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Abstract

Video highlight detection plays an increasingly impor-
tant role in social media content filtering, however, it re-
mains highly challenging to develop automated video high-
light detection methods because of the lack of temporal an-
notations (i.e., where the highlight moments are in long
videos) for supervised learning. In this paper, we propose
a novel weakly supervised method that can learn to de-
tect highlights by mining video characteristics with video
level annotations (topic tags) only. Particularly, we ex-
ploit audio-visual features to enhance video representation
and take temporal cues into account for improving detec-
tion performance. Our contributions are threefold: 1) we
propose an audio-visual tensor fusion mechanism that effi-
ciently models the complex association between two modal-
ities while reducing the gap of the heterogeneity between
the two modalities; 2) we introduce a novel hierarchical
temporal context encoder to embed local temporal clues in
between neighboring segments; 3) finally, we alleviate the
gradient vanishing problem theoretically during model op-
timization with attention-gated instance aggregation. Ex-
tensive experiments on two benchmark datasets (YouTube
Highlights and TVSum) have demonstrated our method out-
performs other state-of-the-art methods with remarkable
improvements.

1. Introduction
Recently, the rise of short-form video sharing applica-

tions (e.g., TikTok and Reels) has attracted world-wide at-
tention on the Internet. From a content producer’s point
of view, it is not a delightful experience for them to trim
long videos and localize those highlight segments manu-
ally. Therefore, an automated method is needed desperately
to identify highlight clips from untrimmed videos.

Video highlight detection has received many interests in
the field of computer vision. Numerous methods [24, 31,
28] have been proposed to automatically tailor highlight
from untrimmed videos tagged with a specific topic or key-
word, which can be generally divided into two categories,
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Figure 1. Temporal relationship reasoning for highlight detection.
Part (A) contains different surfing tutorial sections with little tem-
poral cues to infer highlight. However, in part (B), clips in the box
with dashed line contain take off and wipe out footages, which
indicate the occurrence of surfing, and they encoded contextual
features among these clips that can be used to infer the highlight.

i.e., supervised learning and weakly supervised learning
based methods. Supervised methods [22, 9, 11] generally
trained a ranker detector with frame-level annotations to
rank the highlight segments, of which scores were higher
than those of non-highlight segments. However, annotat-
ing the frame-wise highlight manually is extremely labor-
intensive and time-consuming. To overcome this problem,
weakly supervised methods [20, 3, 30] use weakly labeled
videos to train the model. For methods, videos are usu-
ally divided into two categories based on whether there are
topic-specific segments presented: a positive video contains
at least one highlighted snippet and a negative one should
have no highlights. The trained highlight detector needs
to learn from those topic-specific video snippets to iden-
tify highlights for unseen videos. However, these weakly
supervised methods have limited capacity in terms of: (1)
effectively capturing the complex interactions between au-
dio and vision streams in videos while maintaining the effi-
ciency; (2) enhancing the semantic continuity modeling by
leveraging the so-far unexplored temporal evolution among
video segments.

For the former bottleneck, previous approaches [12, 29]
tended to adopt linear fusion schemes (e.g., concatenation
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or summation between two modalities) to convey video rep-
resentation. Nonetheless, such linear fusion methods were
not able to fully capture the complex association between
the two modalities due to the distinct feature distribution of
each modality since audio does not always correspond to
the visual frames. Subsequently, bilinear pooling [8] was
designed to fuse two kinds of features through modeling
the pairwise interaction. However, one drawback is that it
requires a great number of parameters to train leading inef-
ficient training for video highlight detection, which is noto-
riously resource-heavy while facing the risk of overfitting.
As a high-rank tensor can be decomposed into several ma-
trices and a core tensor [16], we introduce an audio-visual
tensor fusion scheme and apply the low-rank constraint on
the core tensor which can not only provide rich video repre-
sentation by modeling the modalities interaction efficiently,
but can also reduce the number of trainable parameters of
the model which serves as the regularization.

In another aspect, most of existing methods [30, 12] tend
to handle video segments individually while temporal evo-
lution across consecutive segments is not adequately ex-
ploited. As depicted in Figure 1, due to the temporal char-
acteristics of the video, those non-highlight segments may
provide fruitful clues for inferring the highlight and fore-
shadow the occurrence of the highlight. For further illus-
tration, the beginning of the highlight event or the ending
would indicate the happening of the highlight segment, e.g.,
taking off and wiping out footages suggest the occurrence of
surfing (demonstrated in Figure 1 (B)). Inspired by this, we
propose a hierarchical temporal context encoding scheme,
which exploits the temporal context relationships among lo-
cal adjacent segments via utilizing the temporal cues for the
first time. In particular, a video segment encodes the con-
textual information from its neighbor segments in a hierar-
chical paradigm, which is beneficial for higher-order con-
tent interaction among segments. Therefore, the temporal
contextual feature includes the representation of the original
segment, and also models local dependency among adjacent
segments. In conclusion, we propose a low-rank audio-
visual tensor fusion mechanism and hierarchical temporal
context encoding scheme to address the above limitations,
which we believe are important signs of progress for weakly
supervised video highlight detection.

Finally, considering that only video-level annotations are
available, correctly classifying videos can provide useful
inductive bias for topic-specific highlight detection since a
video may contain highlights of various events. Therefore,
we exploit this advantage by introducing a novel attention-
gated instance aggregation module, which derives represen-
tative video score from individual segment scores. More
importantly, the gradient vanishing issue occurs constantly
when the score of a segment in the video is high, and tra-
ditional methods [2, 4] do not have theoretic insight for the

solution. By contrast, our theoretical analysis has proved
that the proposed instance aggregation module can effec-
tively alleviate this problem.

The main contributions of our study can be highlighted
as follows:

• We develop a low-rank audio-visual tensor fusion
mechanism to capture the complex association be-
tween two modalities, which can efficiently generate
informative audio-visual fused features.

• We propose a novel hierarchical scheme to encode
temporal contextual features among video snippets
with temporal cues for the first time in the video high-
light detection. Experimental results demonstrate that
our model outperforms competing approaches by a
significant margin.

• We introduce an attention-gated instance aggregation
module to formulate the video score and exploit induc-
tive bias for topic-specific highlight detection. More-
over, theoretical analysis shows that it can ease the
gradient vanishing problem during optimization effec-
tively.

2. Related Work
Video Highlight Detection Video highlight detection has
become increasingly popular in multimedia analysis with a
great potential being deployed in practice, and many rele-
vant studies have been explored in recent years. Previous
approaches mainly focused on detecting highlights from
sport videos [24, 31, 28]. Recently, various supervised
methods were proposed to detect highlights of videos from
the Internet [27] and first-person videos [34]. Gygli et al.
[11] manually created Video-GIF pairs and utilized these
pairs for ranking video segments in order to select the high-
light segments. However, such supervised methods required
manually labeled highlights which might not be easily col-
lected on the Internet.

By contrast, weakly supervised and unsupervised meth-
ods can alleviate the problem of relying on highlight anno-
tations. These methods can be divided into topic agnostic
and topic specific methods. For topic agnostic methods,
Yang et al. [32] employed category-aware reconstruction
loss to narrow down the gaps between the highlight segment
and the short-form video. Currently, topic specific methods
[30, 12] trained on a set of videos sharing the same topic
have achieved a noticeable gain in performance. Xiong
et al. [30] mined the relation between video duration and
highlight segments. Hong et al. [12] adopted rank loss be-
tween highlighted and non-highlight segments. However,
these methods discarded the temporal dependencies in be-
tween the segments when making predictions so they often
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Figure 2. The overview of the proposed method. Note that fa is the audio feature, fv is the frame feature, T is the three-way projection
tensor that fuses audio and frame features, and c

(T )
i is the temporal context feature for segment vi.

led to sub-optimal performance for highlights detection. In
order to explore the temporal cue of the video, we introduce
hierarchical context modeling by incorporating contextual
information in between adjacent segments to better localize
the highlight segments.

Video Summarization Video summarization [7, 19, 35],
a relevant task to video highlight detection, aims to select
several representative and diverse segments from a video as
the output summary. Yet highlight detection only selects
the most interesting segment as the highlighted part, which
does not require the integrity of the whole video. Recently,
several deep learning based methods were proposed to gen-
erate high-quality video summary. For instance, Zhang et
al. [37] utilized Determinantal Point Process (DPP) to en-
hance the diversity of the generated summary. Zhao et al.
[39] applied a hierarchical structure of LSTM to encode the
long-range temporal information among video segments.
More recently, Li et al. [18] explored the global diversity
for efficient video summarization. Besides, Rochan et al.
[23] trained the model with unpaired samples from differ-
ent sources under an unsupervised scenario.

3. The Proposed Approach
In this work, we explore topic-specific highlight detec-

tion with video-level labels only (e.g., surfing, playing gui-
tar, etc.). We divide a candidate video uniformly into snip-
pets (segments). In Section 3.2, we first introduce the audio-
visual tensor fusion scheme with rank constraints in order to
capture the association between video and audio signals and
thus construct better feature representations of video seg-
ments. We then, in Section 3.3, build a contextual hierarchy
for exploring temporal cues that are completely discarded
by previous state-of-the-art methods. In addition, pairwise
context information is considered for the sake of model-
ing the instance relation within positive videos or negative
videos. Besides, we also propose an attention-gated in-
stance aggregation module, in Section 3.4, which takes the

encoded context features of all segments and corresponding
highlight scores to estimate the highlight probability of the
input video. In particular, the instance aggregation mod-
ule alleviates the gradient vanishing issues leading to better
convergence. The overview of our method is illustrated in
Figure 2.

3.1. Preliminary

Given a set of n videos V = {V(1),V(2), · · · ,V(n)},
for each video V(i) = {v(i)s }ms=1 with m segments, the
observed label y(i) ∈ {0, 1} indicates whether this video
contains the topic of interest. In this formulation, each seg-
ment v(i)s is considered as an instance that we cannot assess
whether it contains topic-specific highlight or not. If a video
contains topic of interest segment, the video is treated as a
positive video (y(i) = 1), whereas a negative video (y(i) =
0) solely consists of snippets that do not contain the specific
topic. Formally, Vp = {i ∈ [1,m]|y(i) = 1} is an index
set of the positive videos, and Vn = {i ∈ [1, n]|y(i) = 0}
represents the indices of negative videos.

3.2. Audio-Visual Tensor Fusion Scheme

It has been widely proved that audio information can en-
rich the representation of video in various computer vision
tasks [1, 13]. For highlight detection, the representation of
video snippets should not only be learned from the appear-
ance of frames but can also be learned from their corre-
sponding audio tracks. Therefore, given a video segment,
we develop an audio-visual tensor fusion scheme in order
to exploit both audio and visual information for video rep-
resentation learning.

Given the frame feature representation fv ∈ Rdv and au-
dio feature fa ∈ Rda for an arbitrary segment, to enhance
the video feature representation, we model the high-level
interactions between audio and visual features using bilin-
ear pooling in a fully-parameterized way. The fused feature
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Figure 3. Overview of the audio-visual tensor fusion scheme.

fh ∈ Rdh can be computed as follows

fh = (T ×1 fv)×2 fa, (1)

where T ∈ Rdv×da×dh is a three-way projection tensor that
needs to be learned, and ×i is the mode-i product operator.
Although bilinear pooling can effectively model the pair-
wise interactions between the visual and the audio features,
it also brings a substantial amount of trainable parameters
giving the high cost of computation and memory 1.

To overcome this problem, inspired by tensor decompo-
sition approaches [16], T can be factorized into a core ten-
sor Tc and three factor matrices Wv,Wa and Wh:

T = ((Tc ×1 Wv)×2 Wa)×3 Wh (2)

with Tc ∈ Rd′
v×d′

a×d′
h ,Wv ∈ Rd′

v×dv ,Wa ∈ Rd′
a×da , and

Wh ∈ Rd′
h×dh . In particular, da ≪ d′a, dv ≪ d′v, d

′
h ≪ dh.

Consequently, Eq. (1) can be reformed as:

fh = ((Tc ×1 (Wvfv))×2 (Wafa))×3 Wh. (3)

From the above equation, we can define f̃v = Wvfv and
f̃a = Wafa. Meanwhile, we denote f̃h = (Tc×1 f̃v)×2 f̃a to
be the pairwise interaction between the frame and the audio
features in the embedding space. The fused feature fh can
thus be obtained by projecting f̃h with the factor matrix Wh.
The above decomposition procedure is depicted in Figure
3(a).

Besides, in order to balance the complexity and capac-
ity of pairwise interactions, we incorporate a low-rank con-
straint to the procedure. According to the theory of matrix

1A float32 tensor shaped in 1024× 1024× 2048 takes up to 8GBytes,
which is extremely memory consuming and therefore requires large GPU
memories to compute.

factorization [17], a high-rank matrix can be expressed by
a set of rank-1 matrix. For each dimension k ∈ [1, d′h], the
pairwise interaction between f̃v and f̃a can be formulated as

f̃h[k] = f̃⊤v Tc[:, :, k]̃fa. (4)

As shown in the Figure 3(b), we factorize each dimension of
tensor Tc[:, :, k] as the combination of R rank one matrices
and plug it into Eq. (4), that is

f̃h[k] = f̃⊤v

(
R∑

r=1

Mr[:, k]Nr[:, k]
⊤
)
f̃a

=

R∑

r=1

(
f̃⊤v Mr[:, k]

)(
f̃⊤a Nr[:, k]

)
, (5)

where Mr[:, k] and Nr[:, k] are the k-th column vectors of
Mr ∈ Rd′

v×d′
h and Nr ∈ Rd′

a×d′
h . Therefore, we can

rewrite f̃h as the combination of R rank one matrices as
follows:

f̃h =

R∑

r=1

[(
f̃⊤v Mr

)
◦
(
f̃⊤a Nr

)]⊤
, (6)

where ◦ represents Hadamard product. In doing so, the
fused multi-modal features can fully exploit audio and vi-
sual information for enhancing the video representation.

3.3. Hierarchical Temporal Context Encoding

Previous methods [30, 12] estimated individual highlight
segments from input features directly, without taking the
temporal cue into consideration. We argue that modeling
temporal context is essential for the highlight detection. In-
tuitively, a highlight often leads to noticable changes in tem-
poral context, i.e., in adjacent segments, and therefore a
useful indicator. We design a hierarchical temporal con-
text encoding mechanism as a strategy to generate tempo-
ral contextual features by aggregating the consecutive seg-
ments. The proposed hierarchical temporal context encod-
ing mechanism is able to locate highlight segments with the
assistance of temporal cues that estimate individual high-
light scores and variation among contextual features.

Initially, the fused features {fsh}ms=1 are extracted from
the video V(i) = {v(i)s }ms=1, where m denotes the number of
segments. Then, each anchored segment fsh and its adjacent
segments with neighbor size k are regressed as:

c(t)s =
∑

j=−k,··· ,k, j ̸=0

Wjc
(t−1)
s+j +W0f̃

s
h + bc, (7)

where c
(t)
s is the contextual feature for segment v(i)s at the

t-th iteration, k is the neighbor size, Wj ∈ Rdh×dh is the
learnable projection matrix for the adjacent j-th segment,
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and bc ∈ Rdh is the bias term. Initially, we set c(0)s = f̃sh,
and the above procedure executes T times to encode the
contextual information of segment v(i)s and its 2k neigh-
bor segments (v

(i)
s−k, · · · , v

(i)
s−1, v

(i)
s+1, · · · , v

(i)
s+k). Finally,

we have the temporal contextual feature, denoted by c
(T )
s

for segment v(i)s . Next, the temporal contextual feature is
employed to predict the highlight confidence score, denoted
as ps, for the segment v(i)s , which is formulated as

ps = σ(Wpc
(T )
s + bp), (8)

where σ(·) is the Sigmoid activation function, Wp ∈ R1×dh

and bp ∈ R are the linear transformation parameters to
be learned. Furthermore, we model the variation between
two adjacent segments with cosine similarity, represented
as (1− cos(c

(T )
s−1, c

(T )
s ))/2. Intuitively, the higher variation

in between the segments, the larger cosine distance would
be. In practice, we use the second order variation to measure
the discrepancy between the anchored segment c(T )

s and its
adjacent segments as

φs =
(
2− cos(c

(T )
s−1, c

(T )
s )− cos(c(T )

s , c
(T )
s+1)

)
/4. (9)

To learn a highlight detection model, we anticipate that
scores of highlight segments would be largely greater than
those of non-highlight segments in topic-specific videos.
However, it is unlikely to use temporal annotations to de-
cide which segments would be the highlight under weakly
supervised scenario. Likewise, scores of the negative videos
are expected to be smaller than scores of the positive video,
and scores of segments should be distributed uniformly and
all close to zero in negative videos. Thus, for comparing the
highlight confidence, we adapt the maximum score margin
in between paired segments as follows:

Xs = max
i,j=1,··· ,m

|pi − pj | , (10)

We use a hinge loss to formulate this as

Ls = max{0, 1− 1

|Vp|
∑

i∈Vp

X (i)
s +

1

|Vn|
∑

j∈Vn

X (j)
s }. (11)

By minimizing the score loss Ls, model is encouraged to
discriminate highlight segments from non-highlight ones.
Similarly, we would also expect to maximize the discrep-
ancy between the positive and negative videos. To do this,
we introduce a variation loss Lvar to enlarge the maxi-
mum variation margin between positive videos and nega-
tive videos with the second order variation φ defined in Eq.
(9). We define the maximum variation margin Xvar and the

variation loss Lvar as:

Xvar = max
i,j=1,··· ,m

|φi − φj | , (12)

Lvar = max{0, 1− 1

|Vp|
∑

i∈Vp

X (i)
var +

1

|Vn|
∑

j∈Vn

X (j)
var}.

(13)

Moreover, considering the scores are sparse in both pos-
itive and negative videos, we add a sparsity constraint on
above loss functions with the weighting factor β, that is

Lins = Ls + Lvar +
β

n

n∑

i=1

(
∥X (i)

s ∥1 + ∥X (i)
var∥1

)
. (14)

3.4. Attention-Gated Instance Aggregation

Early MIL related works [2, 4] pointed out that simply
applying the video label to segment label might be inac-
curate since labels in positive video could be noisy. Instead
of assigning video label to each individual segment directly,
we aggregate instance scores to estimate the probability that
a video belongs to specific topic. Following the conven-
tional Noisy-OR MIL [36], we can express the probability
for the video V(i) as:

p̂
(i)
V = 1−

m∏

s=1

(1− p(i)s ), (15)

where p
(i)
s is the confidence score for segment v(i)s of video

V(i). Then binary cross entropy loss is applied for video-
level supervision, and it can be defined as:

LV = − 1

n

n∑

i=1

[
y(i) log p̂

(i)
V + (1− y(i)) log(1− p̂

(i)
V )
]
.

(16)
However, optimization of Eq. (15) would suffer from the

gradient vanishing issue. For a positive video, the gradient
of LV is computed as:

∂L
∂p

(i)
s

=
∂L
∂p̂

(i)
V




m∏

k=1,k ̸=s

(1− p
(i)
k )


 . (17)

From above derivation, we know when there exists one seg-
ment of which confidence score is close to 1, gradients from
other segments will be suppressed. This is divergent from
the assumption that multiple highlight segments are tailored
from the original videos.

To alleviate this problem , we aggregate the temporal
context features of all segments in the video to generate the

7954



Topic Supervised Methods Weakly Supervised Methods
GIFs LSVM RRAE LIM-s MINI-Net∗ Ours

dog 0.308 0.60 0.49 0.579 0.5768 0.5538
gymnastics 0.335 0.41 0.35 0.417 0.5737 0.6266
parkour 0.540 0.61 0.50 0.670 0.6975 0.7088
skating 0.554 0.62 0.25 0.578 0.5219 0.6906
skiing 0.328 0.36 0.22 0.486 0.5390 0.6005
surfing 0.541 0.61 0.49 0.651 0.5931 0.5976
Average 0.464 0.54 0.38 0.564 0.5837 0.6297

Table 1. Performance comparison (mAP score) on YouTube High-
lights dataset. * indicates our implementation trained on self-
collected dataset. See Supplementary Material for details.

video score as:

p̂
(i)
V = σ


Wp

m∑

j=1

αjc
(T )
j + bp


 , (18)

αj =
exp(Wcc

(T )
j + bc)

∑m
q=1 exp(Wcc

(T )
q + bc)

, (19)

where {αj}mj=1 are weighted factors, Wc and bc are parame-
ters to be learned, and Wp and bp share the same parameters
in Eq. (8). It can be theoretically proved that proposed in-
stance aggregation method with Equation (18) can ease the
gradient vanishing problem, which is provided in the Ap-
pendix. Besides, the visualization of the gradient ∂L/∂p(i)s

in the Appendix demonstrate that the area of non-zero gra-
dient has significantly enlarged via our method.

Finally, we apply Eq. (16) to compute video classifica-
tion loss for videos. By combining Eq. (14) and Eq. (16),
we can obtain the total loss for the proposed model:

L = Lins + LV . (20)

4. Experiments
In this section, we evaluate highlight detection perfor-

mance for the proposed model extensively on two public
datasets and compare with other state-of-the-art methods.
More experimental results and implementation details are
reported and analyzed in the Supplementary Material.

4.1. Datasets and Metrics

We have evaluated different highlight detection ap-
proaches on two benchmark datasets, i.e., YouTube High-
lights [27] and TVSum [25]. YouTube Highlights dataset
includes six topic-specific categories: dog, gymnastics,
parkour, skating, skiing, and surfing, where each topic con-
tains about 100 videos and the total accumulated length
is 1,430 minutes. TVSum has 50 user videos collected
from YouTube with 10 topic-specific queried tag includ-
ing: changing vehicle tires, grooming an animal, parade,
flash mob gathering, and others. Because only frame-level
importance scores are provided in TVSum, following the

current evaluation protocol [30, 12], we average the frame-
level importance scores to obtain segment-level scores and
select the top 50% segments for each video as the human-
created highlights. We compare our model predicted high-
light segments with the human-created summaries and re-
port mean average precision (mAP) for both datasets.

4.2. Quantitative Results

We compare our proposed model with numerous state-
of-the-art video highlight detection methods including su-
pervised and weakly supervised approaches. For super-
vised methods, we compare with Video2GIF approach [11],
Latent SVM [27], KVS [22], DPP [9], sLSTM [37], and
SM [10]. Note that these methods require detailed tempo-
ral annotations to be trained while our method does not.
Additionally, a number of weakly supervised methods are
also compared, including RRAE [33], MBF [5], SMRS [6],
Quasi [14], CVS [21], SG [19], LIM-s [30], VESD [3],
DSN [20], and MINI-Net [12]. All of these approaches are
evaluated using the same metrics mentioned above.

Results on YouTube Highlights dataset Table 1 sum-
marizes the experimental results of different state-of-the-art
methods. We can find that our method achieves the best per-
formance with respect to the average mAP over all six top-
ics. In particular, our method yields a better performance
by 4.6% higher than the multi-modal method MINI-Net
[12]. This verifies the benefit of adding contextual informa-
tion into video representation learning via the hierarchical
temporal encoding. Also, with our proposed low-rank de-
composition technique, our model is capable of exploiting
audio-visual structures efficiently and thus learn more dis-
criminative video representations, which we believe this is
also vital to the improvement. Besides, it can be observed
that our approach outperforms the supervised methods, i.e.,
GIFs [11] and LSVM [27], by a large margin that further
proves event-specific temporal annotations are trivial and
our weakly supervised model is able to leverage the unla-
beled video segments for capturing the highlights precisely.
Since our method does not require any human-created an-
notations, our method is more adaptable for real world sce-
narios for videos with hashtags on social media.

Results on TVSum dataset Table 2 presents the experi-
mental results on TVSum dataset [25]. Our method outper-
forms all of the compared methods by a large margin. In
particular, we found MINI-Net [12] is the most competitive
multi-modal weakly supervised method, which also regards
individual video-audio pairs as instances to handle video
structure. Our method achieves a relative gain of 6.62% on
average Top-5 mAP than MINI-Net. This result further re-
inforces the advantages of the temporal cue in video and
audio clips contributing to better highlight detection. We
demonstrate that modeling temporal context is useful and
essential for highlight detection. For example, for parkour
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Topic Supervised Methods Weakly Supervised Methods
KVS DPP sLSTM SM SMRS Quasi MBF CVS SG LIM-s DSN VESD MINI-Net∗ Ours

Vehicle Tire 0.353 0.399 0.411 0.415 0.272 0.336 0.295 0.328 0.423 0.559 0.373 0.447 0.7854 0.8501
Vehicle Unstuck 0.441 0.453 0.462 0.467 0.324 0.369 0.357 0.413 0.472 0.429 0.441 0.493 0.5659 0.7144
Grooming Animal 0.402 0.457 0.463 0.469 0.331 0.342 0.325 0.379 0.475 0.612 0.428 0.496 0.7360 0.8187
Making Sandwich 0.417 0.462 0.477 0.478 0.362 0.375 0.412 0.398 0.489 0.54 0.436 0.503 0.7529 0.7859
Parkour 0.382 0.437 0.448 0.445 0.289 0.324 0.318 0.354 0.456 0.604 0.411 0.478 0.7687 0.8021
Parade 0.403 0.446 0.461 0.458 0.276 0.301 0.334 0.381 0.473 0.475 0.417 0.485 0.6325 0.7552
Flash Mob 0.397 0.442 0.452 0.451 0.302 0.318 0.365 0.365 0.464 0.432 0.412 0.487 0.6115 0.7155
Beekeeping 0.342 0.395 0.406 0.407 0.297 0.295 0.313 0.326 0.417 0.663 0.368 0.441 0.7560 0.7727
Bike Tricks 0.419 0.464 0.471 0.473 0.314 0.327 0.365 0.402 0.483 0.691 0.435 0.492 0.7556 0.7860
Dog Show 0.394 0.449 0.455 0.453 0.295 0.309 0.357 0.378 0.466 0.626 0.416 0.488 0.6555 0.6812
Average 0.398 0.447 0.451 0.461 0.306 0.329 0.345 0.372 0.462 0.563 0.424 0.481 0.7020 0.7682

Table 2. Performance comparison (Top-5 mAP score) on TVSum dataset. Our method surpasses all of the compared methods significantly.
* indicates our implementation trained on self-collected dataset.

Positive Video Negative Video
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… … … …

Figure 4. The example highlight prediction of our method. The highlight detection model is aimed to detect ”Parkour” highlight. The
positive video is tagged with ”Parkour”, and the negative one is marked as ”Parade”.
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Figure 5. Variations in performance by changing the neighbor size
k. It shows that our model achieves the best performance with
k = 3.

scenarios, the highlight would occur when someone jumps
in and moves fast from one point to another leading to a
drastic change of foreground context. We believe the transi-
tion of activities is an important temporal cue indicating the
appearance of the highlight moments. To further verify our
intuition, we visualize, in Figure 4, the segment scores in a
positive video and a negative video for parkour. We can see
the segment scores in the negative video are almost uniform
and close to 0. Meanwhile, we observe that in the posi-
tive video, the most discriminative highlight segments are
captured with high confidence even if they are distributed
sparsely and fragmentally in time. And also, we can see the
segments that are irrelevant to the topic i.e. ”parkour” tend
to have very low probabilities. All these evidences verify
the effectiveness of our contrastive learning design with the
loss function Lins.

Exp. Ls Lvar LV YouTube TVSum
1

√
0.5625 0.6805

2
√

0.5749 0.7161
3

√
0.5944 0.7326

4
√ √

0.6011 0.7470
5

√ √ √
0.6297 0.7682

Table 3. Average mAP comparison of different components on
YouTube and TVSum datasets.

4.3. Ablation Studies

In this section, we study the behavior of each component
of our model under different conditions.

Impact of neighbor size k. Firstly, we investigate the ef-
fect of tuning the neighbouring size k for temporal con-
text encoding, as depicted in Figure 5 . It can be observed
that with the increment of k, the average mAP increases as
the result of aggregating more contextual features, until the
point i.e. k = 3 (where the best performance is attained),
the model no longer benefits from adding excessive contex-
tual information. This suggests incorporating localised tem-
poral context does boost the highlight detection effectively,
while modeling long-term decencies is trivial and adding
excessive context may hinder the model from learning the
discriminative highlight features and consequentially, leads
to degenerated detection performance.
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Impact of loss terms. Furthermore, we have examined
the contribution of individual loss terms and the results are
shown in Table 3. As can be seen from the table, the com-
bination of variation loss and score loss (Exp.4) improves
the performance by at least 1.1% and 2.2%, on YouTube
and TVSum respectively, in comparison with those that use
them individually (Exp.1 and Exp.2). In addition, we found
the video level supervision (Exp.3) is also vital to the detec-
tion, which boosts the ultimate detection results (Exp.5) by
2.8% and 2.1% on YouTube and TVSum respectively, since
it not only estimates the overall probability that a video
contains highlights but also utilize inductive bias for topic-
specific highlight detection.
Impact of audio-visual fusion schemes. We compare
various audio-visual fusion schemes to explain the perfor-
mance variation in Table 4. The most common practice of
fusing two modalities is a summation of two kinds of fea-
ture vectors or concatenating them directly. As shown in
the first two rows (i.e. summation and concatenation), they
achieve similar performance due to the limited expressive
power of linear models. To alleviate this problem, [12] pro-
posed a submodule multi-layer perceptron to model the lo-
cal complex feature interaction, and it gains improvement
by 1.5% and 1.4% on YouTube and TVSum respectively.
The compact bilinear pooling method [8] pushes up the per-
formance even further as can be seen in the fourth row of
Table 4 that it achieves the best performance by far. How-
ever, one drawback of the method is it introduces signif-
icantly more trainable parameters comparing to the above
methods, which makes it prone to be overfitted in practice,
while the low-rank constraint in our method serves as the
regularization that mitigates the risk of overfitting [15]. In
comparison, our model surpasses the compact bilinear pool-
ing method [8] while saving 85% of the trainable param-
eters. This strongly indicates that regularizing a bilinear
model through our low-rank decomposition approach pro-
vides an effective trade-off between model capacity and the
number of parameters. In addition, factorized bilinear pool-
ing method [38] constrains the whole tensor T to be of low
rank, which achieves comparable results as compact bilin-
ear pooling. However, it merely projects the audio and vi-
sual features into a shared R-dimensional space by com-
puting element-wise production, which restricts the inter-
action between the intra-dimension of two modalities. By
contrast, instead of constraining the whole tensor T , our
method makes the low-rank constraint on the core tensor
Tc leading to better performance than [38], which allows
the visual and audio features to be modeled into distinctive
projection spaces, leading to better audio-visual representa-
tion.

Impact of video score modeling. To further prove that
our proposed instance aggregation module is more suitable
for highlight detection. We compare several most popu-

Methods |Θ| YouTube TVSum
Summation 0.3288M 0.5809 0.7259
Concatenation [29] 0.3271M 0.5953 0.7187
SubModule MLP [12] 0.7886M 0.6103 0.7328
Compact Bilinear Pooling [8] 8.3887M 0.6256 0.7509
Factorized Bilinear Pooling [38] 0.9197M 0.6147 0.7511
Ours 1.2499M 0.6297 0.7682

Table 4. Average mAP comparison of different audio-visual fusion
methods on YouTube and TVSum datasets. MLP denotes multi-
layer perceptron, and |Θ| represents the number of parameters.

DMIL-RM [26] Noisy-OR [36] MINI-Net [12] Ours
YouTube 0.5235 0.5868 0.5836 0.6297
TVSum 0.6731 0.6838 0.7020 0.7682

Table 5. Average mAP comparison of different video score mod-
eling methods on YouTube and TVSum datasets.

lar video score modeling methods in the context of high-
light detection. DMIL-RM [26] introduced ranking meth-
ods to rank the scores of video segments without direct
video-level supervision. However, we have demonstrated
in earlier sessions that adding video-level supervision dur-
ing training helps improve the detection performance by a
lot. It is clearly shown that our method outperforms both the
Noisy-OR video score aggregating method and MINI-Net
approach [12] by a large margin (4.3% and 6.6%) on two
datasets respectively. The results in Table 5 demonstrate
that our proposed instance aggregation method is superior
to the state-of-the-art video classification methods.

5. Conclusion
This paper has proposed a novel video highlight detec-

tion model, which integrates audio and visual features with
an efficient low-rank tensor fusion mechanism. To exploit
the temporal cue in the video, the model encodes the ad-
jacent segments to generate temporal context features in a
hierarchical way that we believe variation in the contextual
features is considered to be key to characterise the highlight
moments in topic-specific videos. During the optimization
stage, the video score is reformulated to alleviate the gradi-
ent vanishing problem. Furthermore, we conducted exten-
sive experiments on two publicly available datasets and the
results have verified the effectiveness and the superiority of
our approach compared with other state-of-the-art methods.
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