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Abstract

Single image deraining is important for many high-level
computer vision tasks since the rain streaks can severely de-
grade the visibility of images, thereby affecting the recogni-
tion and analysis of the image. Recently, many CNN-based
methods have been proposed for rain removal. Although
these methods can remove part of the rain streaks, it is
difficult for them to adapt to real-world scenarios and re-
store high-quality rain-free images with clear and accurate
structures. To solve this problem, we propose a Structure-
Preserving Deraining Network (SPDNet) with RCP guid-
ance. SPDNet directly generates high-quality rain-free im-
ages with clear and accurate structures under the guidance
of RCP but does not rely on any rain-generating assump-
tions. Specifically, we found that the RCP of images con-
tains more accurate structural information than rainy im-
ages. Therefore, we introduced it to our deraining net-
work to protect structure information of the rain-free image.
Meanwhile, a Wavelet-based Multi-Level Module (WMLM)
is proposed as the backbone for learning the background in-
formation of rainy images and an Interactive Fusion Mod-
ule (IFM) is designed to make full use of RCP informa-
tion. In addition, an iterative guidance strategy is proposed
to gradually improve the accuracy of RCP, refining the re-
sult in a progressive path. Extensive experimental results
on both synthetic and real-world datasets demonstrate that
the proposed model achieves new state-of-the-art results.
Code: https://github.com/Joyies/SPDNet

1. Introduction

Single image deraining (SID) aims to reconstruct a vi-
sually pleasing image from its corresponding rain-streaks-
degraded image. In the past years, various methods have
been proposed for SID. For traditional methods, many re-
searchers [11, 1, 3,4, 41, 24,27, 12] focused on exploring
the physical properties of the rain and background layers.
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Figure 1: An example of image deraining results. Ob-
viously, SPDNet can reconstruct high-quality image with
clear and accurate structure.

Meanwhile, various priors have been proposed to regular-
ize and separate them, such as layer priors with Gaussian
mixture model (GMM) [24], discriminative sparse coding
(DSC) [27], and joint convolutional analysis and synthesis
sparse representation (JCAS) [12]. Although these methods
can effectively remove the rain streaks, they require com-
plex iterative optimization to find the best solution.

Recently, convolutional neural networks (CNN) have
achieved significant success in many computer vision
tasks [32, 13, 18, 29]. Moreover, many CNN-based meth-
ods [7, 8, 43, 23, 49, 15, 38, 50, 31, 45, 6, 37, 16] have
been proposed for rain removal, such as DDN [&], RES-
CAN [23], PReNet [31], DRDNet [6], and RCDNet [37].
Albeit these methods have brought great performance im-
provements, they are difficult to remove all rain streaks and
recover the structural information of images in complex sce-
narios (Fig. 1). This is because: (1). Most of them di-
rectly learn the mapping between the rainy image and the
rain streaks layers. In other words, most methods predict
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A. Rainy Image
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Figure 2: B is the residue channel prior (RCP) extracted
from the rainy image. Obviously, even the RCP is extracted
from the rainy image, it still contains clear structures.

rain streaks via the built CNN model and then subtract rain
streaks from rainy images to get the final output. How-
ever, the density of rain streaks varies, which leads to ex-
cessive or insufficient removal of rain streaks, resulting in
incomplete structural information of the reconstructed im-
ages. (2) These methods focus on learning the structure of
rain streaks, but they pay less attention to learning the struc-
ture of objects and ignore the importance of image prior.
To address the aforementioned issues, we aim to explore
an image prior that can protect the structure of the image,
and introduce the prior into the model to guide high-quality
image reconstruction. According to our investigation, we
found that the Total Variation (TV) prior will smooth tex-
ture details in the restored images, the sparse prior is usu-
ally difficult to model because it requires other domain
knowledge, and the edge prior is difficult to obtain from the
rainy image since the off-the-shelf edge detectors are sensi-
tive to the rain streaks. In contrast, residue channel prior
(RCP [19, 21, 20]) show clear structures even extracted
from the rainy image (Fig. 2). Moreover, compared with
layer prior [27] and [15], RCP is the residual result of the
maximum channel value and minimum channel value of the
rainy image, calculated without any additional parameters.
Hence, we adopt RCP to the image deraining task and pro-
pose a Structure-Preserving Deraining Network (SPDNet)
with residue channel prior (RCP) guidance. SPDNet pays
more attention to learning the background information and
directly generates high-quality rain-free images with clear
and accurate structures. To achieve this, an RCP guidance
network and an iterative guidance strategy are proposed for
structure-preserving deraining. Specifically, we design a
wavelet-based multi-level module (WMLM) as the back-
bone of SPDNet to fully learn the background information
in the rainy image. Meanwhile, an RCP extraction mod-
ule and an interactive fusion module (IFM) are designed
for RCP extraction and guidance, respectively. This is also
the most important step in the SPDNet, which can high-
light the structure of objects in the rainy images and pro-
mote generating high-quality rain-free images. In addition,
we found that the RCP improves as image quality improves.
Therefore, we propose a progressive reconstruction method,
which means that the model extracts more accurate RCPs

in the intermediate reconstruction stage to further guide im-
age reconstruction. Under the iterative guidance of RCP,
SPDNet can reconstruct high-quality rain-free images.

The main contributions of this paper are as follows:

* We explore the importance of residue channel prior
(RCP) for rain removal and propose a Structure-
Preserving Deraining Network (SPDNet) with RCP
guidance. Extensive experimental results show that
SPDNet achieves new state-of-the-art results.

* We propose an RCP extraction module and an Inter-
active Fusion Module (IFM) for RCP extraction and
guidance, respectively. Meanwhile, an iterative guid-
ance strategy is designed for progressive image recon-
struction.

e We design a Wavelet-based Multi-Level Module
(WMLM) as the backbone of SPDNet to learn the
background of the area covered by the rain streak.

2. Related Work

In the past few years, many excellent rain removal meth-
ods have been proposed, which greatly promoted the de-
velopment of image deraining. This part mainly focuses
on several classical single image rain removal methods. A
more detailed introduction can be found in [44, 22, 36].

2.1. Traditional Methods

Traditional methods mainly use manually extracted fea-
tures and priors to describe the features of rain streaks. For
example, Kang et al. [17] proposed a method that can de-
compose an image into low- and high-frequency parts by
using a bilateral filter. Luo et al. [27] presented a dis-
criminative sparse coding for separating rain streaks from
the rainy image. Li et al. [24] uses Gaussian mixture
models(GMM) as the prior to separate the rain streaks.
Wang et al. [39] combines image decomposition and dictio-
nary learning to remove rain or snow from images. Zhu et
al. [52] detects rain-dominant regions. The detected regions
are utilized as a guidance image to help separate rain streaks
from the background layer.

2.2. CNN-based Methods

Recently, many CNN-based image deraining networks
have been proposed [46, 40, 35, 42, 44, 47, 16, 30, 33, 9],
and they have greatly promoted the development of this
field. For example, Fu et al. [7] proposed the firstly CNN-
based model to remove rain streaks. Later, they [8] also
proposed a deeper network based on a deep residual net-
work and use the image domain knowledge to remove rain
streaks. Yang et al. [43] proposed a recurrent deep network
for joint rain detection and removal to progressively remove
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rain streaks. Li er al. [23] proposed a recurrent squeeze-
and-excitation context aggregation network to make full
use of contextual information. Deng et al. [0] introduced
a detail-recovery image deraining network, which is com-
posed of a rain residual network and a detail repair network.
Jiang et al. [16] designed a coarse-to-fine progressive fusion
network and Wang et al. [34] proposed a cross-scale fu-
sion network based on inner-scale connection block. More-
over, Ren ef al. [31] proposed a progressive recurrent net-
work (PReNet) by repeatedly unfolding a shallow ResNet.
Wang et al. [37] introduced a rain convolutional dictionary
network, which continuously optimizes the model to obtain
better rain streaks and rain-free images.

Although these methods can remove part of the rain
streaks, they still cannot effectively remove all the rain
streaks in complex situations. Meanwhile, these methods
can hardly protect the structural information of the im-
age thus cannot reconstruct high-quality rain-free images.
Therefore, a method that can effectively remove rain streaks
and protect the structure of the object is essential.

3. Structure-Preserving Deraining Network

In this paper, we propose a Structure-Preserving De-
raining Network (SPDNet). As shown in Fig. 3, SPDNet
uses the wavelet-based feature extraction backbone as the
main structure and introduces a residue channel prior (RCP)
guided mechanism for structure-preserving deraining. In
SPDNet, the wavelet-based feature extraction backbone
is designed for background information learning, which
consists of a series of wavelet-based multi-level modules
(WMLM). However, it is difficult to maintain clear struc-
tures of the reconstructed image by only using the wavelet-
based feature extraction backbone. Hence, RCP is intro-
duced to the model to provide additional auxiliary informa-
tion, so that the structural information of the reconstructed
image is protected. More details will be introduced in the
following sections.

Convolutional
Layer
Interactive Fusion
Module (IFM)

SE-ResBlock in
Residual block (SRiR)

RCP
Extraction Module

' Wavelet-based Multi-level Module (WMLM) |

Figure 4: The architecture of the proposed Wavelet-based
Multi-Level Module (WMLM).

3.1. Wavelet-based Feature Extraction Backbone

Due to the arbitrary size and density of the rain streaks,
the occluded region and the degree of occlusion of the ob-
ject in the rainy image are unknown. To solve this problem,
many methods [16, 34, 48] adopt the multi-level strategy
to fully learning the features under different scales. Fol-
lowing these methods, we also adopt the multi-level strat-
egy in our model. However, directly using the downsam-
pling operation or deconvolution operation will cause a lot
of information to be lost. Therefore, we propose a wavelet-
based multi-level module (WMLM), which adopts the dis-
crete wavelet transform (DWT) and Inverse DWT (IWT) in
place of the simple downsampling and deconvolution op-
erations. Moreover, DWT can capture both frequency and
location information of feature maps [26, 5, 25], which may
be helpful in preserving detailed textures. The architecture
of WMLM is shown in Fig. 4.

In WMLM, we firstly use DWT to obtain multiple rainy
image features with different scales, and adopt a convolu-
tion to resize the feature channel (Fg, F1, F2) as:

Fi=F, ifi=0,
ey

F; = Conv(DWT(F;_y)), if i>0,
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where F denotes the input of WMLM. Next, we adopt three
SE-ResBlock in Residual block (SRiR) [51] to learn the
background information of the rainy image. As shown in
Fig. 4, SRiR is similar to the ResBlock [13], which uses the
SE-Resblock [14] to replace the convolution in ResBlock.

Ff = SRiR(F;), i=0,1,2. )

Lastly, we use a convolution to resize the smaller size fea-
tures channel and up-sampled it by IWT. Meanwhile, they
are added to the output of the previous level:

FP = IWT(Conv(F?)) + F2_4,

With the help of WMLM, the model can effectively learn
the background information of rainy images and reconstruct
relatively clear images.

=21, Q)

3.2. RCP Guided Structure-Preserving Deraining

Although the basic model can reconstruct relatively clear
rain-free images, it is found that the object structure in the
reconstructed image has also been damaged. In order to
solve this problem, we recommend introducing additional
image priors to protect the object structure. Therefore,
we suggest introducing residue channel prior (RCP) to the
model to achieve structure-preserving deraining. In addi-
tion, an Interactive Fusion Module (IFM) and an iterative
guidance strategy are proposed to make full use of RCP in-
formation, so that high-quality rain-free images can be re-
constructed.

3.2.1 Residue Channel Prior

As shown in Fig. 2, RCP is free of rain streaks and con-
tains only a transformed version of the background details,
which is the residual result of the maximum channel value
and minimum channel value of the rainy image.

According to Li et al. [19], the colored-image intensity
of a rain streak image can be expressed as:

O(z) = tB,s(x)Ba + (T — t)Rm, (4)

where O(z) is the color vector representing the colored
intensity. [, is composed of refraction, specular reflec-
tion, and internal reflection coefficients of raindrops [10].
B = (B,, By, By)" represents light brightness and B =
B, + By + By. R = (R,, Ry, Ry)T represents background
reflectionand R = R, + Ry + Rp. a =B/Bandm =R/R
represents the chromaticities of B and R, respectively. T’
is the the exposure time and ¢ is the time for a raindrop to
pass through pixel x. In the Eq.(4), the first term is the rain
streak term and the second term is the background term.
When employing any an existing color constancy algorithm
to estimate o, we can get the following normalization step:

O@) = 2 = 0,,@)i+ Oy(2), )

where i = (1,1,1)7, O,5 = 18,58, and Oy, = (T —
t)R/a. The vector division is the element-wise division.
When we normalize the image, the light chromaticity will
be cancelled and the color effect of the spectral sensitivities
will also be cancelled. Hence, based on Eq.(5), given a rain
image O, the residue channel prior P of O can be defined
as:
c : d

Plx) = Cg}n?;bo (z) — dIerwl%?,bo (). (6)
Due to the rain streak term in Eq.(4) is achromatic, whose
values are canceled when employing color constancy,
residue channel prior can be free from rain streaks, as shown
in Fig. 2. Moreover, according to Li et al. [19], without em-
ploying color constancy, the residue channel prior can still
work. Since the dominant gray atmospheric light generated
by a cloudy sky, the appearance of rain streaks is already
achromatic in most cases. Based on this observation, RCP
can extract a more complete and accurate object structure.
Therefore, RCP has been introduced to the model for image
deraining guidance.

3.2.2 RCP Extraction Module

In order to extract high-dimensional features of the RCP, we
propose an RCP extraction module. As shown in Fig. 3, a
convolution is firstly used to obtain the initial feature maps
Finit of P. Furthermore, to reduce the noise in the initial
features and enrich the semantic information of the feature,
we use SE-ResBlock in Residual block (SRiR) to extract
the deeper feature F;, of RCP.

3.2.3 Interactive Fusion Module

Although RCP has clearer structural information than the
rainy image, how to make full use of the RCP features to
guide the model is still a challenging task. One simple so-
lution is concatenating RCP features with image features
together. However, this is not effective to guide the model
deraining and may cause feature interference. To solve this
problem, we propose an interactive fusion module (IFM)
to progressively combine features together. As shown in
Fig. 5, two convolution with 3 x 3 kernel size to map the
rainy image feature F, and the RCP feature F, to F, and

Fp.

F, = Conv(F,), (7
F, = Conv(F,), ®)

__ Next, we calculate the similarity map S between .7?0 and
F, by using element multiplication to enhance the back-
ground information of the rainy image destroyed by the rain
streaks. Moreover, because the background of RCP is sim-
ilar to the rainy image, the similarity map S can also high-
light the feature information in the prior features, thereby
further strengthening the structure of the prior feature.
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Figure 5: The architecture of the propose Interactive Fusion
Module (IFM).

S = Sigmoid(F, ® .7?,,), )
Fi=8®F,, (10)
Fp=8®Fp, (11)

where F7 denotes the activated feature of F, and F; de-
notes the activated feature of J,,. Finally, the activated fea-
ture is add with the original feature and the output F of IFM
can be obtained by concatenating the features after addition:

Fo=Fi+Fo, (12)
Fp=F5+Fp, (13)
F= C’oncat(]?o,fp), (14)

3.2.4 Iterative Guidance Strategy

As shown in Fig. 6, with the improvement of image quality,
the extracted RCP also shows better results. Based on this
observation, we propose an iterative guidance strategy to
obtain a clearer RCP and replace the RCP of rainy images,
that is, a rain removal result 3,, can be obtained from the
W M LM, output feature F,, and the clearer structure of
prior P, can be get from the 5,,.

F = WMLM,(Fp, Pn;0n),
B, = Conv(F,), (15)
Ppi1 = REM(B,), if n=1,2,

where the 6,, represents the weights of WM LM,,, Conv
stands of the output convolution, RE'M means RCP extrac-
tion module, and n is the number oAf WMLM. In our pro-
posed model, n is set to 3. The F,, is input feature map
of the W M LM,,. Moverover, to enable the model to learn
richer features and generate better results, we leverage the
idea of Ensemble Learning to adopt the concat operation to
fuse the output features of the previous WMLM with the
current WMLM output feature.

3.3. Loss Function

We employ Lo loss as our objective function. As men-
tioned above, under the iterative update strategy, the model

(a) (b) (c)

Figure 6: Comparison between the RCP of rainy images
and the RCP of output results. (a) is rainy images, (b) is the
RCP of rainy images, and (c) is the RCP of output results.
It is obvious observed that the structure of RCP of output
results is more obvious than rainy images.

will output three results. Thus, the comprehensive loss
function of our proposed model can be formulated as:

2

c=y s 5

i=1,2,3. (16)

BZ-—B”

Where, BB denotes the rain-free image(GT) and B; denotes
output results in different stage.

4. Experiment and Discussions
4.1. Datasets

Synthetic Datasets: In our experiment, the Rain200L/H,
Rain800, and Rainl200 are used to validate our proposed
method. The Rain200L/H are proposed by Yang et al. [43],
which consists of 1800 training images and 200 test im-
ages. Zhang et al. [50] collect a synthetic dataset named
Rain800, which contains 700 training images and 100 test-
ing images. The Rainl200 [49] consists of rainy images of
different densities, including 12000 training sets and 1200
test sets.

Real-world Datasets: We use two real-word datasets to
analyze the performance of all methods. The first one is the
SPA-Data [38], which contains 638492 rainy/clear image
pairs for training and the second one is supplied by Zhang et
al. [50], which does not contain clear images.

Implementation Details: In our baseline, the number of
WMLM is set to 3 and the number of RCP extraction mod-
ule is set to 3. We use Adam optimizer with batch size of
16 and patch size of 128 x 128 for training on one NVIDIA
Titan Xp GPU. The learning rate is set to 5 x 10~* and we
train the model for 300 epochs for Rain200L/H, Rain800,
and Rainl200 datasets. For SPA-Data, we train the model
for 6 eopchs and the learning rate is set to 5 x 1074,
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. Rain200L Rain200H Rain800 Rain1200 SPA-Data
Methods Param Time

128 x 128 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
GMM[24] —_— 27.961s 28.66 0.8652 14.50 0.4164 2571 0.8020 25.81 0.8344 34.30 0.9428
DSC[27] — 7.947s 27.16 0.8663 14.73 0.3815 22.61 0.7530 24.24 0.8279 3495 0.9416
DDNI8] 0.06M  0.278s 34.68 09671 26.05 0.8056 25.87 0.8018 30.97 09116 36.16 0.9463
RESCAN[23] 0.15M  0.016s 36.09 09697 26.75 0.8353 26.58 0.8726 33.38 0.9417 38.11 0.9707
PReNet[31] 0.17M  0.012s 3770 09842 29.04 0.8991 27.06 0.9026 33.17 0.9481 40.16 0.9816

DCSFEN[34] 6.45M  0.253s 39.37 09854 29.25 09075 28.38 09072 34.31 0.9545 — —_—
DRDNet[6] 2.72M  0.069s 39.05 0.9862 29.15 0.8921 28.21 0.9012 34.02 09515 40.89 0.9784
RCDNet[37] 3.17M  0.068s 39.87 0.9875 30.24 0.9098 28.59 0.9137 34.08 0.9532 41.47 0.9834
SPDNet(Ours) 3.04M  0.055s 40.59 0.9880 31.30 0.9217 30.21 0.9152 34.57 0.9561 43.55 0.9875

Table 1: Quantitative experiments evaluated on four recognized synthetic datasets. The best and the second best results have
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RESCAN  PReNet

E=——t 11— | — L — L — | —
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DCSFN  RCDNet  SPDNet GT

Figure 7: Image deraining results tested in the synthetic datasets. The first row is rainy image, the output of different methods,
and GT. The second row is the zoom results of the red window. It is obvious that SPDNet can reconstruct rain-free image

with clearer structure.

RESCAN PReNet DRDNet DCSFN RCDNet SPDNet

NIQE| 3.7774 3.5891 3.8719 3.5326 3.5567 3.4603
PI} 2.8069 2.7045 2.8980 2.6427 2.6946 2.6254

Table 2: Performance comparison on real-world dataset. |
means the better methods should achieve lower score.

4.2. Comparison with the State-of-the-Arts
4.2.1 Synthesized Images

We compare our proposed method with the state-of-the-art
single image deraining methods. Following RCDNet [37],
we compute PSNR and SSIM in YCbCr space. Quantitative
results are shown in Table 1 and the processing time of each
method is an average time, which is calculated on 100 im-
ages of 128 x 128 size. It can be seen that SPDNet achieves
remarkable improvements over these state-of-the-art meth-
ods. This substantiates the flexibility and generality of our
proposed method in diverse rain types contained in these
datasets. Furthermore, from Table 1, SPDNet is not only
superior in performance but also superior to RCDNet [37]
and DCSEN [34] in terms of parameter and processing time.

Fig. 7 illustrates the deraining performance of all com-
peting methods on synthetic datasets. As shown, the de-
raining result of our proposed is better than that of other
methods in sufficiently removing the rain streaks and finely
recovering the image textures. For other comparison meth-

ods, they tend to blur the image textures, or still leave some
visible rain streaks.

4.2.2 Real-world Images

In order to demonstrate that our method is also applicable
in real-world scenarios, we compare with other methods on
SPA-Data and a real-world dataset. Table 1 compare the re-
sults on SPA-Data of all competing methods quantitatively.
As shown, it is easy to see that SPDNet achieves an evident
superior performance than other methods. Moreover, since
the real-world dataset supplied by Zhang et al. [50] does not
have the corresponding label, to validate the deraining per-
formance, we use two non-reference indicators(NIQE [28]
and PI [2]) to test the performance in this dataset. The
results are shown in Table 2. It is obvious that SPDNet
achieves the best results, which shows that SPDNet is not
only suitable for synthetic datasets but also can repair rain
in real-world scenarios. The visual results can be seen in
Fig. 8. The deraining result of SPDNet is better than other
methods, which finely recover the image textures and suffi-
ciently removing the rain streaks.

4.3. Ablation Study

Effectiveness of the number of WMLM: To validate
the influence of the number of WMLM on the performance,
we conduct ablation experiments, which are shown in Ta-
ble 4. When the number of WMLM is equal to 3, the
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Figure 8: Image deraining results tested in the real-world dataset. The first row is rainy image and the output of different

methods. The second row is the zoom results of the red window.

Method Fusion method Ensemble Rain200H
IFM Concat PSNR SSIM
w/o IFM v v 31.05 0.9167
w/o Ensemble v 30.98 09142
SPDNet v v 31.30 0.9217

Table 3: Ablation study on different settings of SPDNet on
Rain200H.

Numbers  PSNR SSIM Param Time
1 29.85 09006 0.98M  0.017s
2 30.90 09166 2.03M  0.039s
3 31.30 09217 3.04M  0.055s

Table 4: Explore the influence of different numbers of
WMLM on Rain200H. The time is the average run-time,
calculated on 100 image of 128 x 128 size.

PSNR/SSIM is the best, but it will take a longer time to
process the image. When the number of WMLM is equal to
1, the performance is the lowest, but compared with some
current methods, it is still better and the time consumed
is shorter, which shows that WMLM has a strong learn-
ing ability and may be able to serve real-time image rain
removal task in future.

Effectiveness of Basic Components: To prove the per-
formance of IFM and the impact of Ensemble(Sec. 3.2.4) on
performance, we use Concat operation to instead the IFM
and remove the Ensemble. The results are shown in Ta-
ble 3. SPDNet with IFM achieves significant performance
improvements over SPDNet without IFM, which demon-
strates that IFM is a more effective fusion method and can
benefit to reconstruct clearer rain-free images. Furthermore,
SPDNet with Ensemble outperforms SPDNet without En-
semble in PSNR and SSIM, which shows that the Ensemble
operation can enrich feature information so that the network
can learn more useful information.

Iteration = RCP Update  PSNR SSIM
0 30.56  0.9144
1 30.82 09161
2 v 31.04  0.9197
3 v 31.30  0.9217
3 31.12  0.9191

Table 5: Explore the influence of RCP on Rain200H. RCP
Update means whether to use the iterative guidance strat-
egy to update RCP and Iteration means the number of RCP
guidance.

Effectiveness of the number of RCP guidance and It-
erative Guidance Strategy: To demonstrate that RCP can
effectively assist SPDNet to generate rain-free images with
clearer structure, we conduct ablation experiments and the
results are shown in Table 5. As shown, when more RCP
guidance, the performance will be more superior. The vi-
sual comparison of different numbers of RCP guidance is
shown in Fig. 10. It is observed that methods with RCP
guidance can reconstruct clearer rain-free images with ac-
curate structures, which indicates that the effectiveness of
RCP in preserving structure. Moreover, to demonstrate the
performance of iterative guidance strategy, we use RCP of
rainy images to replace RCP of output results and the result
is shown in the 4th row of Table 5. It can be found that the
performance of the method that only uses RCP of rainy im-
ages is lower than SPDNet, which demonstrates that the ef-
fectiveness of iterative guidance strategy and clearer struc-
ture of RCP can reconstruct more high-quality images.

4.4. Application

To demonstrate that our proposed can benefit vision-
based applications, we employ Google Vision API to eval-
uate the deraining results, as shown in Fig. 9. Fig. 9 (a) il-
lustrates the object recognition result in the real-world rainy
image and Fig. 9 (b) shows the object recognition result in
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Figure 9: The deraining results are tested on the Google Vision API. a: object recognition result in the real-world rainy
image, b: object recognition result after deraining by our proposed model, and c: the averaged confidences in recognizing
rain from 30 sets of the real-world rainy images and output results of different methods. The lower averaged confidences, the

better performance of deraining.

Rainy DRDNet DCSFN RCDNet SPDNet
mAP-507 0.551  0.652 0.665 0.658 0.692

Table 6: The detection performance comparison on
COCO0350 dataset [16]. T means the better methods should
achieve higher score.

the output result of SPDNet. Comparing Fig. 9 (a) and (b),
the number of detections in our result is more, indicating
that SPDNet can effectively improve the performance of de-
tection and recognition. Furthermore, according to Deng et
al. [6], we use Google Vision API to detect the confidences
of rain in 30 sets of real-world rainy images and the results
of five methods, as shown in Fig. 9 (c¢). The confidence of
rain means that the probability of rainy weather. When con-
fidence is lower, the rain is more light, which shows that
the better deraining performance. As one can see, the confi-
dence in recognizing rain from the output results of SPDNet
is significantly reduced, which indicates that the derain-
ing performance of SPDNet outperforms other methods in
real-world datasets. Furthermover, we also use YOLOv3
to perform detection on COCO350 [16], as shown in Table
6(mAP-50 means the mAP at .5 IOU metric). Compared
with other models, the results generated by SPDNet ef-
fectively promote the detection performance, which further
demonstrates the effectiveness of our proposed SPDNet.

5. Conclusion

In this paper, we have proposed a Structure-Preserving
Deraining Network (SPDNet) with residue channel prior
guidance. To achieve this, an RCP guidance network and
an iterative guidance strategy are proposed for structure-
preserving deraining. Specifically, an effective WMLM is
proposed as the backbone to fully learn the background in-
formation. Meanwhile, the RCP is introduced as reference
information to guide the learning of WMLM, and IFM is
designed to make full use of the RCP information. In ad-
dition, based on an observation that the extracted RCP also

\
A\
\
Ay

)

A
.“

Iteration=2 Iteration=3 (SPDNet)

Figure 10: Comparison results on different numbers of RCP
guidance. Obviously, compared with the method without
RCP, the methods using RCR guidance can reconstruct the
high-quality image with a clear and accurate structure.

shows better results with the improvement of deraining im-
age quality, an iterative update strategy is proposed to im-
prove the accuracy of RCP and then re-guide the learning of
WMLM. The ablation study demonstrates the performance
of RCP, IFM, and iterative update strategy. Experimental re-
sults on several synthetic deraining datasets and real-world
scenarios have shown the great superiority of our proposed
SPDNet over other top-performing methods.
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