mentioned above, we also observe the
text-video retrieval performance significantly depends on
the feature types. We can find 3D features (I3D-X101 and
S3D-HM) in general outperform 2D feature (R-152), which
is expected since 2D feature does not capture the motions in
the videos. Among all three feature types, S3D-HM outper-
forms the other two with large margin, which demonstrates
the potential to learn good video representation by pretrain-
ing on large-scale noisy dataset (Howto100M [34]). Be-
cause Howto100M mainly contains instructional videos, it
is more close to YouCook2 than MSR-VTT, and hence we
see more gain on YouCook2. These comparisons indicate
video representations matter much to the final performance.
Component Analysis. In our method, we combine L1, L2,
and L3 during training and inference. Here, we study how
they perform separately and contribute to the final perfor-
mance. In Table 2, we use R-152+S3D-HM as the video
feature and report the results with different loss combina-
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Model Lang. Video YouCook2

R1↑ R5↑ R10↑ MR↓
Random – – 0.0 0.2 0.3 1675
TVJE [34] w2v R-152+I3D-X101 4.2 13.7 21.5 65
UniVL(v1) [32] BERT R-152+I3D-X101 3.4 10.8 17.8 76
TACo (Ours) BERT R-152+I3D-X101 4.9 14.7 21.7 63

UniVL(v3) [32] BERT S3D-HM 7.7 23.9 34.7 21
TACo (Ours) BERT S3D-HM 16.6 40.3 53.1 9.0

Table 5: Comparing text-video retrieval on YouCook2.

Model Lang. Video MSR-VTT

R1↑ R5↑ R10↑ MR↓
Random – – 0.1 0.5 1.0 500.0
JSFusion [52] BiLSTM R-152 10.2 31.2 43.2 13.0
JPoSE [48] w2v TSN+Flow 14.3 38.1 53.0 9.0
TVJE [34] w2v R-152+I-101 12.1 35.0 48.0 12.0
UniVL(v1)∗ [32] BERT R-152+I-101 14.6 39.0 52.6 10.0
TACo (Ours) BERT R-152+I-101 19.2 44.7 57.2 7.0

CE [30] GPT Collaborative Experts 20.9 48.8 62.4 6.0
MMT [14] BERT Collaborative Experts 24.6 54.0 67.1 4.0
TACo (Ours) BERT R-152+S3D-HM 26.7 54.5 68.2 4.0

Table 6: Comparing text-video retrieval on MSR-VTT. The
upper block and bottom block use split2 and split1, respec-
tively. We report them separately for fair comparison.

Model Lang. Video ActivityNet

R1↑ R5↑ R10↑ MR↓
Random - - 0.02 0.1 1.02 2458
DenseCap [24] LSTM C3D 14.0 32.0 65.0 34
FSE [55] GRU C3D+TSN-Inception 18.2 44.8 89.1 7.0
CE [30] GPT Collaborative Experts 18.2 47.7 91.4 6.0
MMT [14] BERT Collaborative Experts 22.7 54.2 93.2 5.0
TACo (Ours) BERT R-152+S3D-HM 25.8 56.3 93.8 4.0

Table 7: Comparing text-video retrieval on ActivityNet.

tions. As we can see, solely using L1 (row 1) or L2 (row
2) for contrastive learning results in sub-optimal video-text
alignment. Simply combining them together (row 3) im-
proves the performance on two datasets. This implies that
different levels of contrastive learning can be complemen-
tary to each other, which supports our earlier hypothesis that
these two losses are synergistic with each other for a better
video-text alignment. When incorporating the hard negative
mining via our cascade sampling strategy (row 4), it fur-
ther improves the performance. Finally, we can see adding
token-level contrastive loss L3 can further improve the per-
formance across all settings (row 5).
Tokens of Interest. We further study the effect of different
tokens of interest on the model performance. By default,
our model uses the noun and verb as the tokens of inter-
est to compute the token-level contrast loss. Here, we vary
them to other types such as adposition (adp) and determiner
(det) for investigation. In Table 4, we replace “noun+verb”

Figure 2: Zero-shot performance on YouCook2 and MSR-
VTT for different settings. score-1-5 correspond to the five
settings in Table 3 from top to bottom.

with “det+adp”, “noun” and “verb” and report the numbers
on two text-video retrieval datasets. As we can see, using
“det+adp” as the target tokens is worse than the baseline
without any token-level contrastive loss. “noun” and “verb”
can both improve the performance while “noun” is slightly
better than “verb”. Finally, combining noun and verb to-
gether achieves the best performance. These results align
with our intuition to use nouns and verbs as the target token
for fine-grained alignment between texts and videos consid-
ering they are usually grounded to video contents.

5.1.2 Comparing with state-of-the-art

We compare with previous works under three protocols: 1)
training and evaluating on separate datasets; 2) pretraining
on Howto100M and evaluating zero-shot performance and
3) finetuning pretrained model on separate datasets.
Results on separate datasets. We separately show the
comparisons on YouCook2, MSR-VTT and ActivityNet in
Table 5, 6 and 7. For a fair comparison with previous works,
we use the same or similar features as listed in the tables.
As we can see, our method outperforms all previous work
across all datasets. These results validates its effectiveness
to learn video-text alignment. Note that previous works ei-
ther use a variety of loss functions [32, 27] or a collection of
multiple features [30, 14]. In contrast, we achieve the best
performance using a simpler contrastive learning pipeline
with smaller model size. This supports our earlier claim
on the efficiency. Comparing the numbers in Table 2, Ta-
ble 5 and Table 6, we can find our model achieves better per-
formance with the same video features when using deeper
video encoder (2 layers v.s. 1 layer).
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Model Video YouCook2 MSR-VTT ActivityNet

R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R50↑ MR↓

Z
er

o-
sh

ot

TJVE [34] R-152+I-101 6.1 17.3 24.8 46.0 7.5 21.2 29.6 38.0 – – – –
ActBERT [59] O-101+ R(2+1)D 9.6 26.7 38.0 19.0 8.6 23.4 33.1 36.0 – – – –
MIL-NCE [33] S3D-HM 15.1 38.0 51.2 10.0 9.9 24.0 32.4 29.5 – – – –
TACo (Ours) S3D-HM 19.9 43.2 55.7 8.0 9.8 25.0 33.4 29.0 – – – –

Fi
ne

tu
ne

d

TJVE [34] R-152+I3D-X101 8.2 24.5 35.3 24.0 14.9 40.2 52.8 9.0 – – – –
UniVL(v3) [32] S3D-HM 28.9 57.6 70.0 4.0 21.2 49.6 63.1 6.0 – – – –
TACo (Ours) S3D-HM 29.6 59.7 72.7 4.0 24.8 52.1 64.0 5.0 28.3 56.8 92.6 4.0

MMT [14] Collaborative Experts – – – – 26.6 57.1 69.6 4.0 28.7 61.4 94.5 3.3
TACo (Ours) R-152+S3D-HM 27.3 56.5 68.8 4.0 28.4 57.8 71.2 4.0 30.4 61.2 93.4 3.0

Table 8: A complete comparison of TACo under zero-shot and finetuning evaluation
protocols. Note that the zero-shot and upper part of finetuned performance for MSR-
VTT is on split2, while the bottom is on split1 for fair comparison.

Method CrossTask COIN

Alayrac et al. [1] 13.3 –
Zhukov et al. [60] 22.4 –
Supervised [60] 31.6 –
NN-Viterbi [38] – 21.2
CBT [39] – 53.9
TVJE [34] 33.6 –
MIL-NCE [33] 40.5 61.0
ActBert [59] 41.4 57.0
UniVL(v3) [32] 42.0 70.0

TACo (Ours) 42.5 68.4

Table 9: Action step localization
on CrossTask (avg. recall) and ac-
tion segmentation on COIN (acc.).

Zero-shot and finetuned performance. In Table 8, we
show the comparisons across different models pretrained on
Howto100M. In the upper part of the table, we compare the
zero-shot performance on YouCook2 and MSR-VTT. We do
not evaluate on ActivityNet since it has different number of
input video tokens compared with the pretrained model and
thus is not directly compatible to the pretrained model. As
we can see, TACo outperforms previous works significantly
on YouCook2 and slightly on MSR-VTT. Since YouCook2
has closer domain gap to Howto100M than MSR-VTT, the
improvement brought by large-scale pretraining is more sig-
nificant. However, on MSR-VTT, our model still outper-
forms MIL-NCE [33] which uses the same video features.
In Fig. 2, we show the zero-shot performance on YouCook2
and MSR-VTT when pretraining our models with differ-
ent contrastive losses as listed in Table 3. Accordingly, it
shows our proposed contrastive losses gradually improve
the performance, and combining all techniques achieves the
best performance. Based on the pretrained model, we fur-
ther finetune it on specific datasets. In our experiments, we
use two feature S3D-HM and R-152+S3D-HM, to compare
with the methods with the same/similar settings. As we can
see, our model using S3D-HM outperforms UniVL [32]
using the same feature but more video encoder layers (6).
Different from zero-shot results, we observe more improve-
ment on MSR-VTT than YouCook2 after finetuning. This
implies that finetuning on specific datasets can compensate
the domain gap to the pretraining datasets. To compare with
the methods using features extracted from collaborative ex-
perts [14], we enrich our video representation by adding
2D R-152 feature, which achieves better performance on
MSR-VTT, and better Recall@1 and Median Rank on Ac-
tivityNet. Note that this combination hurts the performance
on YouCook2, and we witnessed a similar trend for models
without pretraining in Table 2. Finally, comparing with the
results without pretraining in Table 5, 6 and 7, we clearly
find large-scale pretraining and finetuning brings substan-
tial improvements consistently.

5.2. Other video-related tasks
Following [34, 59, 32], we evaluate action step localiza-

tion performance on CrossTask dataset [60]. It covers 18
tasks and each video contains multiple video segments an-
notated with action steps and natural language descriptions.
Similar to [34, 59, 32], we use our model to compute the
similarity between each frame and the action step descrip-
tions, which results in a score matrix. Using the official
algorithm provided by [60], we can find the optimal frame-
wise order of action steps for a video. By comparing it
with the ground-truth annotations, we compute the recall for
each task and then do the average. According to the results
in Table 9, our model achieves the best performance com-
pared with previous works. This indicates that our model
can learn good video-language representations.

We further evaluate our pretrained model on action seg-
mentation task on COIN dataset, following [33, 59]. Unlike
the above task, action segmentation does not rely on texts,
and thus can be used to evaluate the learned video repre-
sentation. As shown in Table 9, our method significantly
outperforms MIL-NCE and ActBert, and achieves compa-
rable performance to UniVL. This indicates that our model
is also a good video representation learner.

6. Conclusion
In this paper, we introduced TACo, a simple yet ef-

fective contrastive learning method for learning video-text
alignment. It is aimed at addressing two existing issues
in current contrastive learning pipelines: missing fine-
grained alignment and inefficient sampling for multi-modal
fusion. Without introducing any extra parameters, our
method achieved promising results on three text-video re-
trieval benchmarks under various evaluation protocols. We
further demonstrated the learned representations can be ef-
fectively transferred to other tasks such as action step local-
ization and segmentation. Based on all these encouraging
results, we believe TACo is a good alternative to conven-
tional contrastive learning pipeline.
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