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Abstract

This paper introduces a powerful channel augmented
joint learning strategy for the visible-infrared recognition
problem. For data augmentation, most existing methods di-
rectly adopt the standard operations designed for single-
modality visible images, and thus do not fully consider the
imagery properties in visible to infrared matching. Our ba-
sic idea is to homogenously generate color-irrelevant im-
ages by randomly exchanging the color channels. It can
be seamlessly integrated into existing augmentation oper-
ations without modifying the network, consistently improv-
ing the robustness against color variations. Incorporated
with a random erasing strategy, it further greatly enriches
the diversity by simulating random occlusions. For cross-
modality metric learning, we design an enhanced channel-
mixed learning strategy to simultaneously handle the intra-
and cross-modality variations with squared difference for
stronger discriminability. Besides, a channel-augmented
joint learning strategy is further developed to explicitly op-
timize the outputs of augmented images. Extensive experi-
ments with insightful analysis on two visible-infrared recog-
nition tasks show that the proposed strategies consistently
improve the accuracy. Without auxiliary information, it im-
proves the state-of-the-art Rank-1/mAP by 14.59%/13.00%
on the large-scale SYSU-MM01 dataset.

1. Introduction
Identity recognition (person re-identification [22], face

recognition [11, 19]) systems have achieved significant suc-
cess recently. However, most research efforts have been
paid on the single-modality visible domain. In many night-
time surveillance and low-light environments, near(far)-
infrared cameras are applied to capture target appearance
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Figure 1. Motivation of channel augmentation. Directly recover-
ing the three-channel RGB image from a single-channel infrared
images is ill-posed. Instead, we propose to directly optimize the
relation between the infrared images and the R, G and B channels
of the visible images.

[4, 37]. This raises important cross-modality visible-
infrared recognition problems, e.g., visible-infrared person
re-identification (VI-ReID) [41] and NIR-VIS face recogni-
tion [53]. The cross-modality matching is usually formu-
lated by learning modality shared or invariant features.

Matching the infrared imagery to visible-spectrum im-
ages is a significant challenge due to the large modality gap
and unknown environmental factors [32, 54] (e.g., differ-
ent viewpoints, occlusions, background clutter, etc.), lead-
ing to large intra- and cross-modality variations. To elimi-
nate the color discrepancy, cross-modality image generation
with Generative Adversarial Networks (GANs) is a popular
approach [36, 56] bridging the gap at the image level. How-
ever, the image generation process usually needs additional
computational cost and suffers from unavoidable noise [21].
Another approach is to directly employ grayscale images
to perform the cross-modality matching [9, 42], where the
color information is assumed to be irrelevant. While this
approach does eliminate the color discrepancy, it also loses
discriminative information in color channels.

This paper presents a channel exchangeable augmenta-
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Figure 2. Illustration of the major contributions. Two important
steps: data augmentation (DA) and cross-modal metric learning.

tion (CA) to narrow the gap at the input image level, while
keeping informative color information. An illustration of
the main idea is shown in Fig. 1. A straightforward so-
lution to eliminate the modality discrepancy is to recover
the original three color channels. However, transforming a
single-channel infrared image to a three-channel visible im-
age is a challenging problem with unavoidable noise [52].
Alternatively, we propose to directly learn the relation be-
tween each R, G and B channel of the visible images and
the single-channel infrared images. This serves as a channel
augmentation operation for the visible-to-infrared learning
process to reinforce the robustness against color variations.
We further present a random erasing (CRE) technique for
occlusion simulations. Incorporated with the channel aug-
mentation, our strategy performs the erasing in the chan-
nel level for better diversity. Besides, we also include
a grayscale transformation for augmentation, reducing the
color effect. These augmentation operations greatly enlarge
the training set, bringing in better generalizability.

For cross-modality metric learning, we first present
an enhanced channel-mixed learning scheme. Different
from the widely-used bidirectional triplet metric learning
[7, 24, 49], we directly optimize the feature embeddings in
a mixed batch with the same identity classifier and met-
ric for original visible, infrared and channel augmented
modalities. Specifically, we design a weighted regularized
triplet loss with an enhanced squared difference for the
cross-modality metric learning, simultaneously handling
the intra- and cross-modality variations. Our design has two
primary benefits: 1) It fully considers all the possible triplet
relations in the augmented image set. 2) The squared differ-
ence approximates the large margin metric learning princi-
ple [40] to improve the discriminability. We also develop a
channel-augmented joint learning strategy to explicitly op-
timize the channel augmented images for training. The ba-
sic idea is to treat the channel augmented visible images
as an additional modality, formulating a tri-modality joint
learning framework. It slightly increases the computational
burden at each training step, but consistently improves the
testing accuracy without additional cost. Our main contri-
butions (summarized in Fig. 2) are:

• We present a novel channel exchangeable augmenta-
tion for visible-infrared recognition. It can be seam-
lessly integrated into existing augmentations oper-
ations without modifying the network structure or
changing the learning strategy.

• We design an enhanced channel-mixed learning
scheme to simultaneously handle the intra- and cross-
modality variations. With a joint learning strategy, it
explicitly optimizes the channel augmented images.

• We evaluate on both visible-infrared person re-
identification and face recognition, achieving signifi-
cant accuracy gains under various settings.

2. Related Work
Visible-Infrared Person Re-IDentification (VI-ReID)

is a cross-modality person recognition problem, which aims
at matching daytime visible and night-time infrared images
[2, 48, 16, 57]. Wu et al. [42] started the first attempt
by introducing a zero-padding one-stream network, where
they directly utilized grayscale images for training and test-
ing. To simultaneously handle the intra- and cross-modality
variations, a bi-directional dual-constrained framework was
presented in [49]. Additionally, Dai et al. [7] also proposed
to jointly discriminate the identity and modality in an ad-
versarial training framework. The ID-discriminative factors
and ID-excluded factors are disentangled in [5]. To fully
utilize the relations across two modalities, a dual-attentive
aggregation learning method was designed in [50]. With the
advancement of GANs, a dual-level discrepancy modeling
method [36] generates the cross-modality images, eliminat-
ing discrepancy at pixel-level. An improved version with an
alignment constraint was developed in [33]. But the image
generation process introduces unavoidable noise.

Visible Infrared Face Recognition (VI-FR) (a.k.a het-
erogeneous FR) [9, 14, 27, 46] is closely related to VI-
ReID, with the goal of matching face images across two
modalities. Learning modality-related metrics or dictio-
naries with hand-craft features [39, 18] is the popular ap-
proach. For deep learning, most methods focus on learn-
ing sharable multi-modality features [46], cross-modality
matching models [28] or disentangled representations [45].
The lightCNN model [44] is served as a powerful baseline
for VI-FR [53]. Recently, a Pose Aligned Cross-spectral
Hallucination (PACH) approach [9] was designed to disen-
tangle the independent factors at multiple stages.

Data Augmentation has been widely applied in many
different computer vision tasks [20, 30, 47, 60]. It enlarges
the training set through various translations, such as crop-
ping, rotation, flipping, adding noises, mix-Up [55], etc.
The random erasing [59] is applied in many fine-grained
recognition problems for better generalizability. Recently,
several auto-augmentation techniques [6] are developed for
various applications. However, most of these methods are
designed for single-modality visible images/videos.
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3. Proposed Channel Augmentation
The learning target of cross-modality visible-infrared

matching is that the image features of the same class un-
der different modalities are invariant. We denote the origi-
nal cross-modality training set as T = {T v, T r}. In par-
ticular, T v = {xv

i |i = 1, 2, · · · , Nv} represents the visi-
ble training set with Nv visible images, where each image
xv
i = {xR

i , x
G
i , x

B
i } is composed of three channels, i.e., R,

G and B. T r = {xr
i |i = 1, 2, · · · , Nr} represents Nr in-

frared training images, where each element xr
i is an infrared

image with a single over-saturated grayscale channel. The
cross-modality visible-infrared matching aims at learning a
feature extraction network fv ∈ F for the visible modality
and fr ∈ F for the infrared modality1. The learning ob-
jective is to optimize the relation between the extracted fea-
tures fv(xR,G,B

i ) of visible images in three-channel RGB
space and the features fr(xr

j) of near-infrared images in
single channel space, denoted by

L =
∑

ℓ(fv(xR,G,B
i ), fr(xr

j), yi, yj), (1)

where yi and yj are the annotated training labels for each
image. ℓ(·) is an objective function for optimizing the re-
lations, which can be identity loss [58], triplet loss [15]
or their variants [51]. Note that our proposed augmenta-
tion strategies in this section can be seamlessly integrated
into various baseline models without modifying the learn-
ing strategy or network architectures.

3.1. Random Channel Exchangeable Augmentation

The basic motivation behind the Channel exchangeable
Augmentation (CA) is that the three-channel color visible
images contain rich appearance information, and the color
information is beneficial for the visible-infrared matching.
However, directly recovering a three-channel visible image
from a single-channel infrared image is quite challenging.
Instead, we explicitly learn to match the infrared images
and color channels of the visible images. Specifically, we
introduce a channel augmentation strategy by mining the
relation between each individual channel (R, G or B) and
the single-channel infrared images. The main idea is to ran-
domly select one channel (R, G or B) to replace the other
channels, which generates a new training image by concen-
trating on one single channel. This is formulated as

x̃v,R
i = (xR

i , x
R
i , x

R
i )

x̃v,G
i = (xG

i , x
G
i , x

G
i )

x̃v,B
i = (xB

i , x
B
i , x

B
i ).

(2)

Some visualization results of the augmentation are shown
in Fig. 3. We observe that the channel augmented images
share similar visual appearance with the infrared images

1The two modalities may share the same feature network, as in [7, 36].

Visible Images Channel Exchanged Augmentation Infrared Images

Figure 3. Illustration of the channel exchangeable augmentation in
visible-infrared person re-identification.

while maintaining the original texture structure of the visi-
ble images. With the channel augmented images, the learn-
ing objective of visible-infrared matching becomes

L =
∑

ℓ(fv(x̃v
i ), f

r(xr
j), yi, yj), (3)

where x̃v
i represents a randomly channel augmented visible

image or its original three-channel RGB image. The imple-
mentation of the channel exchangeable augmentation train-
ing is straightforward, and introduces a minimal computa-
tion overhead. It can be seamlessly integrated with other
basic data augmentation operations (random flipping, ran-
dom resizing and random cropping). We use a single data
loader to perform the random channel augmentation, which
does not increase the size of mini-batch input. Right af-
ter the general image transform functions, we add the ran-
dom channel augmentation function. It first chooses a ran-
dom integer number from [0, 1, 2, 3]. This value determines
whether the original RGB image is kept or the random chan-
nel augmentation is performed as in Eq. (2). This strategy
does not introduce additional I/O communication and only
slightly increases the computational cost in the transforma-
tion process. The testing protocol is the same as standard
setting, where we do not contain any additional augmenta-
tions for fair comparison with existing methods.

What is CA doing? The channel augmentation can be
understood as a homogenous generation of three-channel
visible images by decomposing the color channels. This
strategy encourages the model f to learn the explicit re-
lation between each color channel of the visible images
and the single-channel infrared images. To demonstrate
the learned robustness against color variations, we visual-
ize the pairwise positive similarity scores (belonging to the
same identity) and negative similarity score distributions of
(belonging to the different identities) in Fig. 4. We train
two baseline models using AGW [51], with or without the
channel augmentation. Both models are trained under the
same setting on the visible-infrared person re-identification
dataset, SYSU-MM01 [42]. We evaluate both RGB-to-
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(b) With Channel Augmentation
Figure 4. Robustness of the Channel Augmentation (CA). Visual-
ization of the cross-modality matching in the testing set under dif-
ferent training settings. x-axis denotes the cosine similarity score,
y-axis represents a normalized value for each quantized similarity
bin of 10000 randomly selected positive/negative matching pairs.
With channel augmentation, we observe that the separations of
both RGB-Infrared and Variation-Infrared matching are better than
those of without channel augmentation.

infrared (left figures) and variation-to-infrared (right fig-
ures) matching results on the testing set. For variation-to-
infrared matching, we random apply the grayscale trans-
formation or channel augmentation to the RGB images,
simulating the color variations. Specifically, the similar-
ity scores are calculated for 10000 randomly selected posi-
tive/negative pairs, where x-axis denotes the cosine similar-
ity score and y-axis represents a normalized value for each
quantized similarity bin. We also report the rank-1 match-
ing accuracy under different query settings in Fig. 4.

From this experiment, we draw three interesting conclu-
sions: 1) Channel augmentation enhances the invariance
for the positive matching pairs, i.e., the pairwise positive
similarity scores of “w CA” are generally much larger than
those of “w/o CA” (“red bins” in Fig. 4). It demonstrates
that the variance is also reduced when channel augmenta-
tion is applied. This means that the model trained with CA
is more stable in terms of input color variations. 2) Chan-
nel augmentation also introduces a larger difference for the
negative matching pairs, i.e., the pairwise negative simi-
larities are also slightly decreased (“blue bins” in Fig. 4).
The main reason is that the random color variations bring in
larger appearance change for the unmatched negative sam-
ple pairs, introducing the larger variance. 3) The proposed
channel augmentation greatly improves the representation
robustness against color variations. With channel augmen-
tation, the proposed model achieves much better separation
for both RGB-infrared and variation-infrared matching. In
terms of the rank-1 accuracy, we observe that the variation-
to-infrared matching is extremely bad (upper right in Fig. 4)

Visible Images Channel-Level Random Erasing Infrared Images

Figure 5. Illustration of the channel-level random erasing (CRE)
in visible-infrared face recognition. Note that the color of the
channel-level erased image is just for illustration.

if without the channel augmentation, while we achieve con-
sistent satisfying performance under the same setting. This
further demonstrates the robustness against color variations.

3.2. Channel-Level Random Erasing

This section presents a channel-level random erasing
scheme for visible-infrared matching. Random erasing [59]
has been widely evaluated on various vision tasks to im-
prove the generalizability on testing task [25]. Given a pre-
defined erasing probability, its basic idea is to randomly se-
lect a rectangular region Ie within a training image, and re-
places its pixel values with random values for all three chan-
nels, simulating the uncertain occlusions. In short, it is an
image-level random patch erasing.

Incorporating with the channel augmentation, we design
a channel-level random erasing (CRE) strategy to enrich the
variety of training samples. Specifically, assume that the
size of a three-channel visible training image is W ×H×3.
We randomly select the erasing area of a rectangular re-
gion Se, the size of which erasing area is bounded with a
specific ratio. Together with the channel augmentation, we
randomly select the erasing area for different channels (R, G
and B). Within the selected erasing region S∗

e for each chan-
nel, each pixel in S∗

e is assigned to a specific pre-defined
value α∗, where ∗ represents the corresponding channel in-
dex. Empirically, we select the mean values of the R, G
and B channels obtained from the large-scale ImageNet [8]
as the erasing value for each channel. Generally, the for-
mulation of the channel-level random erasing is defined as
follows

x̃v,∗
i (m,n) =

{
α∗, (m,n) ∈ S∗

e

x̃v,∗
i (m,n), otherwise

(4)

where m and n represent the coordinate position of a pixel.
α∗ is calculated by the average value for each channel.
For a single-channel infrared image, we simply transform
it to three copied single-channel image in the channel-level
random erasing process. Some example images with the
channel-level augmentation for the visible to near-infrared
face recognition task are shown in Fig. 5.

The proposed channel-level random erasing has two pri-
mary advantages: 1) It further enriches the augmentations at
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Figure 6. Comparison of the channel-augmented joint learning in
§ 4.2 and the channel-mixed learning strategy in § 4.1. CA: chan-
nel augmentation, CRE: channel-level random erasing, GA: gray-
scale augmentation, FP: horizontal-flip.

the channel level, providing richer supervision for the cross-
modality feature representation learning. Together with the
channel augmentation, the erased images greatly enlarge the
training sample set. 2) The erased images also improve the
robustness against image noise, e.g., partial occlusions, im-
perfect detections. The two augmentations are both easy to
implement and consistently improve the performance.

Other Augmentations. Considering that the grayscale
transformation (GA) also serves as simple baseline to
transform the three-channel RGB images to single-channel
grayscale image [52], we propose to incorporate with a
random grayscale transformation as an augmentation sup-
plement operation, enhancing the robustness against color
variations for visible-infrared recognition. Besides, we also
evaluate the a random horizontal flip (FP) operation to ad-
dress the viewpoint variation for person recognition.

4. Cross-Modality Metric Learning
This section presents two cross-modality metric learning

strategies, enhanced channel-mixed learning in § 4.1 and
channel-augmented joint learning in § 4.2. An illustration
is shown in Fig. 6.

4.1. Enhanced Channel-Mixed Learning

Baseline. General cross-modality matching models usu-
ally apply bi-directional triplet variants to guide the cross-
modality feature learning [23, 38, 49], optimizing the rela-
tive distance between the cross-modal positive and negative
pairs. However, this strategy does not effectively address
the intra-modality variations. To simultaneously handle the
intra- and cross-modality variations, this paper firstly adopts
a channel-mixed learning strategy, constructing a batch that

contains images from different modalities. It directly opti-
mizes the relations without considering the modality differ-
ence. Specifically, it is a combination of the identity clas-
sification loss (Lid) and weighted regularization triplet loss
(Lwrt) [51]. The identity loss Lid treats images of the same
identity across two modalities as the same class. It is repre-
sented by

Lid = − 1

N

∑N

i=1
log(p(yi|f(xi); θ

0)), (5)

where θ0 represents the shared identity classifiers for both
channel augmented visible images and infrared images un-
der different data augmentation operations. f(xi) is a gen-
eral function for extracting the features of images from dif-
ferent modalities. It can be different for two modalities.

The weighted regularization triplet loss aims at optimiz-
ing the relative distance between all the positive and nega-
tive pairs, from both intra-modality and cross-modality re-
lations. Similar to [15], a softplus function is adopted
for the optimization, which is represented by

Lwrt =
1

N

∑N

i=1
log(1+exp(

∑
ij w

p
ijd

p
ij−

∑
ik w

n
ikd

n
ik)),

(6)

wp
ij =

exp (dpij)∑
dp
ij∈Pi

exp(dpij)
, wn

ik =
exp (−dnik)∑

dn
ik∈Ni

exp(−dnik)
,

where (i, j, k) represents a triplet within each training batch
for each anchor sample xi. Note that j and k can be
from either the same modality or different modalities in
the channel-mixed learning strategy. For anchor xi, Pi

is the corresponding positive set and Ni is the negative
set. dpij /dnik represents the pairwise distance of a posi-
tive/negative sample pair. dij is the Euclidean distance
between two samples, represented by dij = ∥f(xi) −
f(xj)∥2. The weighting strategy with softmax function
greatly increases the contribution of hard samples with
larger (smaller) distance for positives (negatives). Unlike
the hard triplet mining [15, 43], our proposed strategy fully
utilizes all the sampled triplets within each batch by adap-
tively considering their contributions. Meanwhile, it di-
rectly optimizes the relative distance between the positive
and negative pairs for both intra- and inter modality learn-
ing, resulting in stronger robustness against variations.

Enhanced Squared Difference. A widely-used tech-
nique to measure the pair distance difference is ℓ1 norm
[29, 31, 34], as done Eq. 6. This paper introduces an en-
hanced squared difference. The basic idea is to optimize
the squared difference rather than the ℓ1 norm difference,
which is represented by

Lsq =
1

N

∑N

i=1
log(1+exp(ϕ[

∑
ij w

p
ijd

p
ij −

∑
ik w

n
ikd

n
ik︸ ︷︷ ︸

µi

])),
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Figure 7. Illustration of the enhanced squared difference for
softplus. We observe that it increases the contribution of the
marginal triplets (

∑
ij w

p
ijd

p
ij −

∑
ik w

n
ikd

n
ik) ∈ [−1, 0], while

reducing the effect of easy triplets (
∑

ij w
p
ijd

p
ij −

∑
ik w

n
ikd

n
ik)

< −1. This approximates the idea of large margin metric learning
[40], but our design does not require additional margin parameter.

ϕ[µi] =

{
µ2
i , µi > 0,

−µ2
i , µi < 0.

(7)

The above formula replaces the original
∑

ij w
p
ijd

p
ij −∑

ik w
n
ikd

n
ik with a squared variant. To demonstrate the

effect of the modification, we plot the curves of original
softplus function and the enhanced squared version
in Fig. 7. Geometrically, it has three primary benefits:

• It increases the contribution of the marginal hard
triplets (µi ∈ [−1, 0]) in the overall learning objective.
These marginal triplets already satisfy the constraint∑

ij w
p
ijd

p
ij <

∑
ik w

n
ikd

n
ik, but their discriminabil-

ity is still limited since the contribution in the overall
model is decreased. The square operation slightly
enlarges the difference for stronger discriminability,
but does not require additional hyper-parameter.

• It also reduces the effect of easy triplets (µi < −1).
These triplets have already satisfied the constraints,
and the difference is relative large, i.e.,

∑
ij w

p
ijd

p
ij +

1 <
∑

ik w
n
ikd

n
ik. The contribution thus should be de-

creased in the overall learning objective.
• It slightly decreases the influence of primitive triplets

(µi ∈ [−1, 0]). These triplets are far from the opti-
mized status and usually have a very large value for
the overall loss calculation. Decreasing their contribu-
tion would enforce that the optimization concentrates
more on the marginal hard triplet.

The enhanced channel-mixed learning directly optimizes
the features with the same identity classifier and distance
metric for both (channel augmented) infrared and visi-
ble modalities. With a squared difference, this results in
stronger robustness against intra-modality variations and
consistently improves the cross-matching performance.

4.2. Channel-Augmented Joint Learning

This section designs a channel-augmented joint learn-
ing strategy to fully utilize the channel augmented visible
images. Specifically, we explicitly treat the channel aug-
mented visible images as an auxiliary modality. Together

with the images from original visible and infrared modal-
ities, our proposed strategy formulates a tri-modality joint
learning framework, in Fig. 6 (b). Similar to the enhanced
channel-mixed learning in § 4.1, we use a combination of
identity loss and enhanced weighted regularized triplet loss
as the training objective, denoted by

L = Lid + Lsq. (8)

The major difference is that the channel augmented images
act as an additional modality, but they share the same iden-
tity classifier as the infrared and visible images. This strat-
egy can enforce the model to focus on learning modality-
invariant feature representations. As an alternative, we also
try to apply separate classifiers for different modalities [10],
but it does not bring consistent improvement. Meanwhile,
other advanced cross-modality matching models might also
be integrated to improve the feature learning process.

Discussion. The channel-augmented joint learning strat-
egy fully utilizes the channel augmented images without
modifying the network structures. With the same number
of visible and infrared input images, it requires large mem-
ory in the training process but it keeps the same as standard
settings in the testing phase. Another benefit is that this
strategy formulates a large batch size, providing more in-
formative hard samples for the cross-modality feature learn-
ing. Extensive experiments have validated the consistent
improvements under various settings.

5. Experimental Results
5.1. Experiments on VI-ReID

We first evaluate our propose model on the visible-
infrared person re-identification (VI-ReID) task, including
two public datasets (SYSU-MM01 [42] and RegDB [26]).
Following the settings in [42, 49], rank-k matching accu-
racy and mean Average Precision (mAP) are used as evalu-
ation metrics. In addition, we also report the mean Inverse
Negative Penalty (mINP) metric proposed in [51], which
measures the cost for finding all the correct matches.

SYSU-MM01 [42] is the largest VI-ReID dataset, and it
is collected at SYSU campus under both indoor and outdoor
environments during the daytime and night-time. It is cap-
tured by 4 RGB and 2 near-infrared cameras. The training
set contains 22,258 visible and 11,909 near-infrared images
of 395 identities. This datasets contains both all-search and
indoor-search testing mode, where the former mode is more
challenging. Detailed dataset settings can be found in [42].

RegDB [26] dataset is captured by one visible and one
far-infrared (thermal) camera. It comprises 412 person
identities in total, and each identity has 10 visible and 10
far-infrared images. Following existing VI-ReID settings,
we randomly sample 206 identities for training and the
remaining 206 identities are used for testing. The train-
ing/testing split procedure is repeated ten times [33, 36, 51],
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Table 1. Evaluation of each augmentation component on two VI-ReID datasets. “B” represents the baseline results with default data
augmentations. “CA” denotes the random channel exchangeable augmentation, “CRE” means the random channel erasing, and “GA” is
the random grayscale augmentation. “FP” is the horizontal flip operation augmentation. “J” indicates the channel-augmented joint learning
strategy (§ 4.2) with enhanced squared triplet loss in Eq. (7). Rank at r accuracy(%), mAP (%) and mINP (%) are reported.

Augmentations SYSU-MM01 (All Search) SYSU-MM01 (Indoor Search) RegDB
B CA CRE GA FP r = 1 r = 5 mAP mINP r = 1 r = 5 mAP mINP r = 1 r = 5 mAP mINP

B
as

e

49.87 77.30 49.76 37.63 55.64 84.24 64.01 60.61 75.87 85.58 68.88 52.55
✓ 54.29 81.44 51.56 36.91 60.45 87.01 66.97 62.47 77.27 85.86 68.45 54.42

✓ 59.38 84.19 58.26 45.76 63.14 88.39 69.79 65.74 78.16 88.06 73.54 60.51
✓ ✓ 65.28 88.83 61.97 47.43 71.33 92.17 76.04 71.91 82.27 89.69 73.45 61.17
✓ ✓ ✓ 65.91 89.77 62.98 48.68 72.28 92.42 77.38 73.38 82.39 90.34 73.57 61.76
✓ ✓ ✓ 66.11 89.44 63.03 48.80 72.56 92.74 77.08 73.09 82.59 90.06 74.31 61.82
✓ ✓ ✓ ✓ 67.02 90.44 64.43 50.05 73.18 92.52 77.47 73.56 83.51 91.49 77.06 62.74

J ✓ ✓ ✓ ✓ 69.88 90.98 66.89 53.61 76.26 94.42 80.37 76.79 85.03 92.48 79.14 65.33

and the overall average accuracy is reported for comparison.
Implementation Details. This work is supported by

Huawei MindSpore [1]. Following AGW [51], we adopt
a non-local module enhanced two-stream network with
ResNet50 [13] as the feature extraction backbone. The
network parameters are initialized with the ImageNet pre-
trained weights. For the baseline data augmentation, we ap-
ply the random cropping with zero-padded images (288 ×
144) for the training images. For infrared images, three
copied channels are fed into the network. For the opti-
mization, Stochastic Gradient Descent (SGD) optimizer is
adopted for training. The initial learning rate is set to 0.1,
and decayed by 0.1 and 0.01 at 20, 50 epochs. We apply
a warm-up strategy [25] in the first 10 epochs. The total
number of training epoch is 100. At each training step, we
randomly sample 8 identities, of which 4 visible and 4 in-
frared images are selected to formulate a batch.

5.2. Ablation Study

Effect of Each Augmentation Operation. We firstly eval-
uate the effect of each augmentation operation on two VI-
ReID datasets. The results are shown in Table 1.

1) Effectiveness of CA: We observe significant improve-
ment in accuracy under various settings when applying our
designed random channel exchangeable augmentation. This
augmentation also greatly improves the robustness against
color variations. 2) Effectiveness of CRE: When integrat-
ing the random channel erasing for data augmentation, the
accuracy increases for all three metrics. This simulates the
random uncertain occlusion in the training process, which
greatly improves the generalizability on the testing set.
When incorporating with the CA, the performance is fur-
ther dramatically reinforced. 3) Effectiveness of GA: We
also observe a slight improvement for the random grayscale
augmentation operation, which simulates a single-channel
transformed dataset for three channel visible images. When
applying the flip augmentation (FP), the robustness against
different viewpoints is enhanced. The experiments demon-
strate that all these augmentation components contribute
consistently to the overall model accuracy gain.
Comparison of Different Learning Schemes. As shown
in Table 1, with channel augmented joint training (J),

Table 2. Evaluation of squared difference (Eq. 7) on the SYSU-
MM01. “HardTri” represents the online hard triplet mining. “M”
denotes the enhanced channel-mixed learning in § 4.1 and “J”
means the channel augmented joint learning in § 4.2.

All Search Indoor Search
Strategy r = 1 mAP mINP r = 1 mAP mINP
HardTri 66.41 64.35 51.05 72.43 77.15 73.03
MS [35] 68.54 65.53 52.12 73.23 77.92 73.68
M (w/o Sq) 67.02 64.43 50.05 73.18 77.47 73.56
M 69.16 64.97 50.27 73.84 78.24 74.33
J (w/o Sq) 67.68 64.62 51.87 73.92 78.40 74.74
J 69.88 66.89 53.61 76.26 80.37 76.79

Table 3. Applicability of our proposed channel augmentation with
state-of-the-art methods on the large-scale SYSU-MM01 dataset.

All Search Indoor Search
Strategy r = 1 mAP mINP r = 1 mAP mINP
DDAG [50] 54.75 53.02 39.62 61.02 67.98 62.61
+ Ours 62.51 57.76 43.82 68.84 73.82 69.24

↑7.76 ↑4.74 ↑4.20 ↑7.82 ↑5.84 ↑6.63

the rank-1 accuracy is further improved from 67.02% to
69.88% on the large-scale SYSU-MM01 dataset . This
demonstrates that the proposed method can benefit from ex-
plicit channel-augmented multi-modality joint learning.

This part evaluates the enhanced squared difference in
Eq. (7) on the SYSU-MM01 dataset in Table 2. Compared
to the widely-used online hard triplet mining [15] and multi-
similarity loss [35], our strategy generally performs better
under various settings. Compared to the original ℓ1 norm
difference, the enhanced squared difference achieves in
consistent improvement for all the metrics. These results
validate our analysis in § 4.1, i.e., our method enhances the
discriminability of hard triplets. Comparison with “M” fur-
ther verifies the advantage of joint learning.
Applicability with Other Methods. We also evaluate our
proposed augmentations incorporated into DDAG [50]. We
use the default settings with the authors’ released code. The
results in Table 3 demonstrate that the performance can be
significantly improved under various metrics. It would be
further improved by fine-tuning the hyper-parameters.

5.3. Comparison with State-of-the-Arts
We also compare with the state-of-the-art VI-ReID

methods published in the last two years, as shown in Ta-
bles 4 and 5. They demonstrate that our proposed model sig-
nificantly outperforms existing solutions under various set-
tings. There are three major advantages of our method: 1)

13573



Table 4. Comparison with the state-of-the-arts on SYSU-MM01 [42]. Rank at r accuracy (%), mAP (%) and mINP (%) are reported.
Settings All Search Indoor Search

Method Venue r = 1 r = 10 r = 20 mAP mINP r = 1 r = 10 r = 20 mAP mINP
Zero-Pad [42] ICCV-17 14.80 54.12 71.33 15.95 - 20.58 68.38 85.79 26.92 -
HCML [48] AAAI-18 14.32 53.16 69.17 16.16 - 24.52 73.25 86.73 30.08 -
eBDTR [49] TIFS-19 27.82 67.34 81.34 28.42 - 32.46 77.42 89.62 42.46 -
HSME [12] AAAI-19 20.68 32.74 77.95 23.12 - - - - - -
D2RL [36] CVPR-19 28.9 70.6 82.4 29.2 - - - - - -
AlignGAN [33] ICCV-19 42.4 85.0 93.7 40.7 - 45.9 87.6 94.4 54.3 -
X-Modal [21] AAAI-20 49.9 89.8 96.0 50.7 - - - - - -
Hi-CMD [5] CVPR-20 34.9 77.6 - 35.9 - - - - - -
cm-SSFT [24]† CVPR-20 47.7 - - 54.1 - - - - - -
AGW [51] arXiv-20 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.23
DDAG [50] ECCV-20 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.41 67.98 62.61
HAT [52] TIFS-20 55.29 92.14 97.36 53.89 - 62.10 95.75 99.20 69.37 -
Ours - 69.88 95.71 98.46 66.89 53.61 76.26 97.88 99.49 80.37 76.79
† cm-SSFT [24] reported a higher matching accuracy by using all gallery samples as auxiliary information, which is infeasible in many applications.

Table 5. Comparison with the state-of-the-arts on RegDB [26]. Rank at r accuracy (%), mAP (%) and mINP (%) are reported.
Settings Visible to Infrared Infrared to Visible

Method Venue r = 1 r = 10 r = 20 mAP mINP r = 1 r = 10 r = 20 mAP mINP
Zero-Pad [42] ICCV-17 17.75 34.21 44.35 18.90 - 16.63 34.68 44.25 17.82 -
HCML [48] AAAI-18 24.44 47.53 56.78 20.08 - 21.70 45.02 55.58 22.24 -
eBDTR [49] TIFS-19 34.62 58.96 68.72 33.46 - 34.21 58.74 68.64 32.49 -
HSME [12] AAAI-19 50.85 73.36 81.66 47.00 - 50.15 72.40 81.07 46.16 -
D2RL [36] CVPR-19 43.4 66.1 76.3 44.1 - - - - - -
AlignGAN [33] ICCV-19 57.9 - - 53.6 - 56.3 - - 53.4 -
XModal [21] AAAI-20 62.21 83.13 91.72 60.18 - - - - - -
Hi-CMD [5] CVPR-20 70.93 86.39 - 66.04 - - - - - -
cm-SSFT [24] CVPR-20 72.3 - - 72.9 - 71.0 - - 71.7 -
AGW [51] arXiv-20 70.05 86.21 91.55 66.37 50.19 70.49 87.21 91.84 65.90 51.24
DDAG [50] ECCV-20 69.34 86.19 91.49 63.46 49.24 68.06 85.15 90.31 61.80 48.62
HAT [52] TIFS-20 71.83 87.16 92.16 67.56 - 70.02 86.45 91.61 66.30 -
Ours - 85.03 95.49 97.54 79.14 65.33 84.75 95.33 97.51 77.82 61.56

Table 6. Evaluation of our proposed channel augmentation on two
visible-infrared face recognition datasets. Rank at 1 accuracy (%)
and false acceptance rate (F: %) are reported.

Oulu [3] BUAA [17]
Strategy r = 1 F:1% F:0.1% r = 1 F:1% F:0.1%
IDR [14] 94.3 73.4 46.2 94.3 93.4 84.7
ADFL [46] 95.5 83.0 60.7 95.2 95.3 88.0
VSA[53] 99.9 96.8 82.3 98.0 98.2 92.5
PACH [9] 100 97.9 88.2 98.6 98.0 93.5
B 100 97.9 87.0 98.0 97.7 93.7
B + Ours 100 98.9 91.7 98.3 98.2 94.5

We do not need additional image generation [5, 33, 36] or
adversarial training process [7, 24]. This property makes
our proposed model more applicable for practical model de-
ployment. We assume that the performance would be fur-
ther improved if advanced cross-modality matching models
were introduced, which could be seamlessly integrated with
our proposed channel augmented joint learning strategy. 2)
Our proposed solution does not contain any manually de-
fined hyper-parameters. 3) The learned representation is
robust against different cross-modality matching settings.
Notably, on the large-scale SYSU-MM01 dataset, we im-
prove the Rank-1 accuracy and the mAP score by 14.59%
and 13.00%, respectively.

5.4. Visible-Infrared Face Recognition

To demonstrate the generalizability, we also evaluate it
on the visible-infrared face recognition task. We use Oulu-
CASIA NIR-VIS [3] and BUAA-VisNir face databases
[17]. We adopt LightCNN-29 [44] proposed in [9] as the
baseline. Other training details and hyper-parameters are

exactly the same. The rank-1 accuracy, VR@FAR=1%, and
VR@FAR=0.1% are reported. We apply our channel aug-
mentation together with the random erasing strategies to the
baseline. The results are shown in Table 6.

We observe that our proposed augmentations also con-
sistently improve the visible-infrared face recognition per-
formance. This experiment further verifies that our method
can be a general tool for visible-infrared matching tasks.

6. Conclusion
This paper presents a novel random channel augmenta-

tion method for visible infrared matching. It can be seam-
lessly integrated into different baseline methods without
modifying the network structures, significantly improving
the cross-modality recognition. We also present a channel-
augmented joint learning strategy with enhanced squared
difference to further reinforce the discriminability. We
may further investigate the augmentation properties in other
visible-infrared applications.
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