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Abstract

Most recent video super-resolution (SR) methods either
adopt an iterative manner to deal with low-resolution (LR)
frames from a temporally sliding window, or leverage the
previously estimated SR output to help reconstruct the cur-
rent frame recurrently. A few studies try to combine these
two structures to form a hybrid framework but have failed to
give full play to it. In this paper, we propose an omniscient
framework to not only utilize the preceding SR output, but
also leverage the SR outputs from the present and future.
The omniscient framework is more generic because the it-
erative, recurrent and hybrid frameworks can be regarded
as its special cases. The proposed omniscient framework
enables a generator to behave better than its counterparts
under other frameworks. Abundant experiments on public
datasets show that our method is superior to the state-of-
the-art methods in objective metrics, subjective visual ef-
fects and complexity.

1. Introduction
Super-Resolution (SR) aims at reconstructing high-

resolution (HR) images from the corresponding low-
resolution (LR) images. As the most basic problem in S-
R, single image super-resolution (SISR) has been relative-
ly studied thoroughly, where under a unified framework,
the researchers only have to design different kinds of con-
volutional neural networks (CNNs) [4, 14, 32, 31, 3] to
solve this issue. Based on SISR, video super-resolution
(VSR) has also been developed, albeit a lot of works
[1, 22, 19, 27, 29, 11, 10] have been proposed, there is not
a unified framework being dominant in VSR yet. Figure 1
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Figure 1: Performances on Vid4 [1] dataset and time costs.
The Red circle denotes iterative methods, and the blue cir-
cle indicates recurrent and hybrid methods. Please refer to
Table 4 and Table 6 for more details.

illustrates dozens of state-of-the-art (SOTA) VSR methods
in terms of performance and speed.

As SISR requires only one input image, most SISR
methods focus on exploring different generator networks to
extract features from this one image under a unified frame-
work. Nevertheless, since VSR involves consecutive video
frames as input, different schemes for handling the temporal
information have emerged. We demonstrate different kinds
of frameworks for VSR in Figure 2.

As illustrated in Figure 2(a), most recent VSR methods
[1, 22, 25, 30, 12, 24, 29, 23, 11] apply an iterative manner
to deal with LR frames from a temporally sliding window,
where we only show the case of window size as 3. Given
a sequence of video frames, the iterative framework con-
siders the whole VSR processing as multiple independent
sub-processes. Theoretically, these sub-processes are not
temporally correlated and can be handled simultaneously,
which means they enjoy the advantage of parallel comput-
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Figure 2: Different kinds of frameworks for VSR, where “G” represents the generator network. Red, black and blue arrows
denote information from the past, present and future respectively.

ing [29]. However, the iterative framework can only obtain
more neighboring LR frames by increasing the window size
but omits the previously estimated SR output, which is the
exact reason that prevents it from a better performance.

As demonstrated in Figure 2(b), the recurrent framework
[19, 10] processes video frames by the order, while it can n-
ever exploit the subsequent frames to assist with recovering
the current frame, which has limited its potential. Although
a few studies [5, 27] have tried to combine these two frame-
works to form a hybrid framework, as shown in Figure 2(c),
it can only receive the estimated hidden states from the past,
and they have not achieved satisfying results.

The recurrent and hybrid frameworks only leverage pre-
vious hidden states, which inspires us to wonder what if
we further try to involve the hidden states from the present
and future. To this end, we propose the omniscient frame-
work. Specifically, we integrate two sub-networks: a pre-
cursor network Netp and a successor network Nets into the
omniscient framework. The successor network inherits the
hidden states generated by the precursor network, and thus
manages to leverage the LR frames and hidden states from
the past, present and future. As shown in Figure 2(d) and
Figure 2(e), the omniscient framework can be further divid-
ed into two categories: local omniscient and global omni-
scient. Local omniscient framework processes video frames
unidirectionally while global omniscient framework does it

bidirectionally. The global omniscient framework enables
any LR frame to receive information from all other frames
in a same video sequence, however, it is not appropriate for
delay-sensitive real-time tasks like live broadcasts, where
the local omniscient framework suits well instead.

Overall, in this paper, we propose a more generic om-
niscient framework to exploit both LR frames and estimat-
ed hidden states from the past, present and future. In fact,
as shown in Figure 2, the iterative, recurrent and hybrid
frameworks can be regarded as the special counterparts of
our proposed omniscient framework. We have explored a
same kind of generator network under different framework-
s, and we have found the omniscient framework (local and
global) superior to the existing iterative, recurrent and hy-
brid frameworks. Our models surpass other SOTA meth-
ods in both performance and complexity, and thus we hope
this framework will become a standard framework in VSR,
under which researchers are free to design more effective
generator networks, explicit or implicit motion information
capturing modules, or loss functions to tap its potential.

2. Related Work
2.1. Iterative Video Super-Resolution

With the development of deep learning, a lot of CNN-
based SISR methods, e.g. SRCNN [4], VDSR [14], have
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emerged, from which some early VSR methods [1, 13, 17]
are inspired and simply apply the architectures from SISR to
VSR. These methods consider VSR as a multi-input coun-
terpart of SISR and employ the iterative framework to solve
it. These iterative methods can be further divided into two
categories according to their generator networks: iterative
[18, 12, 24, 29, 23, 11, 28] and recurrent [22, 25, 30, 7]. Par-
ticularly, RVSR-LTD [18] designs a temporal adaptive net-
work with a pyramid structure, and DUFVSR [12] propos-
es a 3D CNN with dynamic upsampling filters. EDVR [24]
has designed a pyramid, cascading and deformable (PCD)
alignment module with a temporal and spatial attention (T-
SA) fusion module to achieve wonderful results, however,
its training resource requirement is prohibitive. PFNL [29]
proposes a progressive fusion network with a non-local cor-
relations extraction module, which has obtained an amazing
result in terms of both performance and complexity. TDAN
[23] devises a temporally-deformable alignment network,
and TGA [11] utilizes a hybrid module with both 2D and
3D residual blocks for inter-group fusion.

Another group of iterative-based methods adopts recur-
rent generator networks to transfer temporal correlations in-
stead. DRVSR [22] utilizes ConvLSTM [21] module for
capturing long-range temporal information, based on which
MMCNN [25] designs a multi-memory residual block to
enhance the memory ability. MTUDM [30] proposes an
ultra-dense memory residual block to build a shallower but
wider network. RBPN [7] extends [6] to video SR, which
sends LR frames into a projection module step by step. In
all, these iterative methods have been concentrating on de-
signing more and more complicated generator networks but
with huge computational costs in the meantime.

2.2. Recurrent and Hybrid Video Super-Resolution

As to the recurrent methods, FRVSR [19] proposes a
frame-recurrent network to leverage the last rebuilt SR
frame for reconstructing the current frame, which is fast
but not robust enough. RSDN [10] designs a dual-channel
network to learn the structures and details of frames. Still,
these recurrent methods refuse the assist from subsequent
LR frames.

FFCVSR [27] and RLSP [5] have tried to form a hybrid
framework but could not achieve a wonderful result because
1) the hybrid framework still cannot exploit the estimated
hidden states from the present and future, and 2) their naive
network designs have turned them against maximizing their
potential.

3. Method
3.1. Omniscient Video Super-Resolution

As illustrated in Figure 2, the hybrid VSR combines the
idea of iterative VSR and recurrent VSR, which adopts both

neighboring LR frames and a previously estimated SR out-
put as source information. Theoretically, the neighboring
LR frames provide the most basic spatial-temporal infor-
mation in LR space, and the estimated SR output can re-
serve more temporally correlated information connected to
the HR space. Thus, it is natural to combine them to fully
exploit the spatial-temporal correlations.

Based on the above analysis, we wonder what if we fur-
ther introduce the estimated SR outputs from the present
and future. However, after long deliberation, we reckon
that idea is not realizable if only processing through the
video frames in a single time like the iterative, recurren-
t, or hybrid VSR. Eventually, as shown in Figure 2(d) and
Figure 2(e), we manage to design two sub-networks: a pre-
cursor network Netp and a successor network Nets to for-
m the OVSR framework. The precursor network first flows
through the LR frames to generate the SR frames and hid-
den states of all time steps, and then the successor network
reconstructs all SR frames with the assist of the correspond-
ing LR frames and estimated hidden states. We further add
the SR frames generated both by the precursor and succes-
sor for refinement to reconstruct the final SR output.

According to the direction of the precursor network and
successor network, the OVSR can be further categorized as
local omniscient VSR (LOVSR) and global omniscient VS-
R (GOVSR). Both Netp and Nets of LOVSR process video
frames in the same direction, which means it can only uti-
lize the past and present information, as well as a limited
number of frames (2 in Figure 2(d)) in the future, which
is why we call it “local omniscient”. Then, we design the
GOVSR by reversing the direction of Netp subtly, through
which any LR frame gets access to all other frames in a
same video sequence, and thus it is called “global omni-
scient”. Although the GOVSR is capable of leveraging all
frames to assist in rebuilding one frame at any time step, it
relies heavily on future information. Nevertheless, frames
too far in the future are actually not accessible in some
delay-sensitive real-time tasks like live broadcasts and on-
line meetings, where the LOVSR suits well. In all, LOVSR
suits online VSR and GOVSR is more appropriate for offline
VSR. Still, the omniscient VSR, no matter LOVSR or GOV-
SR, can exploit both the LR frames and estimated hidden
states from the past, present and future. Recently, BasicVS-
R [2] has also proposed a bidirectional framework that suits
offline VSR, while ignoring the online VSR situation.

It is worth mentioning that the proposed omniscien-
t framework does not require a specific structure of the gen-
erator network, instead, any kind of existing generator net-
works can be easily inserted into the architecture illustrated
in Figure 3, as long as they satisfy the form shown in Equa-
tion (1) and Equation (2).
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Figure 3: The whole architecture of our model under the global omniscient framework, and the local omniscient case can be
inferred according to Figure 2(d). The “

⊕
” represents element-wise add and “ c⃝” denotes concatenation along the channel

axis. Red, black and blue arrows denote information from the past, present and future respectively.

3.2. Network Design

We then elaborate on the specific network design of our
model under the omniscient framework. Although our pro-
posed OVSR manages to leverage more source information
theoretically, it still requires a well-designed structure of the
generator network to fulfill its potential practically. Fortu-
nately, we learn a progressive fusion residual block (PFRB)
from PFNL [29], which is sophisticated and shows to be
both effective and efficient.

To combine the PFRB with the omniscient framework,
we ameliorate it to embody 3 channels. As illustrated in
Figure 3, we show the architecture of our model under
GOVSR, and the LOVSR case can be inferred. Because
the precursor and successor networks share a similar struc-
ture, we only need to introduce the successor network. We
adjust the PFRB to embody 3 channels, which contain in-
formation from the past, present and future respectively. We
first adopt one convolutional layer to fuse the corresponding
LR frame ILR

t and hidden state Ht to obtain a feature FLR
t .

Correspondingly, these 3 features contain information from
the past, present and future respectively. Then, in the resid-
ual blocks, features from these 3 channels are extracted both
independently and merged together, in which intra-frame s-
patial correlations and inter-frame temporal correlations are
fully exploited [29]. At the end of the network, features
from these 3 channels are concatenated and processed by a
3× 3 convolutional layer to obtain the updated hidden state
Hs

t . The Hs
t is upscaled to ISRs

t , and then added by the
SR frame from the precursor ISRp

t to reconstruct the final
SR output ISR

t , where the upscale module is composed of
2 convolutional layers each followed by a sub-pixel convo-

lution layer [20]. We set a Leaky ReLU activation [9] after
every convolutional layer (except the last one in the upscale
module), with parameter α = 0.2.

The precursor network can be described as

I
SRp

t , Hp
t = Netp({ILR

t−1, I
LR
t , ILR

t+1}, H
p
t+1), (1)

where {ILR
t−1, I

LR
t , ILR

t+1} stand for the neighboring LR
frames, ISRp

t and Hp
t denote the SR frame and hidden state

generated by the precursor. Note that Hp
t+1 is for GOVSR,

which should be Hp
t−1 for LOVSR instead. The successor

network can be described as

ISRs
t , Hs

t = Nets({ILR
t−1, I

LR
t , ILR

t+1}, {Hs
t−1, H

p
t , H

p
t+1}),

(2)
where ISRs

t and Hs
t denote the SR frame and hidden state

generated by the successor. We add the SR frames generat-
ed by Netp and Nets to form the final output.

ISR
t = ISRs

t + I
SRp

t , (3)

because Nets inherits Netp, we naturally restrict Netp to
mainly learn the low-frequency structures and Nets to s-
tudy the high-frequency details within frames. We adopt the
Charbonnier loss function [16] to form the loss function:

L =
√

(IHR
t − ISR

t )2 + ε2 + α

√
(IHR

t − I
SRp

t )2 + ε2,

(4)
where IHR

t denotes the original HR frame, α is set to adjust
the weight of the precursor network, and ε is empirically set
to 10−3.

In all, our model fully exploits the spatio-temporal cor-
relations contained in the LR frames and estimated hidden
states from the past, present and future.
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Figure 4: (a) Similar generator networks trained under different VSR frameworks. (b)(c) Adjust the weight of ISRp

t during
training by changing α in Equation (4). (d)(e) Adjust the proportion of Netp and Nets, where “4+2” means setting 4 residual
blocks in Netp and 2 in Nets.

4. Experiments

4.1. Implementation Details

We first adopt a public MM522 dataset [25] for train-
ing, which contains 522 32-frame sequences with various
scenes. During training, we employ 20 video sequences
from [29] for evaluation. When trained on the MM522
dataset, we test the models on Vid4 [1] and UDM10 [30]
testing datasets. We also conduct experiments on another
public training dataset Vimeo-90K [26], and test the mod-
els on its testing dataset Vimeo-90K-T (please see the sup-
plementary material). Like in [12, 24, 29, 10], we adopt
Gaussian blur with σ = 1.6 and then 4× down-sampling
scheme.

We use Adam [15] optimizer with β1 = 0.9 and β2 =
0.999. We set the batch size as 16 and input LR size as
64×64. We only feed 7 consecutive frames for the ablation
study, and to train our final models as well as rebuild other
SOTA methods, we set 2 additional frames for feeding the
ILR
t−1, Ht−1 in the beginning and ILR

t+1, Ht+1 at the end [5].
The initial learning rate is 1 × 10−3 and decays linearly
to 1 × 10−4 after 120 K iterations, which keeps the same
until 200 K iterations. Then, the learning rate is further
decayed to 5 × 10−5 and 1 × 10−5 until converged. The
whole training process lasts about 300 K - 400 K iterations.
We conduct experiments on Python 3.6, PyTorch 1.6 and
NVIDIA RTX 2080Ti GPUs.

Table 1: Performances, parameters, FLOPs and testing time
costs of different models. The PSNR is evaluated on 20
sequences from [29], while FLOPs and testing time costs
are evaluated with respect to 1280 × 720 HR frame under
4× SR.

Model IVSR RVSR HVSR LOVSR GOVSR

Parameter (M) 1.864 1.866 1.868 1.897 1.897
FLOPs (G) 107.780 107.696 107.796 109.746 109.746

Testing time (ms) 23.06 23.33 23.29 25.35 25.35
PSNR (dB) 30.66 30.60 31.10 31.24 31.27

4.2. Omniscient vs Iterative, Recurrent and Hybrid

We compare the same generator network under the itera-
tive, recurrent, hybrid and omniscient frameworks (denoted
as IVSR, RVSR, HVSR and OVSR), where only necessary
adjustments are made to satisfy the form of input/output of
these frameworks. Note that IVSR, RVSR and HVSR only
embody one generator network, and thus we have to add the
Bicubic amplified frame IBic

t for residual learning [8, 14].
For LOVSR and GOVSR, we also replace I

SRp

t with IBic
t

in Equation (3), and we set α = 0 in Equation (4) for a
fair comparison. We integrate the multi-channel PFRBs in-
to these frameworks, where we set 5 PFRBs with the filter
number as 64 for IVSR, RVSR and HVSR.

As shown in Figure 4(a) and Table 1, HVSR outperforms
IVSR and RVSR a lot in PSNR, which confirms the effec-
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Table 2: PSNR (dB) evaluated by adjusting the weight of
I
SRp

t through changing α in Equation (4).

Setting +Bicubic α = 0 α = 0.01 α = 0.1 α = 1

LOVSR 31.24 31.25 31.23 31.26 31.17
GOVSR 31.27 31.28 31.36 31.32 31.30

Table 3: PSNR (dB) evaluated by adjusting the residual
blocks in the precursor and successor networks. “4+2” de-
notes setting 4 residual blocks in Netp and 2 in Nets

Setting 0+6 1+5 2+4 3+3 4+2 5+1 6+0

LOVSR 31.12 31.26 31.20 31.23 31.28 31.26 31.24
GOVSR 31.20 31.36 31.40 31.46 31.52 31.47 31.43

tiveness of utilizing a hidden state from the past and a LR
frame of the future. Nevertheless, as has been discussed in
Section 1 and Section 3.1, HVSR still fails to leverage the
hidden states from the present and future. Then, to train our
models LOVSR and GOVSR, we first set only 1 PFRB in
Netp and 5 PFRBs in Nets, and we adjust the filter number
as 56. This setting aims to keep the parameters, calculation
and time costs of these 5 models almost the same. As shown
in Table 1, under similar parameters, LOVSR and GOVS-
R surpasses HVSR about 0.14 dB and 0.17 dB in PSNR
respectively. GOVSR enjoys more advantages because it
manages to exploit the global information to reconstruct all
the frames in a video sequence. Overall, similar generator
networks enjoy such a great advancement under the omni-
scient framework, which proves its effectiveness undoubt-
edly.

4.3. Reconstruction Refinement

In Section 4.2, because IVSR, RVSR and HVSR do not
own a precursor network, we adopt the Bicubic amplified
results to replace the SR frames given by the precursor for
OVSR. However, the Bicubic amplification is not optimal
for our omniscient framework. Since OVSR consists of a
precursor network and a successor network, we naturally
consider making the precursor and successor learn the struc-
tures and details of frames respectively, and then add them
for refinement. Thus, we change α in Equation (4) during
training to explore the best option.

Training curves are shown in Figure 4(b) and Figure
4(c), while the specific numbers are demonstrated Table 2.
For LOVSR, we find α = 0.1 to be the optimal option,
which surpasses the “+Bicubic” 0.02 dB. For GOVSR, set-
ting α = 0.01 achieves 31.36 dB in PSNR, which surpasses
the “+Bicubic” 0.09 dB. We reckon that Netp and Nets
in GOVSR cooperate better due to the global information
utilization.

It is worth mentioning that in some case, especially when

imposing no restrictions on the precursor (α = 0), as illus-
trated in Figure 4(b) and Figure 4(c), models could suffer
sudden drops during training, but they will still converge
eventually.

4.4. Proportion of Precursor and Successor

In Section 4.2 and Section 4.3, we only set 1 PFRB in
the precursor and 5 PFRBs in the successor for OVSR. N-
evertheless, the optimal proportion of Netp and Nets still
needs to be explored. Thus, we keep the total number of
residual blocks fixed (6), and adjust the residual blocks in
Netp (from 0 to 6) and Nets (from 6 to 0) to find an appro-
priate proportion. Training curves are shown in Figure 4(d)
and Figure 4(e), while the specific numbers are demonstrat-
ed Table 3. Obviously, neither “0+6” or “6+0” is the best
or second-best option, which verifies the necessity of de-
signing both the precursor and successor networks. Both
LOVSR and GOVSR achieve their best performances with
4 residual blocks in the precursor and 2 in the successor, but
GOVSR achieves 31.52 dB under the optimal setting, which
again proves the advantage of utilizing global information.
Note that “4:2” is the optimal proportion under 6 residual
blocks in total, however, there could be a better proportion
if with more residual blocks.

After optimization, our models LOVSR and GOVSR
achieve 31.28 dB and 31.52 dB in PSNR, which surpass the
HVSR 0.18 dB and 0.42 dB respectively. With similar pa-
rameters and calculation costs, our OVSR outperforms the
existing IVSR, RVSR and HVSR enough to prove the effec-
tiveness of further involving estimated hidden states from
the present and future.

4.5. Comparisons with SOTA Methods

Because most methods train their models on different
training datasets with different down-sampling kernels, it
is unfair to compare these methods only according to their
papers. Thus, we have reimplemented dozens of SOTA
VSR methods on the same training dataset with the same
down-sampling kernels. Since PFNL [29] has already re-
built DRVSR [22], FRVSR [19] and DUF 52L [12] under
the same training conditions, we adopt their public codes.
Based on the public code of PFNL, we reimplement MM-
CNN [25] and MTUDM [30] on the TensorFlow platfor-
m. Moreover, We rebuild RBPN [7], EDVR [24], FFCVSR
[27], TDAN [23], RSDN [10] and RLSP [5] on the PyTorch
platform. We could not retrain TGA because it requires too
much GPU memory, and we have to report the results in its
paper.

We first reimplement these VSR methods on MM522
[25] training dataset and then test them on Vid4 [1] and UD-
M10 [30] testing dataset. The PSNR and SSIM values are
calculated only on the luminance channel of YCbCr col-
orspace, skipping the first and last two frames and elim-
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Table 4: PSNR (dB) / SSIM of different video SR models on Vid4 testing dataset [1] by the upscaling factor of 4. Red and
blue respectively indicate the best and second-best results. The ∗ denotes the results reported in the original papers.

Methods calendar city foliage walk average average∗

DRVSR [22] 22.88 / 0.7586 27.06 / 0.7698 25.58 / 0.7307 29.11 / 0.8876 26.16 / 0.7867 25.52 / 0.7600
FRVSR [19] 23.46 / 0.7854 27.70 / 0.8099 25.96 / 0.7560 29.69 / 0.8990 26.70 / 0.8126 26.69 / 0.8220

MMCNN [25] 23.63 / 0.7969 27.47 / 0.8083 26.01 / 0.7532 29.94 / 0.9030 26.76 / 0.8154 26.28 / 0.7844
MTUDM [30] 23.76 / 0.8026 27.67 / 0.8145 26.08 / 0.7587 30.16 / 0.9069 26.92 / 0.8207 26.57 / 0.7989
DUF 52L [12] 23.85 / 0.8052 27.97 / 0.8253 26.22 / 0.7646 30.47 / 0.9118 27.13 / 0.8267 27.34 / 0.8327

RBPN [7] 24.33 / 0.8244 28.28 / 0.8413 26.46 / 0.7753 30.58 / 0.9130 27.41 / 0.8385 27.16 / 0.8190
EDVR [24] 24.30 / 0.8242 28.04 / 0.8382 26.45 / 0.7744 30.63 / 0.9140 27.36 / 0.8377 27.35 / 0.8264
PFNL [29] 24.37 / 0.8246 28.09 / 0.8385 26.51 / 0.7768 30.64 / 0.9134 27.41 / 0.8383 27.40 / 0.8384

FFCVSR [27] 24.39 / 0.8250 27.80 / 0.8314 26.70 / 0.7868 30.55 / 0.9124 27.36 / 0.8389 26.97 / 0.8300
RLSP7-256 [5] 24.60 / 0.8335 28.14 / 0.8453 26.75 / 0.7925 30.88 / 0.9192 27.60 / 0.8476 27.55 / -

TDAN [23] 23.56 / 0.7896 27.53 / 0.8028 26.00 / 0.7491 29.99 / 0.9032 26.77 / 0.8112 26.86 / 0.8140
TGA∗ [11] 24.47 / 0.8286 28.37 / 0.8419 26.59 / 0.7793 30.96 / 0.9181 27.59 / 0.8419 27.59 / 0.8419

RSDN9-128 [10] 24.74 / 0.8386 28.75 / 0.8554 27.00 / 0.8013 30.85 / 0.9183 27.83 / 0.8534 27.92 / 0.8505

LOVSR-4+2-56 (ours) 24.71 / 0.8378 28.47 / 0.8502 26.94 / 0.7969 30.97 / 0.9204 27.78 / 0.8513 27.78 / 0.8513
LOVSR-8+4-56 (ours) 24.93 / 0.8439 29.08 / 0.8616 27.11 / 0.8073 31.23 / 0.9239 28.09 / 0.8592 28.09 / 0.8592
LOVSR-8+4-80 (ours) 25.10 / 0.8515 28.97 / 0.8666 27.25 / 0.8124 31.47 / 0.9273 28.20 / 0.8644 28.20 / 0.8644
GOVSR-4+2-56 (ours) 24.88 / 0.8463 28.74 / 0.8614 27.06 / 0.8075 31.27 / 0.9245 27.99 / 0.8599 27.99 / 0.8599
GOVSR-8+4-56 (ours) 25.16 / 0.8556 28.76 / 0.8683 27.36 / 0.8190 31.60 / 0.9290 28.22 / 0.8680 28.22 / 0.8680
GOVSR-8+4-80 (ours) 25.28 / 0.8581 29.10 / 0.8769 27.49 / 0.8230 31.79 / 0.9314 28.41 / 0.8724 28.41 / 0.8724

Table 5: PSNR (dB) / SSIM of different video SR models on UDM10 testing dataset [30] by the upscaling factor of 4. Red
and blue respectively indicate the best and second-best results.

Methods archpeople archwall auditorium band caffe camera clap lake photography polyflow average

DRVSR [22] 35.83/0.9547 41.16/0.9671 29.00/0.9039 34.32/0.9579 39.08/0.9715 45.19/0.9905 36.20/0.9635 31.15/0.8440 36.60/0.9627 37.91/0.9565 36.64/0.9472

FRVSR [19] 36.24/0.9579 41.65/0.9710 29.81/0.9181 34.54/0.9589 39.82/0.9746 46.07/0.9912 36.51/0.9659 31.70/0.8623 36.95/0.9655 38.38/0.9597 37.17/0.9525

MMCNN [25] 36.95/0.9636 42.12/0.9729 30.05/0.9217 35.23/0.9645 40.29/0.9760 46.89/0.9922 37.32/0.9704 31.76/0.8642 37.81/0.9704 38.85/0.9649 37.73/0.9561

MTUDM [30] 37.16/0.9655 42.33/0.9744 30.37/0.9274 35.46/0.9661 40.68/0.9773 47.15/0.9924 37.69/0.9727 32.03/0.8734 38.18/0.9727 39.10/0.9670 38.02/0.9589

DUF 52L [12] 36.92/0.9638 42.53/0.9754 30.27/0.9257 35.49/0.9660 41.03/0.9785 47.30/0.9927 37.70/0.9719 32.06/0.8730 38.02/0.9719 39.25/0.9667 38.05/0.9586

RBPN [7] 38.50/0.9729 43.53/0.9790 31.23/0.9376 35.49/0.9678 41.83/0.9810 49.25/0.9940 38.35/0.9757 32.48/0.8837 38.96/0.9771 40.38/0.9732 39.00/0.9642

EDVR [24] 38.46/0.9732 43.35/0.9783 31.15/0.9372 35.97/0.9696 41.76/0.9808 49.49/0.9947 38.22/0.9759 32.21/0.8790 39.40/0.9793 40.47/0.9739 39.05/0.9642

PFNL [29] 38.35/0.9724 43.55/0.9792 31.18/0.9369 36.01/0.9691 41.84/0.9808 49.26/0.9941 38.33/0.9756 32.53/0.8865 38.95/0.9768 40.04/0.9734 39.00/0.9645

FFCVSR [27] 37.50/0.9667 42.98/0.9766 30.50/0.9270 35.71/0.9669 41.27/0.9798 48.65/0.9936 37.88/0.9727 32.23/0.8729 38.42/0.9739 39.74/0.9691 38.49/0.9599

RLSP7-256 [5] 38.05/0.9704 43.46/0.9787 31.01/0.9342 36.05/0.9693 42.06/0.9818 49.14/0.9939 38.41/0.9756 32.60/0.8865 39.03/0.9771 40.38/0.9748 39.02/0.9642

TDAN [23] 37.95/0.9699 42.60/0.9747 30.54/0.9283 35.23/0.9645 40.59/0.9773 48.38/0.9936 37.42/0.9714 31.87/0.8668 38.28/0.9740 39.00/0.9660 38.19/0.9586

RSDN9-128 [10] 38.36/0.9719 43.68/0.9796 31.65/0.9416 36.13/0.9696 42.22/0.9824 49.88/0.9946 38.48/0.9762 32.67/0.8860 39.47/0.9793 40.44/0.9735 39.30/0.9655

LOVSR-4+2-56 (ours) 38.26/0.9718 43.57/0.9794 31.22/0.9376 36.23/0.9702 42.28/0.9825 49.43/0.9942 38.51/0.9763 32.73/0.8905 39.24/0.9781 40.43/0.9753 39.19/0.9656

LOVSR-8+4-56 (ours) 38.61/0.9736 43.84/0.9804 31.78/0.9437 36.52/0.9717 42.79/0.9836 50.28/0.9948 38.95/0.9781 32.89/0.8932 39.89/0.9807 40.99/0.9773 39.65/0.9677

LOVSR-8+4-80 (ours) 39.01/0.9755 44.13/0.9815 32.24/0.9480 36.80/0.9732 43.16/0.9843 50.52/0.9950 39.26/0.9793 33.13/0.9006 40.29/0.9820 41.32/0.9785 39.99/0.9698

GOVSR-4+2-56 (ours) 38.44/0.9727 43.73/0.9802 31.48/0.9408 36.32/0.9708 42.58/0.9833 49.54/0.9942 38.80/0.9781 32.89/0.8969 39.44/0.9790 40.45/0.9767 39.37/0.9673

GOVSR-8+4-56 (ours) 38.79/0.9747 44.12/0.9818 32.30/0.9488 36.82/0.9734 43.09/0.9841 50.46/0.9949 39.35/0.9802 33.22/0.9044 40.29/0.9821 41.17/0.9791 39.96/0.9703

GOVSR-8+4-80 (ours) 39.01/0.9757 44.44/0.9828 32.53/0.9510 37.03/0.9744 43.07/0.9845 50.60/0.9950 39.58/0.9809 33.34/0.9066 40.48/0.9830 41.28/0.9791 40.14/0.9713

inating 8 pixels on four borders of each frame [13, 29].
As illustrated in Table 4, our heavy model GOVSR-8+4-
80 has achieved the best result, while our medium mod-
el GOVSR-8+4-56 achieves the second-best performance.
LOVSR-based models behave a little worse than GOVSR-
based models because they can not utilize the global infor-
mation, but they still outperform most other SOTA methods.

Because Vid4 dataset contains only 4 scenes at a low

resolution, we further test these methods on a bigger test-
ing dataset UDM10. As many methods have not conducted
experiments on UDM10 dataset, we only report the results
rebuilt by us in Table 5. Our heavy model GOVSR-8+4-
80 achieves the best performance, while GOVSR-8+4-56
and LOVSR-8+4-80 achieve comparable performances. To
make a comprehensive comparison, we show more detail-
s of these methods, e.g. type of framework and generator,
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Table 6: Comprehensive comparisons of different video SR methods.

Methods Framework Generator Frame Parameter (M)
FLOPs (T)
1280× 720

Time (ms) / FPS
1280× 720

Time (ms) / FPS
1920× 1080

DRVSR [22] iterative recurrent 3 1.722 0.415 123.6 / 8.09 276.2 / 3.62
FRVSR [19] recurrent recurrent 2 5.058 0.348 77.5 / 12.90 172.1 / 5.81

MMCNN [25] iterative recurrent 5 10.582 3.347 696.7 / 1.44 1548.9 / 0.65
MTUDM [30] iterative recurrent 5 5.919 1.672 506.9 / 1.97 1127.6 / 0.89
DUF 52L [12] iterative iterative 7 5.824 2.348 1108.0 / 0.90 2499.8 / 0.40

RBPN [7] iterative recurrent 7 12.772 8.516 6555.7 / 0.15 14935.8 / 0.07
EDVR [24] iterative iterative 7 20.699 2.954 436.7 / 2.29 979.2 / 1.02
PFNL [29] iterative iterative 7 3.003 0.940 231.0 / 4.33 567.0 / 1.76

FFCVSR [27] hybrid hybrid 3 5.581 0.322 50.8 / 19.69 112.7 / 8.87
RLSP7-256 [5] hybrid hybrid 3 5.553 0.320 42.9 / 23.31 91.9 / 10.88

TDAN [23] iterative iterative 5 2.285 0.558 102.3 / 9.78 225.4 / 4.44
TGA [11] iterative iterative 7 7.058 0.700 383.5 / 2.61 869.7 / 1.15

RSDN9-128 [10] recurrent recurrent 2 6.180 0.356 59.3 / 16.86 132.0 / 7.58

OVSR-4+2-56 (ours) omniscient omniscient 3 1.897 0.110 25.4 / 39.37 56.1 / 17.83
OVSR-8+4-56 (ours) omniscient omniscient 3 3.480 0.201 46.5 / 21.51 101.9 / 9.81
OVSR-8+4-80 (ours) omniscient omniscient 3 7.062 0.407 81.2 / 12.32 178.5 / 5.60

Truth

TDAN

FFCVSR EDVR PFNLRBPN

RLSP7-256 RSDN9-128 LOVSR-8+4-80(ours) GOVSR-8+4-80(ours)

Figure 5: Results of different methods on calendar from Vid4 [1] dataset.

frame number, parameters, FLOPs, testing time cost and
frames per second (FPS). As demonstrated in Table 6, our
light model OVSR-4+2-56 achieves the fastest speed and
capable of real-time 4× VSR for 720p. Our medium mod-
el OVSR-8+4-56 surpasses all of the other SOTA methods
a lot in PSNR and is still faster than almost all of them.
Our heavy model OVSR-8+4-80 has to sacrifice the speed
for achieving the best performance, which is necessary and
worthwhile. As illustrated in Figure 5, our methods can re-
store clearer details. In all, our methods are superior to these
SOTA VSR counterparts in objective metrics, subjective vi-
sual effects and complexity.

5. Conclusion
In this paper, we propose an omniscient framework for

VSR, which can be divided into the local omniscient VS-
R and global omniscient VSR. LOVSR suits online VSR
and GOVSR fits offline VSR, and they both leverage LR
frames and estimated hidden states from the past, present

and future. We have conducted abundant experiments to
prove the robustness of the omniscient framework, which
is superior to other frameworks under similar complexity.
Combined with a sophisticated generator network, the om-
niscient framework makes it possible to conduct VSR in
real-time but still with an amazing performance. Due to
the overwhelming advantages of this framework, we hope it
will become a standard framework in VSR, based on which
the researchers are welcome to design more effective gen-
erators, motion information capturing modules, as well as
loss functions to further unleash its potential.
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