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Abstract

Point cloud segmentation is a fundamental task in 3D.
Despite recent progress on point cloud segmentation with
the power of deep networks, current deep learning meth-
ods based on the clean label assumptions may fail with
noisy labels. Yet, object class labels are often mislabeled
in real-world point cloud datasets. In this work, we take
the lead in solving this issue by proposing a novel Point
Noise-Adaptive Learning (PNAL) framework. Compared
to existing noise-robust methods on image tasks, our PNAL
is noise-rate blind, to cope with the spatially variant noise
rate problem specific to point clouds . Specifically, we pro-
pose a novel point-wise confidence selection to obtain reli-
able labels based on the historical predictions of each point.
A novel cluster-wise label correction is proposed with a vot-
ing strategy to generate the best possible label taking the
neighbor point correlations into consideration. We con-
duct extensive experiments to demonstrate the effectiveness
of PNAL on both synthetic and real-world noisy datasets. In
particular, even with 60% symmetric noisy labels, our pro-
posed method produces much better results than its baseline
counterpart without PNAL and is comparable to the ideal
upper bound trained on a completely clean dataset. More-
over, we fully re-labeled the validation set of a popular but
noisy real-world scene dataset ScanNetV2 to make it clean,
for rigorous experiment and future research. Our code and
data will be released.

1. Introduction

In recent years, the development of deep neural networks
(DNNs) has led to great success in 3D point cloud segmen-
tation [11, 36, 32]. Thanks to the powerful learning capac-
ity, once high-quality annotations are given, DNNs-based
point segmentation methods can achieve remarkable perfor-
mance. However, such high learning capacity is a double-
edged sword, i.e., it can also over-fit label noise and incur
performance degradation if there are incorrect annotations.

*Jing Liao is the corresponding author.

In fact, compared to annotating 2D images, clean 3D
data labels are more difficult to obtain. It is mainly be-
cause: 1) the point number to annotate is often very mas-
sive, e.g., million scale in annotating a typical indoor scene
in ScanNetV2 [6]; 2) the annotating process is inherently
more complex and requires more expertise for the annota-
tors, e.g., constantly changing the view, position and scale
to understand the underlying 3D structure. As a result, even
the commonly used 3D scene dataset ScanNetV2 [6], which
is already a version after refining the label from the Scan-
Net, has a large portion of label noise, as shown in Figure 1.

Based on the above considerations, there is an urgent
need to study how to learn with noisy labels for robust point
cloud segmentation. However, to the best of our knowl-
edge, most research works about learning with noisy la-
bels focus on image classification, and no previous study
exists for point cloud segmentation. More importantly,
such works designed for image recognition cannot be di-
rectly applied to point cloud segmentation. For example,
among the most popular methods, sample selection meth-
ods [12, 33, 24, 26, 17] often assume that the noise rate
of all samples is a known constant value. However, the
noise rates are often unknown and variable. Robust loss
function methods [35, 30] cannot achieve consistent noise
robustness to large noise rates. Whereas label correction
methods [23, 26, 1] are designed to correct for image-level
label noise, the point cloud segmentation task requires to
correct point-level noises. Considering that the point labels
within each instance are strongly correlated, directly apply-
ing these methods to each point independently without con-
sidering the local correlation is suboptimal.

In this paper, we present a novel point noise-adaptive
learning (PNAL) framework, which is the first attempt
to empower the point cloud segmentation model with re-
sistance to annotation noise. Specifically, to cope with
unknown, possibly heavy, and varying noise rates, we
designed a point-level confidence selection mechanism,
which obtains reliable labels based on the historical predic-
tions of each point without requiring a known noise rate.
Next, in order to fully utilize the local correlation among
labels, we propose a label correction process performed at
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Figure 1. Illustration of the instance-level label noise concept in point cloud segmentation. From left to right are the input (noisy instances
highlighted red boxes), the manual annotation given by the real-world dataset ScanNetV2, and the prediction of PNAL (more in line with
the real category). It is noticeable that this popular dataset suffers from label noise, such as mislabeling the floor as a chair, even that it is
already a re-labeled version of ScanNet. Our PNAL framework is trained on this noisy dataset but still achieves correct predictions.

cluster level. This is done by the proposed voting strat-
egy that tries to merge reliable labels from relevant points
to provide the best possible label for each point cluster, with
a computationally efficient implementation.

To demonstrate the effectiveness of our PNAL, we com-
pare the proposed framework with various possible base-
lines based on different network backbones on the syn-
thetic noisy label dataset from stanford large-scale 3d in-
door spaces (S3DIS) [2], which shows the great advantage
of PNAL on both performance and efficiency. On the real-
world noisy dataset ScannetV2 [6], we notice that both its
training and validation set suffers from the noisy label is-
sue. Therefore, we not only conducted experiments on the
original training and validation set. Also, for a more rig-
orous evaluation, we refine the validation set by manually
correcting the noisy labels and evaluate PNAL on this clean
set. These results indicate that PNAL is also robust to real-
world noise. To further explore PNAL, a complete ablation
study, training process analysis, and robustness test were
also performed.

To summarize, our contributions are fourfold.

• To the best of our knowledge, this is the first work in-
vestigating noisy labels on point cloud data, which has
a wide and urgent need for 3D applications where the
volume of data is growing drastically.

• A novel noise-rate blind PNAL framework is proposed
to handle spatially variant noise rates in point cloud.
It consists of point-level confidence selection, cluster-
level label correction with voting mechanism, and can
be easily applied to different network architectures.

• Extensive experiments are conducted to show the clear
improvements by PNAL, on both synthetic and real-
world noisy label datasets.

• We re-labeled the validation set of ScanNetV2 by cor-
recting noises and will make it public to facilitate both
point cloud segmentation and noise label learning.

2. Related Work
Point Cloud Segmentation. Given a point cloud, the task
of semantic segmentation is to divide it into subsets based
on the semantic meaning of the points. Among the related
works, point-based networks have recently gained more and
more attention. These methods act directly on disordered,
irregular, and unstructured point clouds, so that directly ap-
plying standard CNNs is not feasible. For this reason, the
pioneering work PointNet [21] was proposed to learn per-
point features using cascaded multi-layer perceptrons. It
uses cuboidal blocks of fixed arbitrary size to cut the rooms
in the scene datasets into blocks when processing datasets.
Inspired by PointNet, a series of point-based networks have
been recently proposed. In general, following the practice
of PointNet, these approaches use octrees [27], kd-trees [15]
or clustering [16] to decompose room scences into room
blocks. Those processing method for point cloud data is
widely used today [13].
Learning with Noisy Labels. Different methods have been
proposed to train accurate models under noisy labeled data,
which can be broadly classified into five categories.

Methods with noise-robust layers [28, 10, 4] are intended
to model a label transition matrix T. Based on the estimated
T, they adjust the output of the network to a more confident
label. However, such methods assume a strong correlation
between certain labels, which limits the method usages.

Another approach is to design a loss that is robust to
noisy labels [9, 19], generalized cross entropy (GCE)[35],
symmetric cross entropy (SCE)[30] , which are popular and
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easily adaptable to existing architectures. They are origi-
nally proposed for classification, but most of them are ap-
plicable to segmentation if used pixel-wisely. A recent work
[18] proposes to apply the reverse cross entropy [30] for the
foreground-instance sub-task and a standard cross entropy
(CE) loss for the foreground-background in instance seg-
mentation. A major limitation is that they cannot handle
heavy noisy labels.

Loss adjustment methods [23, 5, 14, 1, 26, 34, 29] reduce
the negative impact of noisy labels by adjusting the loss of
all training samples. In general, while these methods fully
exploring the training data, they take the risks of false cor-
rection. Among them, [34, 29] are the latest methods that
try to solve the noisy label problem on binary segmentation.

To avoid false correction, sample selection methods
[12, 33, 24, 26, 17] select true-labeled samples from noisy
data. However, they take the risk of discarding usable sam-
ples, and require either a true noise rate or a fully clean
validation set. Our approach is a hybrid of sample selection
and loss correction. Unlike other sample selection methods,
no noise-rate is required. Different from loss correction, in-
stead of correcting all samples, we correct labels according
to confidence considering its locally similar region.

3. Problem Description
We define the task of multi-class point cloud semantic

segmentation with noisy labels. Formally, we denote point
cloud data as X ∈ RN×C of N points with C features of
coordinates and RGB values possibly, and its semantic label
as Y, and M as the class number. Our target is to train a
model fθ(X) robust to the label noise in the training set.

We observe that while the semantic label of an instance
might be wrong, we seldom encounter incorrect instance
partitioning. For example, a table may be labeled as a sofa,
but we seldom see a table that is partially labeled as a sofa.
This implies that our method should correct the noise at the
instance level. However, the ground truth instance informa-
tion may not available, and predicting object instances itself
is a challenging task.

Alternatively, we create a cluster based noise correc-
tion method, where each cluster consists of a local patch of
points. The main assumption is that points in a cluster are
considered to belong to the same instance. This cluster can
be generated with off-the-shelf clustering algorithms. In ex-
periments, we mainly use the DBSCAN [7]. DBSCAN is
a density-based clustering algorithm that does not require
the specification of the cluster number in the data, unlike k-
means. DBSCAN can find arbitrarily shaped clusters, and
this characteristic makes DBSCAN very suitable for LiDAR
point cloud data. In the experiment we also tried another
clustering method GMM. During training, we correct the
label on a cluster level. Based on the experiments described
in Sec. 5.6, we demonstrate that our method is robust to the

granularity of cluster to a certain range and insensitive to
clustering methods. We denote the point cloud and its la-
bel in a cluster Ci as (XCi

, YCi
), 1 ≤ i ≤ k, and k is the

number of clusters.

4. Methodology

4.1. Pipeline Overview

The overall framework of our proposed method is il-
lustrated in Fig. 2. Our training procedure is divided into
two stages, a warm-up stage introduced in Sec. 4.2 and a
noise-cleaning stage introduced in Sec. 4.3 and Sec. 4.4.
We first train the network on all samples by default manner
for Ewarm−up epochs, where Ewarm−up denotes the num-
ber of epochs for this stage. The warm-up stage motivates
the network to learn the easy data, which are largely consis-
tently labeled correct data.

Then we further train the network with our proposed
noise-cleaning stage. The main idea is to identify the po-
tential noisy label based on the behavior of the network pre-
diction and update the selected data label to a more reliable
label. From the observation that the ground truth label is of-
ten corrupted on an instance-level, we encourage to correct
data labels in a group-wise manner. That we propose to first
cluster point cloud into small patches and then update point
label patch-by-patch. Point cloud in one patch is set to the
same semantic label. Besides, we predict the new label of
each cluster through a voting strategy.

4.2. Warm-Up

According to the study of memorization effects [3], deep
neural networks are prone to learn clean, easy samples first,
and then other noisy samples gradually, even in the presence
of noisy labels. Therefore, in the warm-up stage, we adapt
no strategies and train the network with a common cross-
entropy loss. The detailed formula of Losswarm−up is:

Losswarm−up = −
1

B

B∑
i=1

M∑
m=0

q (m | Xi) log p (m | Xi) ,

(1)
where B is the number of samples inside a mini-batch,
p (m | Xi) denotes classification confidence of each class
m ∈ {1, ...,M}, and q (m | Xi) ∈ {0, 1}N×M is one-hot
encoded label.

The warm-up stage power the network with easily
learned data samples. However, if trained with a large
number of epochs for the warm-up stage, the network will
tend to fit noisy labels. Let Eclean denotes the number of
epochs for the noise-cleaning stage. In noise-cleaning stage
of training, remarkably, no hyperparameters such as noise
rate are required. We observe that, the precision of both
the replaced labels and the correctly fixed labels increases
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Figure 2. System pipeline. In the warm-up stage, the network is updated with CE as usual. In the noise cleaning stage, we enqueue the
output to the prediction history and point wisely perform confidence selection to get reliable labels. With these results, we do voting at
cluster level, then correct the original noisy GT or the previously cleaned GT. Finally the obtained cleaned GT guides the network update.

gradually as the training step progresses, and label replace-
ment eventually expands to almost the entire training set,
as analysized in 5.7. Moreover, through our analysis in 5.6
on Ewarm−up, too much warm-up causes the model fitting
more noisy data, which affects the performance when the
noise rate is large. Meanwhile, the optimal Ewarm−up set-
ting is not sensitive to the noise rate. At different noise rates,
we can derive the following relationship between the opti-
mal Ewarm−up and Eclean,

Ewarm−up =
1

5
Eclean. (2)

4.3. Point-Level Confidence Selection

In this part, we aim to select reliable samples from each
mini-batch and obtain the confidential labels for these sam-
ples that can be corrected with high probability.

Previous studies of sample selection [26, 12] adopt the
widely used loss-based separation which tries to construct
clean set C by selecting (1−τ)×100% of low-loss instances,
where τ is the noise rate. While significant improvements
have been achieved in these works, such an approach faces
two key problems. First, it is not appropriate to assume
that the noise rate is available and constant on the 3D point
cloud. Second, it would exclude Ch which tends to produce
high losses, making it difficult for hard cleans to participate
in the network update. To address the above weaknesses of
the loss-based sample selection methods, instead of select-
ing clean samples, we propose to directly select the reliable

samples without knowing the noise rate.
Inspired by the bootstrapping [23], we develop a confi-

dence point selection method for dynamically selecting re-
liable samples and target labels without requiring explicit
noise rate. Instead of using predicted class probabilities
to generate regression targets, a new criterion, inspired by
SELFIE [26], is designed based on history prediction. In de-
tail, a sample with consistently predicted label is regarded
as the reliable sample, and its most frequently predicted la-
bel is the reliable label, as defined below:

Definition 1. A point xn is a reliable sample if the predic-
tive confidence F (xn; q) satisfies F (xn; q) ≥ σ(0 ≤ σ ≤
1). The predictive confidence is defined as

F (x; q) = (1/λ) entropy (P (m | x; q)) (3)

where λ = − log( 1
M ) is a normalization term for normal-

izing to [0, 1]. We denote the predicted label of the sample
point x at time t as m̂t = fθt(x). Then, the label history of
the sample x that stores the predicted labels of the previous
q ≤ Ewarm−up times is Hx(q) =

{
m̂t1 , . . . , m̂tq

}
, where

q is history length. Next, as given in Eq. 4, P (m | x; q) is
the probability of the label m ∈ {1, . . . ,M} estimated as
the label of the sample point x.

P (m | x; q) =
∑
m̂∈Hx(q)

[m̂ = m]

|Hx(q)|
(4)

, where [·] is the Iverson bracket notation. Then we denote
the set of reliable samples as Xreliable. Finally, we define
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the reliable label as m∗n where

m∗n = argmax
m

P (m | xn; q).

Specifically, our method differs from SELFIE in three
significant ways. First, our method is noise-rate blind, to
handle spatially variant noise-rate problem in point cloud.
Second, our confidence selection mechanism is point-level,
and our label correction process is done on cluster level with
the help of a novel voting strategy, in order to consider lo-
cal relationship between point labels. Note that the reliable
label in selection stage may not be the label won for correc-
tion process. Last but not least, our detailed implementation
has to be much more computationally efficient, to allow for
point-level selection and cluster-level correction.

4.4. Cluster-Level Label Correction

The label correction process is to selectively replace the
label with the best possible label in locally similar regions.
Ideally, the local similarity region is defined by the ground-
truth instance. However, since instance labels may not be
available in practice, we use cluster as an alternative. From
each cluster Ci(1 ≤ i ≤ k), as given in Eq. 5, the ones
containing reliable samples will be selected for the label
correction in subsequent steps.

{Ci | ∃xn : xn ∈ Xreliable ∧ xn ∈ XCi} (5)

, where n ∈ {1, . . . , N}. Next, for each of these clusters,
e.g. Ci∗ , we will replace the label YCi∗ with a best label
locally. The goal label can be found by the proposed voting
strategy according to the overall label occurrences within
the cluster. We use occmi∗ to denote the occurrence number
of reliable samples with m∗n = m.

occmi∗ =

N∑
n=1

[m∗n = m ∧ xn ∈ XCi∗ ]

=
N∑
n=1

[m∗n = m][xn ∈ XCi∗ ]

(6)

, where [·] is the Iverson bracket. Then, occurrences for each
class are formed as a vector occsi∗ =

(
occ1i∗ , ..., occ

M
i∗
)
,

and we can find the top occurrence by occstopi∗ =
max1≤m≤M occsmi∗ . A winner label is randomly chosen

from {m | occmi∗ ≥
occstop

i∗
γ } to overwrite the label of this

cluster. Note that, in a special case of γ = 1, the win-
ner label in this cluster will be from the top reliable labels
{m | occmi∗ = occstopi∗ }. According to our ablation study,
γ = 4 achieves best performance. Note that the original
label may not be mislabeled or different from the winner
label. And the labels may be repeatedly overwritten during
the training process. Finally, we update the network with

these replaced labels by a cross-entropy loss, and the sam-
ples whose label have never been replaced are not involved
in the gradient calculation.

5. Experiments

5.1. Datasets and Noise Settings

To demonstrate the effectiveness of our proposed
method, we conduct experiments on two datasets, Scan-
NetV2 [6] and S3DIS [2]. ScanNetV2 is a popular 3D real-
world dataset with label noise. S3DIS is a commonly used
scene dataset with much cleaner labels, which can be con-
sidered as clean data. There we can artificially build noisy
datasets from S3DIS with various noise settings.
ScanNetV2. The ScanNetV2 3D segmentation dataset con-
tains 1, 513 annotated rooms with 21 semantic elements
in total. According to the scan annotation pipeline for
ScanNetV2 [6, 25], a normal-based graph cut image seg-
mentation method [8] is first utilized to get a basic, pre-
segmentation. These provide a reliable reference to an ob-
ject instance, however, the class label can be carelessly mis-
labeled in practice. Also, since the rooms are distributed to
different annotators, inconsistent labels can be found even
for the same object with different placements in the same
scene. These observations match our assumption about the
noise pattern in point cloud segmentation that mislabeling
occurs at the object-instance-level. And we noticed that the
noisy label problem also exists even in its validation sets.
Since this issue has never been mentioned in other studies,
we manually correct such noise labels of all scenes from the
validation sets of ScanNetV2 for more accurate evaluation.
Note that we did not perform evaluation on the benchmark
test split, due to its unknown noise rate and unavailable an-
notation.
S3DIS. S3DIS contains point clouds of 272 rooms in 6
large-scale indoor scenes in three buildings with 12 seman-
tic elements. The instance label is borrowed from [20]
which are manually annotated. Compared to ScannetV2,
the S3DIS dataset has a much smaller amount of scenes,
less scene complexity, and fewer classes, and the errors
occurring in class labels are clearly less than the former.
Therefore, we treat the S3DIS dataset as a completely clean
dataset, i.e., the noise rate is 0.

We generate a noisy dataset from S3DIS by randomly
changing the point label at an object-instance level, guided
by our noise pattern assumption. Following previous work
on image classification with noisy data, we model the noisy
dataset with two noise types: symmetric and asymmetric.
For symmetric noise, the point label is modified to other
labels with equal probability at instance level. Also, we
found that some class pairs are easily mislabeled as each
other in the real-world noisy ScanNetV2, such as door and
wall, while some pairs are not that confusable, such as wall
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and desk. Based on this, we create asymmetric noisy S3DIS
dataset, mimicking the way in real-world. In particular, we
identify the easily misclassified label pairs, including door-
wall, board-window, sofa-chair, and randomly flip the la-
bel inside each label pair with a probability of τpair. To
note that ours setting is different from previous work on im-
age noisy labels. On point cloud data with only 12 seman-
tic classes, it is inappropriate and unrealistic, to define an-
other confusable class for all classes. Therefore, for classes
without pairs, we follow the symmetrical noise setting, to
achieve a specified value of the overall noise rate τ . We will
show results in the supplemental file following the asym-
metric noise setting in previous works on image.

5.2. Implementation Details

The DBSCAN algorithm is used for point cloud seg-
mentation in this study, if not specifically stated, with
ε = 0.018. For the real-world noisy dataset ScanNetV2
and artificially created noisy dataset S3DIS, room scenes
are divided into room blocks of size 1.0 × m and stride
0.5 × m. We random sample 4096 points for each room
block during training. We report the results in terms of
overall accuracy (OA) and mean intersection over union
(mIoU) with DGCNN [31], Pointnet2 [22], and SparseC-
onvNet [11] as backbones. Without special notation, all ex-
periments are conducted with DGCNN as backbone. For
symmetric noise, we conduct experiments on noise rates
τ ∈ {20%, 40%, 60%, 80%}. For asymmetric noise, we
test on a large noise rate τ = 60%, τpair = 40%. All the
results on S3DIS are tested on the clean 6th-Area. We train
a total of 30 epochs, including the warm-up stage and clean-
noise stage. The history length is set to 4.

5.3. Baselines

Note that we are the first handling noisy label on point
cloud segmentation. We try our best to adapt previous
works and create the following baselines: CE, GCE[35],
SCE[30] and SELFIE[26]. The first three methods can be
naturally applied to the point cloud segmentation as point
level guidance. To adopt SELFIE, we apply the original
implementation of image-level SELFIE point-wisely . We
experimentally find that the optimal warm-up threshold is
5. The other settings are the same as in their paper.

5.4. Performance Comparison on S3DIS

Table. 1 shows the performance of baselines and PNAL
under different backbones, noisy rates and noise types.

The first five rows show the results with DGCNN back-
bone. In the case of DGCNN+CE, its performance drops
quickly by 11.86% at 20% noise rate alone and by 23% at
60% symmetric noise rate compared to the result on clean
training data. This shows that label noise hurt the train-
ing process severely. We observe that previous noise-robust

methods SCE and GCE perform no better or worse than
CE at 0% and 20% noise rates, and only 1.19% and 5.77%
improvement at 60% symmetric noise rate. The noise cor-
rection method SELFIE helps improve the performance by
13.35% at 60% symmetric noise rate. These are expected
since these methods works with small or constant noise
rates, while point cloud training suffers from extreme noise
rate variation. And they do not consider the label corre-
lation of local regions, so it is difficult to achieve optimal
results. Compared to the DGCNN+SELFIE framework,
DGCNN+PNAL shows a further improvement of more than
4.11% for all noise settings. It is worth noting that SELFIE
requires a noise rate and takes more than 10 hours per epoch
on average, while DGCNN+PNAL takes only 3 hours and
51 minutes. We owe this to the noise-blind pipeline, and the
voting design that takes into account the label correlation
of local regions. Furthermore, our method significantly im-
proves result by 10.63%, 16.46%, 18.46%, 25.91%, 23.34%
at 20%, 40%, 60%, 80% symmetric noise and asymmet-
ric noise, respectively. Consistently, our performance im-
proves by 13.77%, 14.75%, 22.17%, 25.04%, and 25.54%
with PointNet2 as backbone, as shown in the last two rows.

5.5. Performance on ScanNetV2

Table 2 shows the performances on ScanNetV2 valida-
tion set with SparseConvNet [11] as the backbone network.
Although the results of our method do not show a great ad-
vantage, we believe this is due to the fact that there are still
mislabels in the validation set of ScanNetV2. Therefore, we
show some examples from the validation set in the Fig. 4,
where ours gets more reasonable results than the baseline
method and even than GT.

For a more rigorous comparison, we further tested on
the fully relabeled clean validation data mentioned before,
and reported the results in Table 2. Our method achieves
significant performance gain, which demonstrates the ef-
fectiveness of our method on the real-world noisy dataset.
In contrast, the performance of the baseline SparseConvNet
degrades, indicating its overfitting of the label noise, which
affects the performance on fully clean data.

5.6. Ablation Study

Component Ablation Study. All the results in Table. 3
are on 60% symmetric noise. The first column reports the
results of PNAL with GT instance instead of clustering for
label correction, which represents the upper limit of our re-
sults. Compared with it, the cluster based results in the last
column have only a small drop, which can illustrate the fea-
sibility of using cluster as an alternative to GT instance la-
bel. In the second column, we omit the cluster-level voting
step and perform label correction point-wisely, without con-
sidering the label consistency between nearby points. The
results show a 2.25% decrease over our full method, demon-
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Methods 0% Symmetric Noise (τ ) Asymmetric Noise

20% 40% 60% 80% τpair = 40%,τ = 60%

DGCNN[31]+CE 0.8692 0.7506 0.6732 0.6390 0.5060 0.5634
DGCNN[31]+SCE[30] 0.7768 0.7524 0.7230 0.6509 0.5705 0.7084
DGCNN[31]+GCE[35] 0.7067 0.7003 0.6997 0.6967 0.6880 0.6614

DGCNN[31]+SELFIE[26]* 0.8673 0.8158 0.7914 0.7725 0.7163 0.7500
DGCNN[31]+PNAL 0.8686 0.8569 0.8378 0.8236 0.7651 0.7968

PointNet2[22]+CE 0.8898 0.7008 0.6796 0.5850 0.5204 0.5648
PointNet2[22]+PNAL 0.8852 0.8385 0.8271 0.8067 0.7708 0.8202

Table 1. OA Comparison of different methods on artificially created noisy S3DIS. The tops with different backbones are shown in bold.
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Figure 3. From left to right: Scenes in S3DIS testset, clean GTs, predictions of DGCNN+CE, and DGCNN+PNAL.

Methods
real-world noisy

ScanNetV2
our re-labeled
ScanNetV2

mIoU OA mIoU OA

SparseConvNet[11] 0.7250 0.8928 0.7103 0.8807
SparseConvNet[11]+PNAL 0.7298 0.8979 0.7416 0.9211
Table 2. The mIoU and OA comparison on real-world noisy Scan-
NetV2 validation set and our re-labeled ScanNetV2 validation set.

Metric
GT

Instance
w/o

Voting γ=1 γ=2 q=8
DGCNN
+PNAL

OA 0.8287 0.8011 0.8110 0.8209 0.7704 0.8236

Table 3. OA Comparison on 60% symmetric noise S3DIS dataset.

strating the effectiveness of our proposed cluster-level label
correction. In the third and fourth columns, we try different
values of γ, where γ = 1 is the most greedy case, i.e., the
winner label is the top reliable label. We observe no signifi-
cant performance drop with different γ values, implying our
method is not sensitive to the choice of γ. We use γ = 4 in
our setting. In the fifth column we adjust the history length
q to 8, and note thatEwarm−up is also increased to 8, due to
the constraint of q. We can observe a significant decrease in
performance. More analysis is given in the next paragraph.
Robustness toEwarm−up. Table 4 reports the results of our

Noise Rate τ 20% 40% 60%

Ewarm−up = 5 0.8569 0.8378 0.8236
Ewarm−up = 8 0.8422 0.8247 0.7851
Ewarm−up = 11 0.8343 0.8009 0.7812
Table 4. The OA of PNAL at different Ewarm−up and noise rates.

method at different Ewarm−up under symmetric noise of
different noise rates (20%, 40%, 60%). Our performances
are optimal and robust, with Ewarm−up = 5 as we recom-
mend, for all noise rates, demonstrating that Ewarm−up is
not sensitive to noise rate variations. The larger the noise
rate, the larger the performance drop can be observed if
Ewarm−up increases. We can conclude that the larger the
Ewarm−up, the more noisy data the network fits, which can
make noise-cleaning difficult on data with large noise rates.
Comparing the result in the second row with the fifth col-
umn in Tab. 3, we found that although increasing the history
length brings a performance decrease, this mainly comes
from the effect of the increased Ewarm−up.
Robustness to Clustering Methods and Granularity.
In Table 5, the first three columns report the results
of PNAL under different clustering granularities (ε is
0.015, 0.018, 0.021), and the last two columns report the
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Figure 4. From left to right: Scenes in ScanNetV2 validation set, GT labels given by ScanNetV2, predictions of [11], and predictions of
[11]+PNAL. Ours get more reasonable labels than GT labels.

Figure 5. Comparison of the corrected labels in epochs 5, 15, and 29 on the 60% symmetric noise S3DIS. From left to right are the input
point cloud with RGB, the corresponding noisy label, the label correction in epochs 5, 15, and 29, and the ground-truth label.

Clustering
Methods

DBSCAN
ε=0.015

DBSCAN
ε=0.018

DBSCAN
ε=0.021 GMM spectral

OA 0.8206 0.8236 0.8159 0.8178 0.8162
Table 5. The OA of our method at different granularity of clusters
and different clustering methods.

results of ours under other type of clustering (GMM, spec-
tral). They show close results, which demonstrates that our
method is robust to a certain range of cluster granularities
and is not sensitive to the clustering method used.

5.7. Correction Process Analysis

Fig. 5 shows the visualization of the label correction
process by the PNAL during training. We can find that as
the training goes, the overall labeling errors in the train-
ing set tends to decrease and gradually approaches the clean
ground-truth label. Typically, label errors with large areas
(e.g., floors, walls, ceilings) are corrected first. As training
proceeds, PNAL gradually explores the entire dataset and
tries to correct difficult and small objects. As given in Fig.
6, the percentage of points with replaced label increases
from 0.936 to 0.992, while the percentage of correctly cor-
rected points is close to 0.8 from the beginning of the noise-
cleaning stage and then gradually increases to 0.865. It also
shows that the PNAL correction process spreads to whole
training set as the training proceeds. To note that we take
the case of correcting to original label into account.

Figure 6. The percentages of points with replaced label (denoted as
Correction) and the percentage of correctly corrected points (de-
noted as True Correction).

6. Conclusion
In this study, we propose PNAL, a new point cloud

segmentation framework, to cope with the novel point
cloud labeling noise problem. Unlike existing methods that
focus on image classification, PNAL is noise-rate blind, in
order to cope with the unique noise-rate variation problem
in point cloud. We propose point-wise confidence selec-
tion, cluster-wise label correction and voting strategies to
generate the best possible labels considering the correlation
labels in local similar points. In addition, we re-labeled the
validation set of a popular but noisy real-world scene point
cloud dataset to make it clean, for rigorous experiment
and for future research. Experiments demonstrate the
effectiveness and robustness of our method on real-world
noisy data and artificially created noisy public data.
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