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Original Projected + Smile + Bangs + Arched Eyebrows + Age

- Age + Smile + Beard + Eyeglasses

Figure 1: We project real images to the latent space of a StyleGAN generator and achieve sequential disentangled attribute editing on the
encoded latent codes. From the original and the projected image, we can edit sequentially a list of attributes such as: ‘smile’, ‘bangs’,
‘arched eyebrows’, ‘age’, ‘beard’ and ‘eyeglasses’. All results are obtained at resolution 1024× 1024.

Abstract

High quality facial image editing is a challenging prob-
lem in the movie post-production industry, requiring a high
degree of control and identity preservation. Previous works
that attempt to tackle this problem may suffer from the en-
tanglement of facial attributes and the loss of the person’s
identity. Furthermore, many algorithms are limited to a cer-
tain task. To tackle these limitations, we propose to edit
facial attributes via the latent space of a StyleGAN gen-
erator, by training a dedicated latent transformation net-
work and incorporating explicit disentanglement and iden-
tity preservation terms in the loss function. We further intro-
duce a pipeline to generalize our face editing to videos. Our
model achieves a disentangled, controllable, and identity-
preserving facial attribute editing, even in the challenging
case of real (i.e., non-synthetic) images and videos. We
conduct extensive experiments on image and video datasets
and show that our model outperforms other state-of-the-
art methods in visual quality and quantitative evaluation.

Source codes are available at https://github.com/
InterDigitalInc/latent-transformer.

1. Introduction
Facial attribute editing is a crucial task for photo retouch-

ing or in the film post-production industry. For example,
many actors are retouched for beautification or other spe-
cial makeup effects. For such tasks, it is highly desirable
for artists to be able to control a facial attribute without
affecting other informations. Consequently, a face editing
method should rely on disentangled attributes and permit
identity-preserving manipulations.

Earlier works based on deep learning focus on encoder-
decoder based architectures [8, 17]. Despite the improve-
ments in quality of recent results, these approaches are lim-
ited in resolution and generate noticeable artifacts on high
resolution images. Therefore, they are not appropriate for
high quality video editing. In addition, these methods are
difficult to control, because the modification of one facial
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attribute tends to modify other attributes.
Recently, generative networks have shown impressive

progress in high quality image synthesis [5, 19, 20, 21].
Studies show that moving latent codes along certain direc-
tions in the latent space of generative models can result in
variations of visual attributes in the corresponding gener-
ated images [2, 9, 34, 3, 41]. These assume that for a binary
attribute, there exists a hyper-plane in the latent space which
divides the data into two groups. However, this hypothe-
sis has several limitations. Firstly, successful manipulations
can only be achieved in well disentangled and linearized la-
tent spaces. Although the latent space is disentangled com-
pared to the image space, we show in this paper that achiev-
ing facial attribute manipulation with linear transformations
is a very strong and limiting hypothesis. Furthermore, since
these methods are trained on synthetic images (generated
from random points in the latent space), their performance
on real images (natural, “in-the-wild” photos) is less satis-
fying. This is an often ignored, but critical, problem.

In this work, we tackle the problem of editing facial at-
tributes on real images. To address the aforementioned lim-
itations, we propose a transformation network to navigate
the latent space of the generative model. We project real
images to the latent space of the state-of-the-art image gen-
erator StyleGAN and train our model on the projected latent
codes. The transformation network generates disentangled,
identity-preserving and controllable attribute editing results
on real images. These key advantages allow us to extend
our method to the case of videos, where stability and quality
are of crucial importance. For this, we introduce a pipeline
which achieves stable and realistic facial attribute editing on
high resolution videos.

Our contributions can be summarized as follows. We
propose a latent transformation network for facial attribute
editing, achieving disentangled and controllable manipula-
tions on real images with good identity preservation. Our
method can carry out efficient sequential attribute editing
on real images. We introduce a pipeline to generalize the
face editing to videos and generate realistic and stable ma-
nipulations on high resolution videos.

The rest of the paper is organized as follows: In Sec-
tion 2 we summarize the related works in facial attribute
editing, disentangled representation and video editing. Sec-
tion 3 presents our latent transformation network and the
training details. In Section 4 we present the experimental
results of disentangled attribute editing on real images, and
provide qualitative and quantitative comparisons with state-
of-the-art methods. We further present results of sequential
attribute editing on real images and give an ablation study
on the choice of loss compositions. In Section 5 we intro-
duce the pipeline to apply facial attribute editing on videos
and show experimental results on video sequences. We con-
clude the paper in Section 6.

2. Related works
Facial Attribute Editing. Previous works regarding fa-

cial attributes are extensive and mainly focus on images of
limited resolution. An optimization-based approach by Up-
church et al. [37] showed that it is possible to achieve se-
mantic transformations such as aging or adding facial hair
by interpolating deep features in a pre-trained feature space.
Another type of approach train feed-forward models for
the attribute editing task. Attribute2image [42] proposed
to train a Conditional Variational Auto-Encoder to gener-
ate attribute-conditioned images. With the success of gen-
erative networks in image synthesis, a number of studies
[8, 15, 24, 25, 40] explored the possibility of training auto-
encoders using adversarial learning. FaderNet [24] and
StarGAN [8] proposed to disentangle different attributes in
the latent space of auto-encoder and generate the output
image conditioned on the target attributes. AttGAN [15]
and STGAN [25] enhanced the flexible translation of at-
tributes to improve the image quality by relaxing the strict
constraints on the target attributes. Several studies investi-
gate different possibilities to tackle high resolution images.
CooGAN [7] proposed a patch-based local-global frame-
work to process HR images in patches. Observing the great
progress of generative networks in high quality image syn-
thesis, Viazovetskyi et al. [38] trained the pix2pixHD model
[39] for single attribute editing with the synthetic images
generated by StyleGAN2 [21].

Disentangled Representations. In the paper of Style-
GAN [20], the authors examined the effects of mixing two
latent codes on the generated image (which is referred as
style mixing), and found that each subset controls mean-
ingful high-level attributes of the image. Inspired by this,
some studies have attempted to explore disentangled rep-
resentations in the latent space of generative networks, es-
pecially StyleGAN. One optimization-based method, Im-
age2StyleGAN++ [2], carried out local editing along with
global semantic edits on images by applying masked inter-
polation on the activation features of StyleGAN. Collins et
al. [9] performed a k-means clustering on the activations of
StyleGAN and detected a disentanglement of semantic ob-
jects, which enables further local semantic editing on the
generated image. For high level semantic edits, Ganalyze
[13] learned a manifold in the latent space of BigGAN [5] to
generate images of different memorability. InterFaceGAN
[34] proposed to learn a hyper-plane for a binary classifi-
cation in the latent space, which one can use to manipulate
the target facial attribute by simple interpolation. Follow-
ing their work, StyleSpace [41] carried out a quantitative
study on the latent spaces of StyleGAN [21] and realized a
highly localized and disentangled control of the visual at-
tributes. StyleFlow [3] achieved conditional exploration of
the latent space by training conditional normalizing flows.
StyleRig [35] introduced a method to provide a face rig-
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like control over a pretrained and fixed StyleGAN via a 3D
morphable face model. Yao et al. [43] proposed to navi-
gate the latent space of StyleGAN in a non-linear manner
to achieve disentangled manipulations of facial attributes.
To find out the disentangled directions, some researches at-
tempted to analyze the latent space of generative networks
using Principal Component Analysis (PCA). PCAAE [30]
presented an PCA auto-encoder, whose latent space is pro-
gressively increased during training and results in a sepa-
ration of intrinsic data attributes into different components.
GANSpace [18] performed PCA in the latent space of gen-
erative networks, explored the principal directions and dis-
covered interpretable controls. The above-mentioned meth-
ods generally focus on manipulations of synthetic images,
as it remains a challenge to project real images to the la-
tent space of StyleGAN. Image2StyleGAN used optimiza-
tion method to project real images to an extended latent
space of StyleGAN, but the characteristics of which differ
from the original latent space thus not suitable for manipu-
lation. Some recent works [26, 31, 33, 45] trying to train an
encoder together with the StyleGAN model. Although the
images cannot be perfectly reconstructed, we see the possi-
bility of carrying out attribute editing on real images using
the disentanglement characteristics of the StyleGAN latent
space.

Video-based Face Editing. Recent works on face video
synthesis mainly address two problems: 1) generating a
face video sequence from a sketch video or a reference im-
age (often referred as face reenactment), and 2) facial at-
tribute editing on videos. Garrido et al. [12] proposed an
image-based reenactment system to achieve face replace-
ment in video. Face2Face [36] presented an approach for
real-time facial reenactment of a target video using non-
rigid model-based bundling. Averbuch-Elor et al. [4] pre-
sented a technique to animate a still portrait with a driving
video, but limited to mild movements. Kim et al. [22] pro-
posed to use generative neural networks for re-animation of
portrait videos, which transforms not only the facial expres-
sions but also the full upper body and background. Most of
these methods handle only low-quality video shots. A pop-
ular open-source deepfake system DeepFaceLab [29] has
attracted much attention. Incorporating productivity tools
such as manual face detection and landmark extraction tool,
their pipeline generates high fidelity face swapping results
on videos. To realize facial attribute editing directly on
videos, Rav-Acha et al. [32] suggested to convert video
frames to an “unwrap mosaic”, paint and re-render the mo-
saic to videos. Despite satisfying results, computing the
mosaic for each video shot is a long process and requires
a smooth variation to construct successfully. Duong et al.
[10] proposed an approach to generate age-progressed fa-
cial images in video sequences using deep reinforcement
learning. Many recent works use deep learning techniques

to realize facial attribute editing on still images. However,
up to now, only a few works have addressed video-based
attribute editing problem [44].

3. Method
In this section, we propose a framework to edit faces in

real images and videos via the latent space of StyleGAN.

3.1. Overview

For a given real image I, we assume that we can compute
a latent representation w ∈ W associated to a generator G.
An inversion method is trained so that I ≈ G(w). We aim
to train a latent transformer T in the latent space to edit a
single attribute of the projected image G(w). The image
synthesized from T(w) is denoted by G(T(w)). It shares
all the attributes with G(w) except the target attribute being
manipulated.

To train the latent transformer, we propose a training
framework that computes all the losses solely in the latent
space W . Let {a1,a2, ...,aN} be a set of image attributes,
where N is the total number of considered attributes. For
each attribute ak, a different Tk is trained. To predict the
attributes from the latent codes we use a latent classifier
C : W → {0, 1}N . C is pre-trained and then its weights
are frozen during the training of Tk. We train Tk with the
following three objectives:

• To ensure that Tk manipulates attribute ak effectively,
we minimize the binary classification loss:

Lcls = −yk log (pk)− (1− yk) log (1− pk), (1)

where pk = C(Tk(w))[k] is the probability of the
target attribute and yk ∈ {0, 1} is the desired label.

• To ensure that other attributes ai, i ̸= k remain the
same, we apply an attribute regularization term:

Lattr =
∑
i ̸=k

(1− γik) Ew,i[||pi −C(w)[i]||2], (2)

where γik is the absolute correlation value between ai
and the target attribute ak, measured on the training
dataset. This regularization term is weighted based on
correlation to prevent the attributes which are naturally
correlated with the target from being over-constrained,
i.e. ‘chubby’ and ‘double chin’.

• To ensure that the identity of the person is preserved,
we further apply a latent code regularization:

Lrec = Ew[||T(w)−w||2]. (3)

The full objective loss can be described as:

L = Lcls + λattrLattr + λrecLrec, (4)

where λattr and λrec are weights balancing each loss.
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Figure 2: Video manipulation pipeline. Each input frame is cropped and aligned to a face image individually. A pretrained encoder [33]
is used to encode the face images to the latent space W+ of StyleGAN [21]. The obtained latent codes are processed by the proposed latent
transformer T to realize the attribute editing. The manipulated latent codes are further decoded by StyleGAN to generate the manipulated
face images, which are blended with the original input frames to get the output frames.

3.2. Training and models

To realize attribute editing on real images, we first need
to compute the corresponding latent codes in the latent
space of StyleGAN. Unlike a traditional generative network
which feeds random vectors as an input to the first layers,
StyleGAN has a different design. The generator takes a con-
stant tensor as input, while each convolution layer output is
controlled by style codes via adaptive instance normaliza-
tion layers [16]. A Gaussian random latent code z ∈ Z is
first passed through a mapping network to get an interme-
diate latent code w ∈ W , which is further specialized by
learned affine transforms to style codes y. Given a target
image x, finding the corresponding latent code in W re-
mains difficult, and the quality of the reconstruction is not
fully satisfactory. Image2StyleGAN [1] go a step further by
computing the latent code in an extended latent space W+,
where latent code w controlling each layer may be different,
whereas the original setting requires them to be the same.
The target image is thus better reconstructed from the latent
code obtained in W+.

In our approach, we train the latent transformer T in the
latent space W+, which is specifically designed for the pro-
jection of latent codes of real images. To prepare the train-
ing data, we compute the latent codes in W+ for each image
in CelebA-HQ dataset [19], using a pre-trained StyleGAN
encoder proposed by Richardson et al. [33]. Combined with
the annotations for each image, we obtain the “latent code -
label” pairs as our training data.

Latent Classifier. To predict attributes on the manipu-
lated latent codes, we train an attribute classifier C on the
“latent code - label” pairs. The classifier consists of three
fully connected layers with ReLU activations in between.
C is fixed during the training of the latent transformer.

Latent Transformer. Given a latent code w ∈ W+,
the latent transformer T generates the direction for a single
attribute modification, where the amount of changes is con-
trolled by a scaling factor α. The network is expressed with
a single layer of linear transformation f :

T(w, α) = w + α · f(w). (5)

During training the scaling factor α is set according to the

probability p of the target attribute of the input latent code
(1− p for p < 0.5, −p for p > 0.5). At test time, α can be
sampled from [−1, 1] or set beyond this range based on the
desired amount of changes.

3.3. Video manipulation

In this section, we propose a pipeline which applies the
image editing method to the case of videos. The encoding
process ensures that the encoded latent codes of two con-
secutive frames are similar to each other. Therefore, we
can reconstruct a face video using the frames projected to
the latent space of StyleGAN, which provides the basics for
the next manipulation step. Thanks to the stability of our
proposed latent transformer, the manipulation does not af-
fect the consistency between the latent codes and generates
stable edits on the projected frames. An overview of our
proposed pipeline is presented in Figure 2. The pipeline
consists of three steps: pre-processing, image editing and
seamless cloning.
Pre-processing. In order to edit the video in the latent space
of StyleGAN, we first extract face images from the frames,
according to the StyleGAN setting. We crop and align each
frame around the face, following the pre-processing step of
FFHQ dataset [20], on which the StyleGAN is pretrained.
For face alignment we detect landmarks independently on
each frame using a state-of-the-art method [6]. To avoid
jitter, we further process the landmarks using optical flow
between two consecutive frames and a Gaussian filtering
along the whole sequence. All frames are cropped and
aligned to have eyes at the center and resized to 1024×1024.
Image editing. In this step, we apply our manipulation
method on the processed face images. Each frame is en-
coded to the latent space of StyleGAN using the pre-trained
encoder [33]. The encoded latent codes are processed by
the proposed latent transformer to realize the attribute edit-
ing. The manipulated latent codes are further decoded by
StyleGAN to generate the manipulated face images.
Seamless cloning. We use Poisson image editing method
[28] to blend the modified faces with the original input
frames. In order to blend only the face area, we use the
segmentation mask obtained from the detected facial land-
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+ Gender + Beard

+/- Age + Makeup

Original Projected GANSpace InterFaceGAN Ours GANSpace InterFaceGAN Ours

Figure 3: Disentangled facial attribute editing on real images. The first two columns show the original image and the projected image
reconstructed with the encoded latent code in StyleGAN. From the 3rd column in each subfigure, from left to right are the manipulation
result of GANSpace [18], that of InterFaceGAN [34] and ours. Compared to recent approaches, our method achieves a controllable,
disentangled and realistic editing, where the person’s identity is preserved.

marks.

3.4. Implementation details

We explore disentangled manipulations in the latent
space of StyleGAN2 [21] pretrained on FFHQ dataset [20].
In this paper, we conduct all the experiments with the latest
StyleGAN2. For simplicity, when we mention StyleGAN,
it refers to the latest version - StyleGAN2. To prepare the
training data, we project images of CelebA-HQ [19] to the
latent space W+ of StyleGAN using a pre-trained encoder
[33] and obtain the corresponding latent codes. CelebA-HQ
contains 30K face images at 10242 resolution, each anno-
tated by 40 facial attributes. We train a separate latent trans-
former for each facial attribute.

To predict the attributes on the latent codes, we train
a latent classifier on the ‘latent code - label’ pairs, which
is fixed during the training of the latent transformer. The
model is designed to predict all the 40 attributes together,
and trained with binary cross entropy loss.

For the training of the latent transformer, we use 90%
of the prepared data for training set and train the model for
100K iterations, with a batch size of 32. The weights bal-
ancing each loss are set to λattr = 1 and λrec = 10. We use
Adam optimizer [23] with a learning rate of 0.001, β1 = 0.9

and β2 = 0.999.

4. Experiments

4.1. Disentangled manipulation on real images

We compare our results with two state-of-the-art meth-
ods: InterFaceGAN [34] and GANSpace [18]. For a fair
comparison, we follow the methodology of InterFaceGAN
and train their model on StyleGAN2 for the attributes of
CelebA-HQ using their official code. The official imple-
mentation of GANSpace on StyleGAN2 is available. For
the evaluation data we use FFHQ, independent from the
training of all methods. We project the real images of
FFHQ to the latent space W+ of StyleGAN using the pre-
trained encoder [33], and manipulate the latent codes us-
ing each method with the suggested magnitude of edits (3
for InterFaceGAN, specified range based on attributes for
GANSpace and 1 for our method). Figure 3 compares the
manipulation results on the attributes which are available
for all methods (‘gender’, ‘age’, ‘beard’ and ‘makeup’).
Our method achieves better disentangled manipulations.
For example, when changing ‘gender’, both GANSpace and
InterFaceGAN modify the hairstyle, and when changing
‘age’, GANSpace adds eyeglasses and InterFaceGAN af-
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Figure 4: Attribute and identity preservation vs. target attribute change. For each method, we edit each target attribute with 10 different
scaling factors ({0.2 · d, 0.4 · d, ..., 2 · d}, d is the magnitude of change suggested in each method), and generate the modified images.
Attribute preservation rate and identity preservation score are measured on the output images. In the figure, each point corresponds to a
scaling factor, where the position x indicates the target attribute change rate (the fraction of the samples with target attribute successfully
changed among all the manipulations). In the upper sub-figure, the position y indicates the average attribute preservation rate on the other
attributes. In the bottom sub-figure, the position y indicates the average identity preservation score. Ideally, we want higher attribute and
identity preservation for the same amount of change on the target attribute (higher curve is better).

Original Projected - Chubby + Blond Hair + Smile + Lipstick + Eyeglasses

- Eyeglasses + Bangs + Bags Under Eyes - Smiling + Age

+ Smiling + Beard + Receding Hairline + Eyeglasses + Arched Eyebrows

- Smiling - Chubby + Goatee + Eyeglasses + Pale Skin

Figure 5: Sequential facial attribute editing on real images. Given an input image, we manipulate a list of attributes sequentially, where
each time a single attribute is modified from the previous latent representation.

fects smile. In contrast, our method succeeds to separate
hairstyle from ‘gender’ and disentangle ‘eyeglasses’ from
‘age’, thanks to the attribute and latent code regularization
terms. The directions of GANSpace are discovered from
PCA so that they may control several attributes simultane-

ously. For InterFaceGAN, no attribute preservation is ap-
plied when searching the semantic boundary. Compared
with their methods, our editing results are of better visual
quality and preserve the original facial identities better.
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4.2. Quantitative evaluation

We compare our method quantitatively with GANSpace
and InterFaceGAN using three metrics: target attribute
change rate, attribute preservation rate and identity preser-
vation score. Given a set of manipulated samples, the target
attribute change rate refers to the percentage of the sam-
ples with target attribute varied among all the samples. The
attribute preservation rate indicates the proportion of un-
changed samples on the other attributes apart from the tar-
get. The identity preservation score refers to the average co-
sine similarity between the VGG-Face [27] embeddings of
the original projected images and the manipulated results.

For the evaluation data, we project the first 1K images
of FFHQ into the the latent space W+ of StyleGAN us-
ing the pre-trained encoder [33]. For each input image and
each method, we edit each attribute with 10 different scal-
ing factors ({0.2 · d, 0.4 · d, ..., 2 · d}, d is the magnitude of
change suggested by each method) and generate the corre-
sponding images. To predict the attributes on the modified
images, we use a state-of-the-art facial attribute classifier
[14], independent from all methods. Based on the classi-
fication result, we consider an attribute active if its proba-
bility is greater than 0.5, otherwise inactive (i.e., w/ bangs
versus w/o bangs). For each scaling factor, we compute the
target attribute change rate, and the attribute preservation
rate averaged on the other attributes. To check the identity
preservation, we compute the average identity preservation
score. Figure 4 presents the attribute and identity preser-
vation w.r.t. the target attribute change on the attributes
detected by all methods. For attributes like ‘beard’, ‘gen-
der’ and ‘smile’, all the methods handle well. For other
attributes, we observe that for the same amount of change
on the target attribute, our approach has a higher attribute
preservation rate while achieving a comparable or better
identity preservation score. Overall our method achieves
better disentanglement and better identity preservation than
existing methods.

4.3. Sequential editing

Thanks to the disentanglement property of our approach,
it achieves sequential modifications of several attributes on
real images. We project real images of FFHQ to the latent
space W+ of StyleGAN using the pre-trained encoder [33],
and apply manipulations on a list of attributes sequentially.
As shown in Figure 5, our method achieves disentangled
and realistic modifications, and is not limited to a defined
order of attributes.

4.4. Loss analysis

We carry out an ablation study to analyze the effects of
each regularization terms in Eq. (4). In our proposed base-
line, the weights balancing each regularization term are set

Original λattr = 0 λrec = 0 Ours
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Figure 6: Ablation study on the loss composition in Eq. (4). Each
row corresponds to a single attribute editing. From left to right:
original image, manipulation results of different scenarios. When
λattr = 0, editing target attribute affects the others. When λrec =
0 it fails to preserve the facial identity. Our proposed baseline
yields better disentangled results with identity preserved.

Figure 7: Quantitative comparison of different loss compositions.
For each scenario, we edit each attribute with 10 scaling factors
({0.2, 0.4, ..., 2}) and measure the attribute preservation rate and
identity preservation score on the modified images. Each point
marker represents a scaling factor. The upper sub-figure presents
the average attribute preservation rate w.r.t. target attribute change
rate. The bottom sub-figure presents the average identity preserva-
tion score w.r.t. target attribute change rate. Our chosen baseline
has a better trade-off between attribute and identity preservation.

to λattr = 1 and λrec = 10. We compare with two differ-
ent scenarios: λattr = 0 (w/o attribute regularization) and
λrec = 0 (w/o latent regularization). As shown in Figure 6,
when λattr = 0 the output is not only manipulated on the
target attribute but also affected on the other attributes, e.g.,
beard added when changing gender, mouth affected when
changing age. When λrec = 0, the manipulated images
fail to preserve the original facial identity. Balancing each
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Figure 8: Facial attribute editing on videos. In each sub-figure, the top row shows the input frames, the bottom row shows the output
frames obtained from our proposed video manipulation pipeline. A face image is cropped and aligned from each frame, and encoded to
latent space of StyleGAN. The encoded latent code is passed into the latent transformer to get the target attribute varied, then decoded to
an output face and blended with the input frame.

term, our proposed baseline achieves attribute editing with
better disentanglement and identity preservation. Figure 7
provides a quantitative comparison of the three scenarios.
As can be observed, our chosen baseline preserves the other
attributes best, with the same amount of attribute change,
without sacrificing the identity preservation.

4.5. Video editing

We apply our manipulation method on real-world videos
collected from FILMPAC library [11]. Figure 8 shows the
qualitative results of facial attribute editing on videos ob-
tained from our proposed pipeline. From each input frame,
we crop and align a face image and encode it to the latent
space of StyleGAN with a pre-trained encoder [33]. The en-
coded latent code is processed by the latent transformer to
vary the target attribute, then decoded to an output face im-
age and blended with the input frame. As can be seen from
the results, our proposed method succeeds in removing the
facial hair or adding the makeup, without influencing the
consistency between the frames. Nevertheless, we also ob-
serve that the proposed method has more difficulty handling
extreme pose (side face), which may be due to the limitation
of the generation capacity of the StyleGAN model. Please

refer to the supplementary material to check the videos and
see more video results.

5. Conclusion and future work

In this paper, we have presented a latent transformation
network to perform facial attribute editing in real images
and videos via the latent space of StyleGAN. Our method
generates realistic manipulations with better disentangle-
ment and identity preservation than other approaches. We
have extended our method to the case of videos, achiev-
ing stable and consistent modifications. To the best of our
knowledge, this is the first work to present stable facial at-
tribute editing on high resolution videos. Some future work
could be dedicated to improve both the applicability of the
method and the performance on videos. In particular, the
method has difficulty handling side poses due to the fact
that StyleGAN has difficulties in generating faces in side
poses. This could be potentially addressed by jointly train-
ing the StyleGAN encoder with the generator, or training
an improved StyleGAN generator using images with better
diversity of poses.
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