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Abstract

How to effectively and efficiently deal with spatio-
temporal event streams, where the events are generally
sparse and non-uniform and have the µs temporal reso-
lution, is of great value and has various real-life appli-
cations. Spiking neural network (SNN), as one of the
brain-inspired event-triggered computing models, has the
potential to extract effective spatio-temporal features from
the event streams. However, when aggregating individual
events into frames with a new higher temporal resolution,
existing SNN models do not attach importance to that the se-
rial frames have different signal-to-noise ratios since event
streams are sparse and non-uniform. This situation inter-
feres with the performance of existing SNNs. In this work,
we propose a temporal-wise attention SNN (TA-SNN) model
to learn frame-based representation for processing event
streams. Concretely, we extend the attention concept to
temporal-wise input to judge the significance of frames for
the final decision at the training stage, and discard the ir-
relevant frames at the inference stage. We demonstrate that
TA-SNN models improve the accuracy of event streams clas-
sification tasks. We also study the impact of multiple-scale
temporal resolutions for frame-based representation. Our
approach is tested on three different classification tasks:
gesture recognition, image classification, and spoken digit
recognition. We report the state-of-the-art results on these
tasks, and get the essential improvement of accuracy (al-
most 19%) for gesture recognition with only 60 ms.

1. Introduction
Dynamic vision sensors (DVS)[20, 28] pose a new

paradigm shift by using sparse and asynchronous events
to represent visual information. Unlike the conventional
cameras, which produce fixed low-rate synchronized frames
(typically less than 60 frames per second), DVS cameras
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Figure 1. Our proposed model use the TA to judge the significance
of frames at the training stage and discard the irrelevant frames
at the inference stage. The sample is from the DVS128 Gesture
dataset. The green and cyan colors denote the On and Off channels
which correspond to brightness increase and decrease, respectively
(more details of event streams in section 3.1).

encode the time, location, and polarity of the brightness
changes for each pixel at an extremely high event rate (1M
to 1G events per second ), and exhibit advantages mainly in
three aspects[11, 30]. Firstly, DVS cameras require much
less resource, as the events are sparse and only triggered
when the intensity changes. Secondly, the µs temporal res-
olution (TR) of DVS can avoid motion blur by produc-
ing high-rate events. Thirdly, DVS cameras have a high
dynamic range (140dB vs. 60dB of conventional cam-
eras), which makes them able to acquire information from
challenging illumination conditions. These characteristics
bring superiorities over conventional cameras when orient-
ing to visual tasks which need low latency, low power con-
sumption, and stability for variant illumination, which have
been used in high-speed object tracking[30], autonomous
driving[4], SLAM[7], low-latency interaction[1], etc.

However, we have observed that the event streams
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recorded by DVS cameras are usually redundant in the
temporal dimension, which is caused by high TR and ir-
regular dynamic scene changes. This characteristic makes
event streams almost impossible to process directly through
deep neural networks (DNNs), which are based on dense
computation. Compromising on this, additional data
preprocessing[2, 33, 11] is required and inevitably dilutes
the advantages of low-latency and power-saving of events.
Inspired by the working pattern of the mammalian visual
cortex[11], spiking neural networks (SNNs) have a unique
event-triggered computation characteristic that can respond
to the events in a nearly latency-free and power-saving
way[31, 25, 11], and it is naturally fit for processing event.
However, due to the lack of training technology, the per-
formance of deep SNNs has become the biggest obstacle to
their application. During experiments, we find that there is
still a lot of optimizing room for SNNs to process the event
data more efficiently and effectively. That’s why we intro-
duce the attention mechanism into SNNs.

In this work, we propose the temporal-wise attention
SNNs (TA-SNNs) by extending the attention concept to
temporal-wise input to automatically filter out the irrele-
vant frames for the final decision. For TA-SNNs, how
to implement the attention mechanism while retaining the
event-triggered characteristic is the primary consideration.
Classic attention methods, such as self-attention[36], are
hard to use because the change of network connection de-
stroys the event-triggered characteristic in SNNs. Inspired
by squeeze-and-excitation (SE) block[13], we design the
TA module to obtain the statistical features of events at dif-
ferent times, generate the attention scores and then weigh
the events by the scores. At the same time, we propose a
data augmentation method called random consecutive slice
(RCS) to utilize the event data. In order to keep the event-
encoded data characteristics, we then use binary attention
scores at the inference stage with a threshold in the TA mod-
ule, which is termed as input attention pruning (IAP) and
obtains an unchanged or even higher accuracy with RCS.
Without losing generality, we test our approach with two
kinds of SNN models, i.e., leaky integrate-and-fire (LIF)
and leaky integrate-and-analog-fire (LIAF), on three kinds
of tasks: gesture recognition, image classification, and spo-
ken digit recognition. We report the state-of-the-art results
on these tasks in long-term TRs, and get the essential im-
provement of accuracy (almost 19%) for gesture recogni-
tion with low-latency and power-saving property.

We summarize our contributions as follows:

1) We propose the TA-SNNs for event streams that can
undertake the end-to-end training and inference tasks
with low latency, low power consumption, and high
performance. To the best of our knowledge, this is
the first work to introduce temporal-wise attention into
SNNs.

2) We propose the IAP method for SNNs and get similar
or even better performance compared with those us-
ing full inputs (see Fig.4). The IAP brings a crucial
power-saving significance for SNNs and other event-
based algorithms.

3) Inspired by the data augmentation method in video
recognition[35] and overlap method for event stream
process[21], we introduce the RCS method to make
full use of the sampled data.

2. Related Works
Event Streams Classification. To yield sufficient

signal-to-noise ratios (SNR) for the task accuracy, process-
ing the events as groups is the most common method[11].
In this paper, we adopt the frame-based representation that
aggregates event streams into frames[27]. The frame-based
representation is easy to generate and naturally compati-
ble with the traditional computer vision framework, and the
SNN algorithms based on frames can be easily mapped to
neuromorphic hardware[27]. TR is a crucial parameter for
frame-based representation, and generally, the bigger TR is,
the higher SNR we could have. Most related works are ded-
icated to using various techniques to improve the classifica-
tion performance based on the long-term TR, such as im-
prove training method[45, 39], change the connection path
of the SNNs[5, 42], and hybrid fusion[40, 8, 17], etc.

Spiking Neural Networks. Spiking neurons, such as
the LIF[38], use spike stream as the data transmission form
and connect each other hierarchically as a network, i.e.,
SNNs. One common way in these spike-based SNNs is
to assume that the neurons which have not received any
input spikes will skip computations, i.e., event-triggered
characteristic[11]. So spike-based SNNs can extract infor-
mation from spikes in a power-saving way. The other kind
of SNNs, i.e., analog-based SNNs, use dynamic character-
istics in spiking neurons but transmit analog values in the
network, such as LIAF[40], RELU SRNN[6], SpArNet[15],
etc. Analog value makes the network easy to train, but it
loses the attributes of skipping computation in spike-based
SNNs. Without loss of generality, we separately adopt
LIF and LIAF models as the elements of spike-based and
analog-based SNNs to test the attention mechanism.

Attention Models. The attention mechanism selectively
focuses on the most informative components of the input
and can be interpreted as the sensitivity of the output to the
variant input[34]. The models using attention have been
applied to many tasks, such as sequence learning[26, 22],
machine translation[36, 9, 37], action recognition[14, 10],
etc. Generally, there are two types of works , i.e., temporal-
wise attention in RNNs[34] and spatial-wise attention in
SNNs[3, 41, 18] may be related to the proposed method in
this paper. Our work is different from prior works, and we
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focus on the statistical characteristics of the frames input at
different timesteps based on SNNs.

3. Model Description
3.1. Frame-based Representation

Event steam comprises four dimensions: two spatial co-
ordinates, the timestamp, and the polarity of the event.
The polarity indicates an increase (ON) or decrease (OFF)
of brightness, where ON/OFF can be represented via +1/-
1 values. Assume the TR of event stream is dt′ and
the spatial resolution is L × B, then the spike pattern
tensor Xt′ ∈ RL×B×2 is equal to events set Et′ =
{ei|ei = [xi, yi, t

′, pi]} at timestamp t′. For frame, set a
new TR dt = dt′ × β, and the consecutive β spike patterns
can be grouped as a set

Et = {Xt′} (1)

where t′ ∈ [β × t, β × (t+ 1)− 1] and β is called res-
olution factor. Then, the frame of input layer at t time
Xt,0 ∈ RL×B×2 based on dt can be got by

Xt,0 = q(Et) (2)

where t ∈ {1, 2, · · · , T} is timestep, and aggrega-
tion function q(·) could be selected, as non-polarity
aggregation[21], accumulate aggregation[8], AND logic
operation aggregation[12], etc. Here we choose a simple
approach, which accumulates event stream with the infor-
mation of event polarity.

3.2. Spiking Neural Network Models

The LIF model is a trade-off between the complex dy-
namic characteristics of biological neurons and the simpler
mathematical form. It is suitable for simulating large-scale
SNNs and can be described by a differential function[31]

τ
du (t)

dt
= −u (t) + I (t) (3)

where τ is a time constant, and u (t) and I (t) are the mem-
brane potential of the postsynaptic neuron and the input col-
lected from presynaptic neurons, respectively (see the rela-
tionship of u (t) and I (t) in Fig.2). For easy inference and
training, a simple iterative representation of LIF model[23]
or LIAF model[40] can be described as

U t,n = Ht−1,n + g
(
W n,Xt,n−1

)
Zt,n = f

(
U t,n − uth

)
Ht,n =

(
e−

dt
τ U t,n

)
◦
(
1−Zt,n

)
Xt,n =

{
Zt,n for LIF,
ReLU

(
U t,n

)
for LIAF,

(4)

where n and t are indices of layer and timestep, W n is the
synaptic weight matrix between two adjacent layers, g(·) is

a function stands for convolutional operation or fully con-
nected operation, f(·) is a Heaviside step function that sat-
isfies f (x) = 1 when x ≥ 0, otherwise f (x) = 0, uth is
the membrane potential threshold, e−

dt
τ reflects the leakage

factor of the membrane potential, ◦ is the Hadamard prod-
uct, X and H are spatial and temporal input, respectively,
U is the membrane potential, and Z is the spike tensor. For
spatial input tensor X , its representation is different for LIF
and LIAF which are separately described below.

LIF-SNNs. As shown in Eq.4 and Fig.2, by coupling
Xt,n−1 from the n − 1 layer and Ht−1,n from the t − 1
timestep, we can get U t,n. If U t,n is greater than uth, the
neuron executes the fire mechanism, which outputs Zt,n as
the spatial input of next layer, i.e., Xt,n = Zt,n, and re-
sets U t,n to urest. Meanwhile, the neuron executes the
leak mechanism, and the decayed value of membrane po-
tential Ht,n will be used as the temporal input for the next
timestep.

LIAF-SNNs. For the LIAF, it keeps the Ht−1,n and
changes the Heaviside step function to ReLU function for
U t,n, i.e., Xt,n = ReLU

(
U t,n

)
, then both spatial and

temporal domains are analog values. We use the STBP[38]
and the BPTT algorithm[40] to train LIF-SNNs and LIAF-
SNNs, respectively.

3.3. Temporal-wise Attention for SNNs

The goal of TA module is to estimate the saliency of
each frame. This saliency score should not only be based
on the input statistical characteristic at the current timestep,
but also take into consideration the information from neigh-
boring frames. We apply the squeeze step and excita-
tion step[13] in temporal-wise to implement the above two
points. The spatial input tensor of nth layer at tth timestep
is Xt,n−1 ∈ RL×B×C where C is channel size.

Squeeze step calculates a statistical vector of event num-
bers, and the value of statistical vector sn−1 ∈ RT at tth
timestep is

sn−1
t =

1

L×B × C

C∑
k=1

L∑
i=1

B∑
j=1

Xt,n−1(k, i, j). (5)

By executing the excitation step, sn−1 is subjected to non-
linear mapping through a two-layer fully connected network
to obtain the correlation between different frames, i.e., score
vector

dn−1 =

{
σ
(
W n

2 δ
(
W n

1s
n−1

))
training,

f
(
σ
(
W n

2 δ
(
W n

1s
n−1

))
− dth

)
inference,

(6)
where δ and σ are ReLU and sigmoid activation function,
respectively, W n

1 ∈ R
T
r ×T and W n

2 ∈ RT×T
r are train-

able parameter matrices, and optional parameter r is used to
control the model complexity, f(·) is a Heaviside step func-
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Figure 2. Temporal-wise attention spiking neural networks. In score vector dn−1, different colors represent different attention scores at
different timesteps, multiplying them can produce the new input tensor according to Eq.7.

tion that is same as in Eq.4, and dth is the attention thresh-
old. We use the score vector to train a complete network at
the training stage. As an optional operation, at the inference
stage, we discard the irrelevant frames which are lower than
dth, and set the attention score of the other frames to 1.

Finally, we use dn−1 as the input score vector, and the
final input at tth timestep is

X̃
t,n−1

= dn−1
t Xt,n−1 (7)

where X̃
t,n−1

∈ RL×B×C is Xt,n−1 with attention score
at tth timestep in Eq.4. Then, the membrane potential be-
haviors of a TA-LIF and TA-LIAF layer follow

U t,n = Ht−1,n + g
(
W n, X̃

t,n−1
)
. (8)

The excitation step maps the statistical vector z to a set
of temporal-wise input scores. In this regard, the TA mod-
ule can be deemed as a self-attention function. The main
difference is that statistical vectors in the frame-based rep-
resentation directly correlate with the number of events.

4. Experiments
4.1. Experimental Setup

Datasets. We perform experiments on three kinds of
classification datasets, which are all event datasets but are
obtained in different ways. The first is DVS128 Gesture[1],
which is a gesture recognition dataset capture by DVS cam-
eras. The second is CIFAR10-DVS[19], which is an event-
based image classification dataset convert from the static

dataset by scanning each sample in front of DVS cameras.
The last one is the Spoken Heidelberg Digits (SHD)[6],
which is an audio classification dataset convert from audio
by software simulation.

Learning. Table 1 lists details for experiments like
learning algorithm, loss function, etc. We use the Adam
optimizer [16] for accelerating the training process and em-
ploy some standard training techniques of deep learning,
such as batch normalization, dropout, etc, and the corre-
sponding hyper-parameters and SNN hyper-parameters are
shown in Table 2. The network structures of the three tasks
are shown in Table 3, and we adopt the same network struc-
ture for LIF-SNN and LIAF-SNN in each dataset.

RCS Method. Leave out the time consumption in hard-
ware, event-based system latency tlat only hinges on dt and
T , i.e., dt × T . Inspired by the random temporal cropping
during video recognition method[35], we apply similar data
augmentation at the training stage, which is termed as RCS,
i.e., select a random t0 (see Fig.1) as the starting point and
aggregate consecutive frames. At the test time, we adopt a
voting mechanism by following [35], that is, for the given dt
and T , an event stream is divided into consecutive 10-crops
and the length of each one is tlat, and the final test result
is obtained by accumulating the results of all the individual
crops. If the number of frames is less than 10 × tlat, we
adopt overlap methods in [21], e.g., using 2-crops of 30ms
and tlat = 20ms, the crops will cover partially overlapped
ranges as [0ms; 20ms] and [10ms; 30ms].
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Table 1. Unification for comparison. Our network implements on
the Pytorch[24] framework.

Dataset CIFAR10-DVS & DVS128 Gesture
& SHD Dataset

Representation Tunable Frames
Output Latency dt× T

Learning Algorithm STBP[38] & BPTT
Loss Function Rate Coding[12]

Network Structure CNN-based SNN[12]

Table 2. Hyper-parameter setting.
Hyper parameter DVS128 Gesture CIFAR10-DVS SHD

Max Epoch 100 150 100
Batch Size 36 64 256

Learning Rate 1e−4 1e−3 1e−3

uth 0.3 0.3 0.3
e−

dt
τ 0.3 0.3 0.3

r 16 5 5

Table 3. Network structure. MP4-max pooling is 4×4, nC3-Conv
is 3 × 3 and has n output feature maps, AP2-average pooling is
2× 2, nFC-Linear layer has n output feature maps.

Dataset Network Structure

DVS128 Gesture Input-MP4-64C3-128C3-
AP2-128C3-AP2-256FC-11

CIFAR10-DVS
Input-32C3-AP2-64C3-

AP2-128C3-AP2-256C3-
AP2-512C3-AP4-256FC-10

SHD Dataset Input-128FC-128FC-20
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Figure 3. Ablation study of different TA positions based on
DVS128 Gesture in (a) LIF-SNN, and (b) LIAF-SNN. S1, pure
SNNs without TA; S2, insert TA only at the input layer; S3, insert
TA only at the depth layers; S4, insert TA to the whole network.

4.2. Gesture Recognition

The IBM DVS128 Gesture[1] is an event-based ges-
ture recognition dataset, which has the TR in µs level and
128 × 128 spatial resolution. It records 1342 samples of
11 gestures, and each gesture has an average duration of 6
seconds. Note that DVS128 Gesture has two kinds of cate-

gories which are 10 and 11 classes, and we select the latter
setting that is harder.

Ablation Study of Different TA Positions. The posi-
tion to insert TA is important, and to evaluate its influence,
we design an ablation study of different TA positions, which
consist of four: S1, pure SNNs without TA; S2, insert TA
only at the input layer; S3, insert TA only at the depth
layers (whole network except the input layer); S4, insert
TA to the whole network. Perceptually, smooth interac-
tions in real gesture recognition tasks require systems to re-
spond within 100-200 ms[1]. Based on this requirement,
we set T ∈ {30, 60, 90, 120, 150, 180} with dt = 1ms.
The impact of the TA positions and simulation timestep T
on gesture recognition are shown in Fig.3. For TA posi-
tions, we observe that using the S2 (green) or S3 (blue) in-
dependently can improve performance in most cases, and
S3 achieves the best accuracy. But combining S2 and S3
(i.e., S4, yellow) leads to unstable results, and the accuracy
keeps going down when T grows bigger. Besides, when T
falls in the first half range, improving T can improve the ac-
curacy slightly, but further enlarging T (T > 120) will be
helpless.

Experiments of IAP. Inspired by the characteristic of
event-triggered computation in LIF-SNNs, we discard the
frames with lower attention scores at the inference stage
(see Eq.6) for power-saving and term this method as IAP.
It is worth noting that the attention mechanism brings the
possibility for the discard operation. To evaluate the ef-
fects of input pruning, we set IAP on S2 and S4 since each
frame has an attention score in these two cases. To make an
intuitive comparison, without attention, we choose a sim-
ple input random pruning (IRP) to achieve the same level
of power consumption as the baseline. The accuracies of
IRP in Fig.4 (a) appear approximative monotone decreas-
ing with the increase of the pruning proportion. However,
for Fig.4 (b) and (c), the accuracies do not decrease as the
pruning proportion increases at the first half of the prun-
ing proportion. Detailedly, as shown by the dotted circle in
Fig.4, when the pruning proportion is 0.5, most of the IAP
still maintain high accuracies around 89%, but the IRP ac-
curacies decrease to around 78%. Moreover, as shown in
Table 4, the best pruning proportion of the IAP relates to
the simulation timestep T , and we can get similar or even
better performance with almost only half the power and a
low-latency (30ms to 180ms) with the TA module compared
with using full input.

Ablation Study of RCS and TA. To investigate the in-
fluence of RCS and TA, we conduct several ablation studies
in Table 5. Because of the stability of the S3 strategy, it
will be used for all the rest of experiments in this paper.
For the comprehensiveness of the studies, we set multiple-
scale dt ∈ {1, 5, 10, 15, 20, 25} with fixed T = 60. First,
we show the effect of the TA and RCS method individually
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Figure 4. Experiments of IAP. We fixed dt = 1ms, varying simulation timestep T ∈ {30, 60, 90, 120, 150, 180} and pruning proportion
on DVS128 Gesture. From left to right (a) IRP without attention. (b) TA module only used in the input layer with IAP. (c) TA module used
in the whole network with IAP. As shown by the dotted circle, when the pruning proportion is 0.5, most of the IAP results still maintain
high accuracy around 89%, but the IRP accuracy results decrease to around 78%.

Table 4. Influence of IAP in variant T on parameters, accuracy, and
FLOPs. “Param.” means the ratio of increased parameters of TA,
“Best Pro.” and “Acc.” reflect the best pruning proportion to keep
the accuracy. “FLOPs” means the floating point operations.

IAP T Param. Best Pro. Acc.(%) FLOPs
(%↑) (%↓)

S2

30 +0.004 0.17 81.95(-1.73) -16.67
60 +0.018 0.40 86.11(-1.04) -40.00
90 +0.043 0.30 89.24(-1.39) -30.00
120 +0.078 0.35 90.99(+0.02) -35.00
150 +0.123 0.40 89.89(-0.04) -40.00
180 +0.179 0.40 91.28(+0.31) -40.00

S4

30 +0.020 0.34 83.33(-3.48) -33.33
60 +0.091 0.24 88.20(-0.34) -23.33
90 +0.214 0.32 89.24(-0.69) -31.11
120 +0.389 0.50 90.58(-0.05) -50.00
150 +0.615 0.35 89.24(+0.35) -34.67
180 +0.893 0.35 88.89(+0.00) -35.00

based on benchmark SNN results [12]. We observe that TA
works in all conditions, and RCS makes a great improve-
ment of accuracy when dt is small, but the effect is weak-
ened when dt is bigger. Next, we apply those methods on
LIF and LIAF, and get variant results. For LIF, RCS and TA
can work together very well with an accuracy of 95.49%.
For LIAF, RCS has a negative influence when dt is bigger
(dt ∈ {15, 20, 25}), and we reports the best accuracy of
98.61% without RCS.

4.3. Event-based Image Classification

CIFAR10-DVS[19] is an event-based dataset converted
from CIFAR10 by scanning each image with repeated
closed-loop movement in front of a DVS. CIFAR10-DVS
includes 1000 samples for each category in CIFAR10, and
there are in total 10,000 samples, with each one having

Table 5. Ablation study of RCS and TA-SNNs. We use the S3
strategy to test multiple-scale TRs with T = 60.

Model dt
SNN(%) TA-SNN SNN TA-SNN

[12] (%) (RCS)(%) (RCS)(%)

LIF

1ms 71.53 73.25 87.15 90.28(+18.75)
5ms 87.15 89.24 90.63 93.40

10ms 91.67 93.40 93.40 94.79
15ms 93.05 95.49 92.36 95.49
20ms 92.71 94.44 91.32 94.79
25ms 93.40 95.14 91.67 95.48

LIAF

1ms 72.59 74.31 90.97 91.32(+18.73)
5ms 88.20 89.93 93.06 94.10

10ms 93.75 95.14 93.75 94.79
15ms 95.14 96.88 94.10 94.79
20ms 95.84 97.57 94.10 95.14
25ms 96.18 98.61 94.44 94.79

Table 6. Ablation experiments on dt = 10ms and T = 10 in the
CIFAR10-DVS dataset with the S3 strategy.

LIF LIAF

SNN SNN TA-SNN SNN SNN TA-SNN
(RCS) (RCS) (RCS) (RCS)

54.70% 66.60% 71.10% 69.40% 70.97% 72.00%

a duration of 300ms. The temporal and spatial resolu-
tions are µs and 128 × 128, respectively. Unlike gesture
recognition, the temporal feature in CIFAR10-DVS may not
be dominant[8]. Fig.5 gives examples in CIFAR10-DVS,
which can be observed that the temporal correlation be-
tween different frames is not obvious. Based on the above
analysis, we select moderate parameters that are T = 10
and dt = 10ms. As shown in Table 6, in these experiments,
both RCS and TA-SNNs can improve accuracy.
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Figure 5. Examples of consecutive frames in CIFAR10-DVS with
dt = 10ms. The movement of images in CIFAR10 is designed by
fixed trajectory, and the distance of spatial movement is restricted.
Thus, frames at different timestep are similar, and the temporal
feature is not the dominant information[8].

Table 7. Experiments on TA-SNNs in SHD dataset with the S3
strategy. For comparison, we fixed tlat here and adopt the same
network structure with [43]. Since shorter samples will pad with
zeros, the RCS method cannot be used here.

dt T
LIF LIAF

SNN(%) TA-SNN SNN(%) TA-SNN
(%) (%)

4ms
50 54.33 57.77 58.75 61.23

150 74.16 85.91 75.04 82.24
250 75.88 84.50 75.49 81.45

10ms
20 79.42 84.76 78.40 79.24
60 77.52 86.71 87.68 86.32

100 81.45 86.66 84.54 88.21

60ms 10 86.79 87.59 89.05 91.08
15 85.87 86.88 86.35 89.80

4.4. Audio Classification

The SHD dataset[6] is a large spike-based audio clas-
sification task that contains 10420 audio samples of spo-
ken digits ranging from zero to nine in English and Ger-
man languages. A biologically inspired model[6] is used
to convert the audio signal into a spike stream, and the
data duration ranges from 0.24s to 1.17s. Unlike the four-
dimensional event stream generated by the DVS camera,
the audio spike stream has only two dimensions, i.e., time
and position. As shown in Fig.6, the resolution of time di-
mension is µs level, and the position ranges from 0 to 699.
We adopt the same data preprocess method in [43], i.e., all
samples are fit within a 1s window, where shorter samples
are padded with zeros, and longer samples are cut. We use
tlat ∈ {200, 600, 900, 1000} with different dt based on S3
strategy. Results in Table 7 demonstrate that TA-SNNs al-
ways work in all kinds of parameter combinations, and the
bigger tlat is, the higher accuracy we could have. To verify
the effectiveness of the TA module, we also insert it into an
extra analog-based SNN, i.e., ReLU SRNN[43], and report
90.02% accuracy, which is higher than 88.93% in [43].
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Figure 6. An audio example from the SHD dataset. The data con-
tents of audio have no periodicity, and this is essentially different
with natural gestures and the periodic movement of the image.

Table 8. Accuracy of models for the DVS128 Gesture, CIFAR10-
DVS and SHD Dataset.

Task Proposals Methods Acc.(%)
Amir et al. 2017[1] 12 layers CNN 94.59

Shrestha et al. 2018[32] Slayer 93.64
Wu et al. 2020[40] LIAF-Net 97.56

DVS 128 Kugele et al. 2020[17] DenseNet SNN 95.56
Gesture Massa et al. 2020[21] SNN on Loihi 89.64

Zheng et al. 2020[45] ResNet17 SNN 96.87
Khoei et al. 2020[15] SpArNet 95.10

He et al. 2020[12] LIF-Net 93.40
This work (SOTA) TA-SNN 98.61
Wu et.al. 2018[39] NeuNorm SNN 60.50

Ramesh et al. 2019[29] DART 65.78
CIFAR10 Wu et al. 2020[40] LIAF-Net 70.40

-DVS Kugele et al. 2020[17] SR-ANN 66.75
Zheng et al. 2020[45] ResNet19 SNN 67.80
This work (SOTA) TA-SNN 72.00

Cramer et al. 2020[6] LIF RSNN 71.40
SHD Yin et al. 2020[43] RELU SRNN 88.93

Dataset Zenke et al. 2021[44] SG-based SNN 84.00
This work (SOTA) TA-SNN 91.08

4.5. Comparison with Prior Works

We compare our best results of the proposed TA-SNN
against various of prior works for event-based data, such as
CNN method[1, 32], spike-based SNNs[17, 21, 45, 39, 6,
12, 44], and analog-based SNNs[40, 15, 43], etc. As shown
in Table 8, our TA-SNN models achieve the SOTA in vari-
ous datasets, and the performance of spike-based SNNs and
analog-based SNNs have been improved by inserting the
TA module. Moreover, comparing with the original SNNs,
the number of parameters in TA-SNNs almost has no in-
crease. From the above comparisons, it can be seen that
the TA module can help SNN to achieve higher perfor-
mance with less cost in various tasks, thereby, the TA
module will contribute a lot to promote SNNs to practi-
cal applications.
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5. Discussion
TA position. Different TA positions in SNNs have dif-

ferent effects on performance, and the TA module inserted
on depth layers (i.e., S3) works better (see Fig.3). This phe-
nomenon is similar to the SE block used in the channel do-
main, where the SE in deeper layers is slightly better than
that in lower layers[13]. Compared with pure SNNs, TA-
SNNs based on the S3 can always enhance the network’s
ability to extract spatio-temporal features.

Adaptability of TA module. One of the most valuable
points in the spike-based SNNs is the event-triggered com-
putation feature[11]. However, keeping the event-triggered
characteristic also brings difficulty in training since the
spike activity is hard to differentiate. Although the STBP al-
gorithm, which can solve the differentiability issue to some
extend, appears to be barely satisfactory in deep SNNs,
comfortingly, our TA module can improve the accuracy of
spike-based SNNs. Moreover, instead of utilizing full in-
put frames, our TA module also brings interesting and im-
portant IAP that can get similar or even better performance
with only half of the input frames and low latency (30ms
to 180ms). This achievement may magnify the advantage
of power-saving and exhibit the potential of network per-
formance improvement in deep spike-based SNNs. On
the other hand, the TA module also works in analog-based
SNNs, which give up the event-triggered characteristic but
keep the dynamic characteristics of a biological neuron, and
all SOTA results are obtained in this way, however, more
power might be needed in return.

Influence of RCS method. Prior works mostly used
t0 = 0 as the starting point in training, while our RCS
method selects a random t0 (see Fig.1). For the RCS, there
is a basic precondition that the content of event streams
should have inherent cycles of repetition. Both gesture ac-
tion in DVS128 Gesture and repeated movement of the im-
age in CIFAR10-DVS satisfy this precondition. As shown
in Table 5, RCS works better under short-term dt. However,
using RCS with long-term dt will reduce accuracy, e.g.,
the accuracy of analog-based SNNs reduces from 98.61%
to 94.79% with dt = 25ms. The possible reason is that
choosing a long-term aggregation window will destroy the
inherent periodicity. In SHD, selecting a random t0 may
likely cause all the input data to be 0 for a shorter sample,
thus RCS does not work here either.

TR Analysis. TR is a crucial hyper-parameter for frame-
based representation. Current methods usually adopt a
long-term TR to make sure SNR is sufficient in each frame.
It is indeed useful since all SOTA results in this work are
obtained in the long-term TR. However, long-term TR will
dilute the advantages of the asynchronicity and sparsity of
event streams and increase the output latency. Short-term
TR brings high-rate frames that are friendly to high-speed
object tracking and low-latency interaction, but the pro-

duced low SNR is an intractable issue for getting satis-
factory performance. By using RCS and TA, this issue is
greatly relaxed in our work. Firstly, the RCS method sig-
nificantly strengthens short-term TR’s advantages, i.e., the
smaller the TR is, the more optional training data we can
organize. Secondly, the TA enhances the ability of SNNs
to effectively extract spatio-temporal features (see Table 5).
Moreover, IAP with short-term TR in spike-based TA-SNN
can keep or improve task accuracy. These experiments im-
ply that event streams with short-term TR have a great po-
tential to solve the real-time scenarios with considerable ac-
curacy. Last but not least, the selection of TR also depends
on the inherent trait of different tasks or datasets. In our ex-
periments, DVS128 Gesture naturally has affluent repeata-
bility, so short-term TR can obtain an acceptable result.
Meanwhile, CIFAR10-DVS has poor temporal features and
SHD sample almost has no repeatability, so short-term TR
is meaningless for them.

6. Conclusions

In this paper, we innovatively integrate the temporal at-
tention mechanism into SNNs and propose the TA-SNNs
that can deal with the event streams more effectively and
efficiently than the pure LIF-SNNs while preserving SNNs’
event-triggered feature. Additionally, attention-score-based
input pruning technology is used in the inference process,
which surprisingly doesn’t cause a significant accuracy loss
but saves a large amount of computation. We also pro-
pose the RCS method and investigate the performance of
TA-SNNs on various datasets in different TRs. The ex-
periment results are provided using TA-SNNs and RCS,
and achieve SOTA results in DVS128 Gesture (98.61%),
CIFAR10-DVS (72.00%), and SHD (91.08%), verifying the
effectiveness of these methods.

We believe that this method will greatly expand people’s
imagination of SNNs, guide more advanced deep learn-
ing technology into SNNs research, and open up the way
for the applications of SNNs. In addition, in future work,
this method will also help SNNs to get better performance
on hardware. The sparse event-triggered characteristics of
SNNs are kept by TA-SNNs, which will be of great signif-
icance to improve the performance on the SNNs accelera-
tors.
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