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Abstract

While convolutional neural networks have shown a
tremendous impact on various computer vision tasks, they
generally demonstrate limitations in explicitly modeling
long-range dependencies due to the intrinsic locality of
the convolution operation. Initially designed for natural
language processing tasks, Transformers have emerged as
alternative architectures with innate global self-attention
mechanisms to capture long-range dependencies. In this
paper, we propose TransDepth, an architecture that bene-
fits from both convolutional neural networks and transform-
ers. To avoid the network losing its ability to capture local-
level details due to the adoption of transformers, we pro-
pose a novel decoder that employs attention mechanisms
based on gates. Notably, this is the first paper that ap-
plies transformers to pixel-wise prediction problems involv-
ing continuous labels (i.e., monocular depth prediction and
surface normal estimation). Extensive experiments demon-
strate that the proposed TransDepth achieves state-of-the-
art performance on three challenging datasets. Our code is
available at: https://github.com/ygjwd12345/
TransDepth.

1. Introduction
Over the past decade, convolutional neural networks

have become the privileged methodology to address fun-

damental and challenging computer vision tasks requiring

dense pixel-wise prediction, such as semantic segmenta-

tion [6, 21], monocular depth prediction [39, 18], and nor-

mal surface computation [43]. Since the seminal work of

[27], existing depth prediction models’ have been domi-

nated by encoders implemented with architectures such as

ResNet and VGG-Net. The encoder progressively reduces

the spatial resolution and learns more concepts with larger

receptive fields. Because context modeling is critical for

pixel-level prediction, deep feature representation learning

is arguably the most critical model component [5]. How-

ever, it is still challenging for depth prediction networks

to improve their ability in modeling global contexts. Tra-

ditionally, both stacked convolution layers and consecutive

down-sampling are used in the encoders to generate suffi-

ciently large receptive fields of deep layers. This problem is

typically circumvented rather than resolved to some extent.

Unfortunately, existing strategies bring several drawbacks:

(1) the training of very deep nets is affected by the fact that

consecutive multiplications wash out low-level features; (2)

the local information crucial to dense prediction tasks is dis-

carded since the spatial resolution is reduced gradually. To

overcome these limitations, several methods have been re-

cently proposed. One solution is manipulating the convolu-

tional operation directly by using for example large kernel

sizes [42], atrous convolutions [5], and image/feature pyra-

mids [71]. Another solution is to integrate attention mod-

ules into the fully convolutional network architecture. Such

a module aims to model global interactions of all pixels in

the feature map [60]. When applied to monocular depth

prediction [65, 64] a general approach is to combine the

attention module with a multi-scale fusion method. More

recently, Huynh et al. [31] proposed a depth-attention vol-

ume to incorporate a non-local coplanarity constraint to the

network. Guizilini et al. [26] rely on a fixed pre-trained se-

mantic segmentation network to guide global representation

learning. Though these methods’ performance is improved

significantly, still the above mentioned issues persist.

Transformers were initially used to model sequence-to-

sequence predictions in NLP tasks to obtain a larger re-

ceptive field and have recently attracted tremendous inter-

est in the computer vision community. The first purely

self-attention-based Vision Transformer (ViT) for image

recognition was proposed in [16] attaining excellent re-

sults on ImageNet compared with the convolutional net-

works. Moreover, SETR [72] replaces the encoders with

pure Transformers, obtaining competitive results on the

CityScapes dataset. Interestingly, we found that a SETR-

like pure Transformer-based segmentation network pro-

duces unsatisfactory performance due to the lack of spatial

inductive bias in modeling the local information. Mean-

while, most previous methods based on deep feature rep-
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resentation learning fail to solve this problem. Nowadays,

only few researchers [3] are considering combining the

CNNs with Transformers to create a hybrid structure to

combine their advantages.

In contrast to treating pixel-level prediction tasks as a

sequence-to-sequence prediction problem, we firstly pro-

pose to embed Transformers into the ResNet backbone in

order to model semantic pixel dependencies. Moreover, we

design a new and effective unified attention gate decoder to

address the drawback that the pure linear Transformer’s em-

bedding feature lacks spatial inductive bias in capturing the

local representation. We show empirically that our method

offers a new perspective in model design and achieves state-

of-the-art on several challenging benchmarks.

To summarize, our contribution is threefold:

• We are the first to propose the use of Transformers for

both monocular depth estimation and surface normal pre-

diction tasks. Transformers can successfully improve

the ability of traditional convolutional neural networks to

model long-range dependencies.

• We propose a novel and effective unified attention gate

structure designed to utilize and fuse multi-scale infor-

mation in a parallel manner and pass information among

different affinities maps in the attention gate decoders for

better modeling the multi-scale affinities.

• We conduct extensive experiments on two distinct pixel-

wise prediction tasks with three challenging datasets (e.g.,

NYU [47], KITTI [22], and ScanNet [11]), demonstrat-

ing that our TransDepth outperforms previous methods

on KITTI (0.956 on δ < 1.25), NYU depth (0.900 on

δ < 1.25), and achieves new state-of-the-art results on

NYU surface normal estimation.

2. Related Work
Transformers in Computer Vision. Transformer and

self-attention models have revolutionized machine trans-

lation and natural language processing [54, 12]. Re-

cently, there were also some explorations for the usage

of Transformer structures in computer vision tasks [28, 3,

41, 14, 68, 45]. For instance, LRNet [28] explored lo-

cal self-attention to avoid the heavy computation brought

by global self-attention. Axial-Attention [55] decomposed

the global spatial attention into two separate axial attention

such that the computation is vastly reduced. Apart from

these pure Transformer-based models, there are also CNN-

Transformer hybrid ones. For instance, DETR [3] and the

following deformable version utilized a Transformer for ob-

ject detection where the Transformer was appended inside

the detection head. LSTR [41] adopted Transformers for

disparity estimation and for lane shape prediction. Most

recently, ViT [16] was the first work to show that a pure

Transformer-based image classification model can achieve

the state-of-the-art. This work provides a direct inspiration

to exploit a pure Transformer-based encoder design in a se-

mantic segmentation model. Meanwhile, SETR [72] based

on ViT, leverages attention for image segmentation. How-

ever, there is no related work in continuous pixel predic-

tion. The main reason is that the networks, designed for the

continuous label task, extremely rely on deep representa-

tion learning and fully-convolutional networks (FCN) with

a decoder architecture. In this case, the pure Transformer

(without convolution and resolution reduction) regarding an

image as a patch sequence is unsuitable for pixel-level pre-

diction with continual labels.

We propose a novel combination framework to put a lin-

ear Transformer and ResNet together to address the limi-

tation mentioned above. It leads to that the previous ef-

fective methods based on deep representing learning, such

as dilated/atrous convolutions and inserting attention mod-

ules, are still compatible with our networks. Meanwhile,

the position embedding module is removed from our linear

Transformer, but we take advantage of multi-scale fusion

in the decoder to add position information. It is essential

to successfully apply Transformers to depth prediction and

surface normal estimation tasks.

Monocular Depth Estimation. Most recent works on

monocular depth estimation are based on CNNs [17, 39,

57, 34, 20, 35, 25, 26, 67], which suffer from the limited re-

ceptive field problem or from the less global representation

learning. For instance, Eigen et al. [18] introduced a two-

stream deep network to take into account both coarse global

prediction and local information. Fu et al. [20] proposed a

discretization strategy to treat monocular depth estimation

as a deep ordinal regression problem. They also employed

a multi-scale network to capture relevant multi-scale infor-

mation. Lee et al. [35] introduced local planar guidance

layers in the network decoder module to learn more effec-

tive features for depth estimation. More recently, PackNet-

SfM [25] used 3D convolutions with self-supervision to

learn detail-preserving representations. At the same time,

Guizilini et al. [26] exploit semantic features into the self-

supervised depth network by using a pre-trained semantic

segmentation network. The new SOTA, FAL-Net [24], fo-

cuses instead on representation learning using stereoscopic

view synthesis penalizing the synthetic right-view in all im-

age regions. Though it explicitly increases long-range mod-

eling dependencies, more training steps are added.

Our method focuses on representation learning as well

but with only one step training strategy. The Transformer

mechanism is quite suitable to solve the limited receptive

field issue, to guide the generation of depth features. Unlike

the previous works [72, 16] reshaping the image into a se-

quence of flattened 2D patches, we propose a hybrid model

combining ResNet [27] and linear Transformer [16]. This is

quite different from the previous Transformer mechanism,

taking advantage of both sides. This composite structure
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Figure 1: The overview of the proposed TransDepth. The symbols c© and ⊕ denote concatenation and addition operations,

respectively. AG is short for attention gate.

also holds another advantage: many deep representation

learning methods can be easily transferred in this network.

Surface Normal Estimation. Surface normal prediction is

regarded as a close task to monocular depth prediction. Ex-

tracting 3D geometry from a single image has been a long-

standing problem in computer vision. Surface normal esti-

mation is a classical task in this context requiring modeling

both global and local features. Typical approaches leverage

networks with high capacity to achieve accurate predictions

at high resolution. For instance, FrameNet [29] employed

the DORN [20] architecture, a modification of DeepLabv3

[5] that removes multiple spatial reductions (2×2 max pool

layers), to generate high resolution surface normal maps.

A different strategy consists of designing appropriate loss

terms. For instance, UprightNet [62] considered an angu-

lar loss and showed its effectiveness for the task. More re-

cently, Do et al. [15] proposed a novel truncated angular

loss and a tilted image process, keeping the atrous spatial

pyramid pooling (ASPP) module to increase the receptive

field. Although its performance is SOTA, two extra training

phases are added due to the tilted image process.

Attention Models. Several works have considered inte-

grating attention models within deep architectures to im-

prove performance in several tasks, such as image cate-

gorization [63], image generation [50, 49, 51, 52], video

generation [40], speech recognition [9], and machine trans-

lation [54]. Focusing on pixel-level prediction, Chen et

al. [6] were the first to describe an attention model to

combine multi-scale features learned by a FCN for seman-

tic segmentation. Zhang et al. [70] designed EncNet, a

network equipped with a channel attention mechanism to

model the global context. Huang et al. [30] described CC-

Net, a deep architecture that embeds a criss-cross attention

module with the idea of modeling contextual dependencies

using sparsely connected graphs to achieve higher compu-

tational efficiency. Fu et al. [21] proposed to model seman-

tic dependencies associated with spatial and channel dimen-

sions by using two separate attention modules.

Our work significantly departs from these approaches

as we introduce a novel attention gate mechanism, adding

spatial- and channel-level attention into the attention de-

coder. Notably, we also prove that our model can be suc-

cessfully employed in the case of several challenging dense

continual pixel-level prediction tasks, where it significantly

outperforms PGA-Net [64].

3. The Proposed TransDepth

As previously discussed, our work aims to solve limited

receptive fields by adding Transformer layers and enhanc-

ing the learned representation by an attention gate decoder.
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Figure 2: The overview of the proposed attention gate module. The symbols �, ⊕, σ©, ∗©, and S© denote element-wise

multiplication, element-wise addition, sigmoid, convolution, and softmax operation, respectively.

3.1. Transformer for Depth Prediction

An overview of the network is depicted in Figure 1.

Unlike the previous works [72, 4, 16] reshaping the im-

age I∈RH×W×3 into a sequence of flattened 2D patches

Ip∈RN×(p2·3), we propose a hybrid model. As shown in

Figure 1, the input sequence comes from a ResNet back-

bone [27]. Then the patch embedding is applied to patches

extracted from the final feature output of a CNN. This patch

embedding’s kernel size should be p×p, which means that

the input sequence is obtained by simply flattening the spa-

tial dimensions of the feature map and projecting to the

Transformer dimension. In this case, we also remove po-

sition embedding because the original physical meaning is

missing while mapping the vectorized patches Ip into a la-

tent embedding space lp using a linear projection. The input

of the first Transformer layer is calculated as follow:

z0 = [l1E; l2E; · · · ; lNE], (1)

where z0 is mapped into a latent N-dimensional embedding

space using a trainable linear projection layer and E is the

patch embedding projection. There are L Transformer lay-

ers which consist of multi-headed self-attention (MSA) and

multi-layer perceptron (MLP) blocks. At each layer �, the

input of the self-attention block is a triplet of Q (query),

K (key), and V (value), similar with [54], computed from

z�−1∈RL×C as:

Q = z�−1×WQ,K = z�−1×WK , V = z�−1×WV , (2)

where WQ,WK ,WV ∈RC×d are the learnable parameters

of weight matrices and d is the dimension of Q, K, V . The

self-attention is calculated as:

AH = softmax(
Q×KT

√
d

) · V, (3)

where AH is short for attention head and d is the dimension

of self-attention block. MSA means the attention head will

be calculated m times by independent weight matrices. The

final MSA(z�−1) is defined as:

MSA(z�−1) = z�−1+concat(AH1; AH2; · · · ; AHm)×Wo,
(4)

where Wo∈Rmd×C . The output of MSA is then trans-

formed by a MLP block with residual skip as the layer out-

put as:

z� = MLP(LN(z′�)) + z′�, (5)

where LN(·) means the layer normalization operator and

z′�=MSA(z�−1). The structure of a Transformer layer is

illustrated in the left part of Figure 1. After the Transformer

layer, the output will be recovered to the original feature

shape.

3.2. Attention Gate Decoder

Given an input image I and a generic front-end CNN

model, we consider a set of S multi-scale feature maps

F={f i}Ni=1. Being a generic framework, these feature

maps can be the output of S intermediate CNN layers or of

another representation, thus s is a virtual scale. Opposite to

previous works adopting simple concatenation or weighted

averaging schemes [72], we propose to combine the multi-

scale feature maps by learning a set of latent kernels (Ir→e,

Ie→r, L) with a novel structure Attention-Gated module

sketched in Figure 2. We choose fN as a receive feature

only, fr, while {f i}N−1
i=1 are chosen as emitting features, fe,

in all tasks. The influence of the fusion of different scales is

explained in the ablation part.

In detail, the whole attention gate can be divided into

two parts, i.e., attention and message. We propose to bring

together recent advances in pixel-wise prediction by formu-

lating a novel attention gate mechanism for the attention

part. Inspired by [21], where two spatial- and channel-wise

predictions are computed, we opt to infer different spatial

and channel attention variables. Our attention tensor can be

defined by:

Ai
sp =

1

C

C∑
c=1

(ωsp ∗Ai)[c, h, w],

Ai
ch =

1

HW

H,W∑
h,w=1

(ωsp ∗Ai)[c, h, w],

αi
e→r = softmax(Ai

sp) · σ(Ai
ch) ·Ai,

(6)
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where i means f i is chosen as an emitting feature. Different

from [21], we adapt a local conditional kernel before gen-

erating attention. The kernels Ir→e, Ie→r, and L are pre-

dicted from the input features using a linear transformation

as follows:

Li,j = WL
i,jconcat(f i

e, f
j
r ) + bL

i,j ,

Ii,jr→e = WI
i,j
r→e f

i
e + bI

i,j
r→e,

Ii,je→r = WI
i,j
e→rf

j
r + bI

i,j
e→r.

(7)

Then, the integrated attention is defined as follow:

Ai = Iie→r ∗ fr + Iir→e ∗ f i
e + fr ∗ L ∗ f i

e. (8)

Compared with the attention part, the message is easy to be

calculated by Li ∗ fr. Finally, the output of our attention

gate decoder is:

f̂ i
e = concat(L1∗f1

e ·α1
e→r+fr, ..., L

N−1∗fN−1
e ·αN−1

e→r +fr).
(9)

Once the hidden variables are updated, we use them to

address several different discrete prediction tasks, including

monocular depth estimation and surface normal estimation.

Following previous works, the network optimization loss

for depth prediction, updated from [18], is:

Ldepth = α

√
1

T

∑
i

g2i −
λ

T 2
(
∑
i

gi)2, (10)

where gi= log d̂i− log di with the ground truth depth di and

the predicted depth d̂i. We set λ and α to 0.85 and 10, same

with [35]. The angular loss is chosen as the surface normal

loss.

4. Experiments
4.1. Datasets

The NYU dataset [47] is used to evaluate our approach in

the depth estimation task. We use 120K RGB-Depth pairs

with a resolution of 480×640 pixels, acquired with a Mi-

crosoft Kinect device from 464 indoor scenes. We follow

the standard train/test split as in [18], using 249 scenes for

training and 215 scenes (654 images) for testing. We also

use this dataset to evaluate our approach in the surface nor-

mal task, including 795 training images and 654 testing im-

ages.

The KITTI dataset [22] is a large-scale outdoor dataset

created for various autonomous driving tasks. We use it

to evaluate the depth estimation performance of our pro-

posed model. Following the standard training/testing split

proposed by Eigen et al. [18], we specifically use 22,600

frames from 32 scenes for training and 697 frames from the

rest 29 scenes for testing.

The ScanNet dataset [11] is a large RGB-D dataset for

3D scene understanding. We employ it to evaluate the sur-

face normal performance of our proposed model. ScanNet

dataset is divided into 189,916 for training and 20,942 for

testing with file lists provided in [11].

4.2. Evaluation Metrics

Evaluation Protocol on Monocular Depth Estimation.
We follow the standard evaluation protocol as in previous

works [17, 18, 57] and adopt the following quantitative eval-

uation metrics in our experiments:

• Abs relative error (abs-rel): 1
K

∑K
i=1

|d̃i−d�
i |

d�
i

;

• Squared Relative difference (sq-rel): 1
K

∑K
i=1

||d̃i−d�
i ||2

d�
i

;

• Root mean squared error (rms):

√
1
K

∑K
i=1(d̃i − d�i )

2;

• Mean log10 error (log-rms):√
1
K

∑K
i=1 ‖ log10(d̃i)− log10(d

�
i )‖2;

• Accuracy with threshold t: percentage (%) of d�i , subject

to max(
d�
i

d̃i
, d̃i

d�
i
)=δ<t (t∈[1.25, 1.252, 1.253]);

where d̃i and d�i is the ground-truth depth and the estimated

depth at pixel i respectively; K is the total number of pixels

of the test images.

Evaluation Protocol on Surface Normal Estimation. We

utilize five standard evaluation metrics [19]. For space lim-

itation, we pick up median angle distance between predic-

tion and ground-truth for valid pixels and the fraction of pix-

els with angle difference with ground-truth less than 11.25◦

listed in the main paper. The results of five standard evalu-

ation metrics are put into supplementary material.

4.3. Implementation Details

The proposed TransDepth is implemented in PyTorch.

The experiments are conducted on four Nvidia Tesla V100

GPUs, each with 32 GB memory. The ResNet-50 architec-

ture pretrained on ImageNet [13] is considered in the exper-

iments for initializing the backbone network of our encoder

network. For parameters of Transformer, T-layers, Hidden

size, and attention multi-head are set to 12, 768, and 12, re-

spectively. As the attention gate decoder structure setting,

f5 is chosen as the receiving feature, fr, while {f i}5i=3 are

taken up as emitting features, fe, in all tasks.

For the monocular depth estimation and surface normal

prediction tasks, the learning rate is set to 10−4 with a

weight decay of 0.01. The Adam optimizer is used in all

our experiments with a batch size of 16 for all tasks. The

total training epochs are set to 50 for depth prediction and

20 for surface normal prediction. We train our network on a

random crop of size 352×704 for KITTI dataset, 416×512

for NYU dataset for depth prediction while the input image

size is uniformly set to 320×256 for surface normal predic-

tion.
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(a) Image (b) GT (c) FAL-Net (d) Baseline (e) Baseline w/ AGD (f) Baseline w/ ViT (g) Ours (Full)

Figure 3: Qualitative examples on the KITTI dataset.

Table 1: Depth Estimation: KITTI dataset. K: KITTI. CS: CityScapes [10]. CS→K: CS pre-training. D: Depth supervision.

M, Se, V, S: Monocular, segmentation, video, stereo. Sup: supervise.

Method Sup Data
Error (lower is better) Accuracy (higher is better)

abs rel sq rel rms log rms δ<1.25 δ<1.252 δ<1.253

CC [44] M+Se K 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Bian et al. [2] M+V K+CS 0.137 1.089 5.439 0.217 0.830 0.942 0.975

DeFeat [48] M K 0.126 0.925 5.035 0.200 0.862 0.954 0.980

S3Net [8] M+Se K 0.124 0.826 4.981 0.200 0.846 0.955 0.982

Monodepth2 [23] M K 0.115 0.903 4.863 0.193 0.877 0.959 0.981

pRGBD [53] M K 0.113 0.793 4.655 0.188 0.874 0.960 0.983

Johnston et al. [32] M K 0.106 0.861 4.699 0.185 0.889 0.962 0.982

SGDepth [33] M+Se K+CS 0.107 0.768 4.468 0.180 0.891 0.963 0.982

Shu et al. [46] M K 0.104 0.729 4.481 0.179 0.893 0.965 0.984

DORN [20] D K 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Yin et al. [69] M K 0.072 - 3.258 0.117 0.938 0.990 0.998

PackNet [25] V K+CS 0.071 0.359 3.153 0.109 0.944 0.990 0.997

FAL-Net [24] S K+CS 0.068 0.276 2.906 0.106 0.944 0.991 0.998

PGA-Net [64] D K 0.063 0.267 2.634 0.101 0.952 0.992 0.998

BTS [35] M K 0.061 0.261 2.834 0.099 0.954 0.992 0.998

Baseline M K 0.106 0.753 3.981 0.104 0.888 0.967 0.986

Ours w/ AGD M K 0.065 0.261 2.766 0.101 0.953 0.993 0.998

Ours w/ ViT M K 0.064 0.258 2.761 0.099 0.955 0.993 0.999

Ours w/ AGD+ViT (Full) M K 0.064 0.252 2.755 0.098 0.956 0.994 0.999

4.4. Results on Monocular Depth Estimation

We compare the proposed method with the leading

monocular depth estimation models, i.e., [44, 2, 48, 8,

23, 53, 32, 33, 46, 25, 20, 69, 24, 35]. Comparison re-

sults on the KITTI dataset are shown in Table 1. Our

method performs favorably versus all previous fully- and

self-supervised methods, achieving the best results on the

majority of the metrics. Our approach employs the super-

vised setting using single monocular images in the train-

ing and testing phase. Compared with recent SOTA, i.e.,

FAL-Net, BTS, and PGA-Net, our method is better by a

large margin. Meanwhile, unlike FAL-Net using stereo

split, two-step training, and post-processing, our method

is end-to-end without extra post-processing. The more im-

portant thing is that “Ours w/ ViT” has outperformed the

SOTA. It can support our standpoint that adding a linear
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(a) Image (b) GT (c) DORN (d) BTS (e) Ours

Figure 4: Qualitative examples on the NYU depth dataset.

Table 2: Depth Estimation: NYU dataset.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ<1.25 δ<1.252 δ<1.253

PAD-Net [65] 0.214 0.091 0.792 0.643 0.902 0.977

Li et al. [38] 0.152 0.064 0.611 0.789 0.955 0.988

CLIFFNet [56] 0.128 0.171 0.493 0.844 0.964 0.991

Laina et al. [34] 0.127 0.055 0.573 0.811 0.953 0.988

MS-CRF [66] 0.121 0.052 0.586 0.811 0.954 0.987

Lee et al. [36] 0.119 0.050 - 0.870 0.974 0.993

Xia et al. [61] 0.116 - 0.512 0.861 0.969 0.991

DORN [20] 0.115 0.051 0.509 0.828 0.965 0.992

BTS [35] 0.113 0.049 0.407 0.871 0.977 0.995

Yin et al. [69] 0.108 0.048 0.416 0.875 0.976 0.994

Huynh et al. [31] 0.108 - 0.412 0.882 0.980 0.996

Baseline 0.118 0.051 0.414 0.866 0.979 0.995

Ours w/ AGD 0.111 0.048 0.393 0.881 0.979 0.996

Ours w/ ViT 0.109 0.047 0.388 0.887 0.981 0.996

Ours w/ AGD+ ViT (Full) 0.106 0.045 0.365 0.900 0.983 0.996

Transformer makes networks improve their ability to cap-

ture long-range dependencies. In other words, our network

becomes more straightforward but more potent by adapting

the linear Transformer.

To demonstrate the competitiveness of our approach in

an indoor scenario, we also evaluate the proposed method

on the NYU depth dataset. The results are shown in Ta-

ble 2, compared with the the state-of-the-art methods like

[65, 38, 56, 34, 66, 36, 61, 20, 35, 69, 31]. Similar

to the experiments on KITTI, it outperforms both state-

of-the-art approaches and previous methods based on at-

tention mechanism [66, 65, 31]. Our method success-

fully improves δ<1.25 from 0.882 (Huynh et al. [31]) to

0.900 while root mean squared error significantly drops to

0.365. Both Table 1 and 2 also show that our AGD can

merge more low-level information and can make the net-

work learn a more efficient deep representation. Moreover,

Figure 3 shows a qualitative comparison of our method with

(a)Image (b)GT (c)Geo-net (d)Baseline (e)Baseline w/ADG (f)Baseline w/ViT (g)Ours

Figure 5: Qualitative examples on the NYU surface normal

dataset.

Table 3: Surface Normal Estimation: NYU dataset.

Method Training Data Testing Data median ↓ 11.25◦ ↑
Li et al. [37]

NYU

NYU

27.8 19.6

Chen et al. [7] 15.8 39.2

Eigen et al. [17] 13.2 44.4

SURGE [58] 12.2 47.3

Bansal et al. [1] 12.0 47.9

GeoNet [43] 12.5 46.0

TransDepth (Ours) 11.8 48.2

FrameNet [29]

ScanNet

11.0 50.7

VPLNet [59] 9.8 54.3

Do et al. [15] 8.1 59.8

TransDepth (Ours) 7.8 61.7

DORN [20]. The red box marks the significant improve-

ment parts. Results indicate that our method generates more

precise boundaries for distant stuff like vehicles and traffic

signs and near stuff like humans. Figure 4 shows a similar

comparison done on the NYU dataset. Owing to applying

the Transformer, the corners of the room are more distin-

guishable. This can support our standpoint that adapting

the linear Transformer makes the CNN backbone network

enhance the ability to capture long-range dependencies.

4.5. Results on Surface Normal Estimation

To prove our method universality, we also conduct ex-

periments on surface normal prediction, which is regarded

as a related task to depth prediction. We compare the

proposed TransDepth with several state-of-the-art methods

on surface normal, including GeoNet [43], VPLNet [59],

FrameNet [29], and Do et al. [15]. For a fair comparison,

we report our result in two different training conditions. Be-

cause of limited space, only median angle and 11.25◦ are

compared in Table 3 while a detailed comparison is shown

in the supplementary. Our method outperforms the state-of-

the-art on the median angle and 11.25◦. Though Do et al.
reduces the median angle error much, their method needs

to get extra gravity labels with two-step pre-training. Our

method covers these drawbacks. The qualitative results are

shown in Figure 5. Unsurprisingly, the boundaries of stuff

become more precise when AGD and ViT are jointly using.
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Table 4: Ablation study on the NYU depth dataset: perfor-

mance of TransDepth for different scales fusion.

Error (lower is better) Accuracy (higher is better)
fe fr

rel log10 rms δ<1.25 δ<1.252 δ<1.253

- - 0.118 0.051 0.414 0.866 0.979 0.995

f5 f5 0.120 0.071 0.407 0.878 0.982 0.996

f4, f5 f5 0.108 0.045 0.366 0.897 0.982 0.996

f3, f4, f5 f5 0.106 0.045 0.365 0.900 0.983 0.996
f2, f3, f4, f5 f5 0.107 0.045 0.366 0.899 0.983 0.996

Table 5: Ablation study about different backbone on the

NYU depth dataset. R50 is short for ResNet50. B is short

for base.

Backbone
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ<1.25 δ<1.252 δ<1.253

ViT-B/32 [16] 0.112 0.048 0.387 0.849 0.927 0.940

ViT-B/16 [16] 0.108 0.046 0.371 0.885 0.967 0.979

ResNet50 [27] 0.118 0.051 0.414 0.866 0.979 0.995

ResNet101 [27] 0.112 0.048 0.387 0.848 0.927 0.939

ResNet152 [27] 0.111 0.047 0.381 0.861 0.941 0.953

R50+ViT-B/32 0.107 0.045 0.368 0.893 0.975 0.988

R50+ViT-B/16 (Ours) 0.106 0.045 0.365 0.900 0.983 0.996

4.6. Ablation Study

Effect of Attention Gate Decoder. We perform an abla-

tion study on the NYU depth dataset to further demonstrate

the impact of the proposed AGD. In Table 4, we indicate

the emitting features in the fe column while we design f5,

the last layer’s output as the only receiving feature in all the

experiments. We choose the ResNet-50 with the same pre-

diction head as our baseline. We report four different com-

binations with the baseline when ViT is not applied to any

candidates. Interestingly, the performance does not always

get better by adding more scale information. In detail, the

performance increases significantly with the emitting fea-

ture increasing until the number of emitting features reaches

three. Compared with the last two rows in Table 4, some

metrics like rel and rms go worse when the number of emit-

ting features further expands. This could be explained by

the fact that too many scale features may lead to overfitting

the receiving feature. Undoubtedly, we choose three scales

of fusion in all tasks. According to Figure 6, the attention

granted by different scales fusion can capture information

at different range distances. This can prove that the atten-

tion gate decoder is helpful to the receive feature to capture

more position information.

Effect of Different Backbones. We compare different

backbones on NYU depth dataset in Table 5 while the at-

tention gate decoder is not used in this experiment. The

16/32 are no longer the input path sizes but the shrinkage

scale of the input feature. In other words, 16 means the f4

is the input feature of ViT-B, while 32 represents the f5 is

the input feature of ViT-B. Table 5 can be split into three-

parts: the top belongs to the pure Transformer backbone;

the middle belongs to the pure ResNet backbone; the bot-

tom belongs to the mixed backbone. Compared with the

Figure 6: Qualitative attention examples of monocular

depth prediction on the NYU dataset. The first column is

the original image and the following three columns are dif-

ferent fusion attention.

middle part results, the mixed backbone overpasses all of

the pure ResNet backbones, leaving a significant margin for

each metric. Meanwhile, according to Table 5, the mixed

backbone is better than the ResNet backbone, and it outper-

forms the pure Transformer encoder. We finally pick up the

ResNet-50 with ViT-B/16 as our encoder for every task.

5. Conclusions
We propose TransDepth, a novel Transformer-based

framework, for the pixel-wise prediction problems involv-

ing continuous labels being the first to use Transformer to

solve these problems. The proposed TransDepth leverages

the inductive bias of ResNet on modeling spatial correlation

and the powerful capability of Transformers on modeling

global relationships. Moreover, a new and effective unified

attention gate structure with independent channel-wise and

spatial-wise attention is applied in the decoder. This can

merge more low-level information and can make the net-

work learn a more efficient deep representation. Extensive

experiments prove that the proposed TransDepth establishes

new state-of-the-art results on KITTI (0.956 on δ<1.25),

NYU depth (0.900 on δ<1.25), and NYU surface normal

(61.7 on 11.25◦) datasets. We hope that this work can bring

a new perspective on using Transformer-based architectures

for computer vision tasks.

Acknowledgements This work was supported by the EU

H2020 SPRING No. 871245 and AI4Media No. 951911

projects, the Italy-China collaboration project TALENT

2018YFE0118400, and the PRIN project PREVUE.

16276



References
[1] Aayush Bansal, Bryan Russell, and Abhinav Gupta. Marr

revisited: 2d-3d alignment via surface normal prediction. In

CVPR, 2016. 7

[2] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,

Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-

vised scale-consistent depth and ego-motion learning from

monocular video. In NeurIPS, 2019. 6

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020. 2

[4] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan

Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou.

Transunet: Transformers make strong encoders for medical

image segmentation. arXiv, 2021. 4

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. TPAMI, 2017. 1, 3

[6] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and

Alan L Yuille. Attention to scale: Scale-aware semantic im-

age segmentation. In CVPR, 2016. 1, 3

[7] Weifeng Chen, Donglai Xiang, and Jia Deng. Surface nor-

mals in the wild. In ICCV, 2017. 7

[8] Bin Cheng, Inderjot Singh Saggu, Raunak Shah, Gaurav

Bansal, and Dinesh Bharadia. s3 net: Semantic-aware self-

supervised depth estimation with monocular videos and syn-

thetic data. In ECCV, 2020. 6

[9] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,

Kyunghyun Cho, and Yoshua Bengio. Attention-based mod-

els for speech recognition. In NeurIPS, 2015. 3

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 6

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

CVPR, 2017. 2, 5

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,

Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl: At-

tentive language models beyond a fixed-length context. ACL,

2019. 2

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 5

[14] Lei Ding, Dong Lin, Shaofu Lin, Jing Zhang, Xiaojie Cui,

Yuebin Wang, Hao Tang, and Lorenzo Bruzzone. Looking

outside the window: Wider-context transformer for the se-

mantic segmentation of high-resolution remote sensing im-

ages. arXiv, 2021. 2

[15] Tien Do, Khiem Vuong, Stergios I Roumeliotis, and

Hyun Soo Park. Surface normal estimation of tilted images

via spatial rectifier. In ECCV, 2020. 3, 7

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. In ICLR, 2021. 1, 2,

4, 8

[17] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015. 2, 5, 7

[18] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In NeurIPS, 2014. 1, 2, 5

[19] David F Fouhey, Abhinav Gupta, and Martial Hebert. Data-

driven 3d primitives for single image understanding. In

ICCV, 2013. 5

[20] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, 2018. 2, 3,

6, 7

[21] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In CVPR, 2019. 1, 3, 4, 5

[22] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. IJRR,

2013. 2, 5

[23] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, 2019. 6

[24] Juan Luis Gonzalez and Munchurl Kim. Forget about the

lidar: Self-supervised depth estimators with med probability

volumes. In NeurIPS, 2020. 2, 6

[25] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-

tos, and Adrien Gaidon. 3d packing for self-supervised

monocular depth estimation. In CVPR, 2020. 2, 6

[26] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien

Gaidon. Semantically-guided representation learning for

self-supervised monocular depth. In ICLR, 2020. 1, 2

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 1, 2, 4, 8

[28] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In ICCV, 2019. 2

[29] Jingwei Huang, Yichao Zhou, Thomas Funkhouser, and

Leonidas J Guibas. Framenet: Learning local canonical

frames of 3d surfaces from a single rgb image. In ICCV,

2019. 3, 7

[30] Zilong Huang, Xinggang Wang, Lichao Huang, Chang

Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross

attention for semantic segmentation. In ICCV, 2019. 3

[31] Lam Huynh, Phong Nguyen-Ha, Jiri Matas, Esa Rahtu, and
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