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Abstract

Deep learning has made tremendous success in com-
puter vision, natural language processing and even visual-
semantic learning, which requires a huge amount of la-
beled training data. Nevertheless, the goal of human-
level intelligence is to enable a model to quickly obtain
an in-depth understanding given a small number of sam-
ples, especially with heterogeneity in the multi-modal sce-
narios such as visual question answering and image cap-
tioning. In this paper, we study the few-shot visual-semantic
learning and present the Hierarchical Graph ATtention net-
work (HGAT). This two-stage network models the intra- and
inter-modal relationships with limited image-text samples.
The main contributions of HGAT can be summarized as
follows: 1) it sheds light on tackling few-shot multi-modal
learning problems, which focuses primarily, but not exclu-
sively on visual and semantic modalities, through better
exploitation of the intra-relationship of each modality and
an attention-based co-learning framework between modal-
ities using a hierarchical graph-based architecture; 2) it
achieves superior performance on both visual question an-
swering and image captioning in the few-shot setting; 3)
it can be easily extended to the semi-supervised setting
where image-text samples are partially unlabeled. We show
via extensive experiments that HGAT delivers state-of-the-
art performance on three widely-used benchmarks of two
visual-semantic learning tasks.

1. Introduction

Recently, significant progress has been made to various
applications in single modality, such as object detection and
machine translation, thanks to the advancing deep learning
technologies [15] including convolutional [26] and recur-
rent [18] neural networks. However, in order for an artifi-
cial intelligence (AI) system to understand the real world
around us, it requires not only the ability to memorize the
rich information contained in a single modality, such as vi-
sual signals (i.e., images and videos) and natural language
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(i.e., captions and questions), but also a joint comprehen-
sion in multiple modalities. This, in general, is called multi-
modal learning [5], and one typical example is the visual-
semantic learning. For instance, a smart cooking robot in
the kitchen is expected to make delicious dishes through un-
derstanding the recipe instructions as well as detecting and
selecting the right ingredients on the table. The robot can
hardly perform this task without the ability of either reading
the texts or seeing the objects.

Lots of methods have attempted to address the multi-
modal learning problems through dealing with visual-
semantic learning tasks, such as visual question answer-
ing [32, 56, 54] and image captioning [10, 49, 12]. While
these models are capable when massive human-annotated
data and extensive training time are available, a real AI sys-
tem should be able to quickly deliver an in-depth under-
standing using a small number of learning samples. The
ability of solving visual-semantic tasks with limited sam-
ples, termed as few-shot visual-semantic learning, turns out
to be challenging and critical for human-level intelligence.

Currently, for general few-shot learning problems, meta-
learning [29, 36, 52] has become a standard methodol-
ogy. Based on it, a few extensions have been recently
made for few-shot visual-semantic learning. Fast Parameter
Adaptation for Image-Text Modeling (FPAIT) [11] directly
applied Model-Agnostic Meta-Learning (MAML) [13], a
well-known meta-learning algorithm, to the few-shot visual
question answering and image captioning. Analogously, an-
other work [46] adopted a question answering model with
two meta-learning techniques, prototypical networks [42]
and meta networks [35]. Nonetheless, these attempts left
much to be desired in terms of their scope and performance.
Firstly and fundamentally, all these methods merely applied
existing meta-learning algorithms without explicitly consid-
ering the multi-modal nature, to which we paid careful at-
tention in this work. For example, Teney et al. [46] obtained
their model input through a simple element-wise produc-
tion between visual and semantic representations. Addi-
tionally, neither of them deal with the cases where labels
are partially unlabeled, which is categorized as the semi-
supervised learning setting. As labeling data can be ex-
pensive or even infeasible, semi-supervised learning is very
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Figure 1. Image-text samples for image captioning (left) and visual question answering (right).

common and of great value in practice, and it becomes more
severe when together with the few-shot setting.

For visual-semantic learning involving multiple modal-
ities, especially the cases with limited and partially unla-
beled image-text samples, it is vital to fully exploit the
potential visual-semantic relationships, such as the intra-
relationship of each modality (i.e., intra-modal relation-
ships) and the inter-relationship between different modal-
ities (i.e., inter-modal relationships). While the intra-modal
learning have been examined meticulously such as Multi-
modal DBMs [43], the inter-modal learning leaves more
space to explore and endows the model capacities to atten-
tively capture complementary information.

We take two examples in Figure 1 for illustration. For the
left-hand side image captioning example, both images con-
tain female tennis players with white outfit. Correspond-
ingly, the two ground-truth captions share the words “fe-
male”, “white”, and “tennis”. In this example, even some
words in the query caption are missing, the potential inter-
modal relationship and the information captured from the
visual modality can be used to supplement and strengthen
the semantic modality and complete the caption. For the
right-hand side visual question answering example, both the
left two images contain a computer on the desk, quite differ-
ent from the third image. Therefore, the predicted answer
of the middle image is likely to be fooled (e.g., computer)
by the visual similarity solely. Only if inter-relationship is
captured through exploiting modal mutual interactions, the
right visual clue can be distinguished from the distractors
with the help of the semantic information and lead to the
correct answer (i.e., white). While models based on Graph
Neural Networks (GNNs) [16, 41] have been used to cap-
ture relational structures [48, 14, 22] in few-shot learning,
they are incapable of jointly and subtly exploiting the intra-
and inter-modal relationship for few-shot visual-semantic
learning.

In this paper, to deal with the few-shot visual-
semantic learning tasks, we propose the Hierarchical Graph
ATtention network (HGAT). This two-stage network is able
to model the intra-modal relationships and the inter-modal
relationships with a few image-text samples and can be
extended to a semi-supervised setting. In the first stage,

visual-specific and semantic-specific GNNs are leveraged to
model the intra-relationship of images and texts (i.e., visual-
specific relationships and semantic-specific relationships),
respectively. To model the inter-relationship between the
visual and semantic modalities, an attention-based co-
learning framework is presented to guide the node feature
update of these GNNs. In the second stage, relation-aware
GNNs are used to predict the result of the query sample by
jointly learning visual representations, semantic represen-
tations, visual-specific relationships and semantic-specific
relationships. We perform extensive experiments on three
widely-used benchmarks, Toronto COCO-QA [40], Visual
Genome-QA [25] and COCO-FITB [11], which showed
that HGAT is a strong and effective model customized for
few-shot visual-semantic learning.

The superiority of our proposed method can be sum-
marized as follows: First, it sheds light on tackling few-
shot multi-modal learning problems, especially for few-
shot visual-semantic learning, a fairly new but critical set-
ting for human-level intelligence, through taking advantage
of the intra- and inter-modal relationships. Second, com-
pared with FPAIT and several few-shot learning methods,
it delivers state-of-the-art performance in terms of accu-
racy on both visual question answering and image caption-
ing in the few-shot setting. In addition, several ablation
experiments show the benefits of modeling of the visual-
specific and semantic-specific relationships, the attention-
based co-learning framework and the hierarchical graph-
based architecture. Finally, it can be easily extended to
the semi-supervised setting and delivers better performance
compared with the other two graph-based methods.

2. Related Work
Visual-Semantic Learning Visual-semantic learning
aims to build models that can process and relate the infor-
mation for both visual and semantic modalities. Generally
speaking, visual-semantic learning focuses on multimedia
description tasks, such as visual question answering and
image captioning. Various methods [1, 45, 55, 53] have
been proposed for visual question answering. Recently, a
multi-grained attention mechanism has been proposed [19]
to address the failed cases on small objects or uncommon
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concepts through learning word-object correspondence.
Image captioning [3, 20, 17, 7, 51] aims to generate a
natural language sentence to describe the image content.
A recent work [47] introduces a hierarchical framework
to explore both compositionality and sequentiality of
natural language. Nevertheless, most of the existing
visual-semantic learning works rely on a vast amount of
human-annotated training data, which is very expensive.
Conversely, the proposed model can deal with the cases
with limited (or even partially unlabeled) data samples.

Few-shot Learning Few-shot learning has recently at-
tracted extensive attention due to its superiority in learn-
ing with a few data samples. Mainstream approaches [44,
42, 50, 24, 28] on few-shot learning are based on similarity
comparison among data samples using representation learn-
ing. Another popular approach [2, 39, 34, 4, 6] is to develop
a meta-learner to optimize key hyper-parameters (e.g., ini-
tialization) of the learning model. A seminal work [13]
presents a model-agnostic meta-learner to optimize the ini-
tialization of a learning model. However, all the works
mentioned above focus only on the few-shot classification
tasks, without careful consideration for the more compli-
cated visual-semantic learning tasks, which involve mul-
tiple modalities. In this paper, we customize a model for
few-shot visual-semantic learning.

Graph Neural Networks The Graph Neural Networks
(GNNs) [16, 41] are used to deal with different types of
graphs. Graph Attention Networks [48] can specify dif-
ferent weights to neighboring nodes by leveraging masked
self-attentional layers. Additionally, GNNs can be em-
ployed for the few-shot classification problem. Garcia et
al. [14] defines a node-labeling framework to cast few-
shot learning as a supervised message passing task using
GNNs. In contrast, EGNNs [22] learn to predict the edge-
labels rather than the labels of nodes, and explicitly model
the intra-cluster similarity and inter-cluster dissimilarity.
Both GNNs and EGNNs can be extended to solve semi-
supervised problems, while our model obtains a better per-
formance on few-shot visual-semantic learning in the semi-
supervised setting.

3. Methodology
In this section, we describe first the general definition

and notations of visual-semantic learning, followed by its
few-shot setting. Finally, we present the details about the
proposed method.

3.1. Preliminaries

The general multi-modal problem aims to build models
that process and relate information from multiple modali-

ties [5]. We focus primarily, but not exclusively, on the vi-
sual and semantic modalities, and study the visual-semantic
learning problem by tackling the visual question answering
(VQA) and image captioning (IC) tasks. For VQA, given
an image I and a related question Q, we need to generate
a corresponding answer A. For IC, we follow the fill-in-
the-blank setting [11], attempting to fill in the blank A of a
given description Q for an image I. Note that both the ques-
tion/description Q and the answer/blank A are represented
in a natural language format. Regularly, A is picked from a
pre-defined set of different answers/labels. The traditional
VQA and IC tasks seek a model F, which can be a neural
network, to map the observations I,Q to the output A.

3.2. Problem Statement

In few-shot learning, given only a few training sam-
ples, the model is expected to be able to adapt to a new
task quickly. N -way K-shot problem settings are usually
used to measure few-shot learning methods. Take an N -
way K-shot VQA/IC task T with M queries as an exam-
ple: T consists of a support set S and a query set Q, on
which the model is learnt and evaluated respectively. S is
a set of N × K samples, containing K labeled image-text
pairs for each of N unique answers. Q contains another
M samples with the same answers as those in S . Formally
speaking, T = S ∪Q, where S = {(Ii,Qi,Ai)}N×K

i=1 and
Q = {(Ii,Qi,Ai)}N×K+M

i=N×K+1; The label space of task T
is defined as CT = {Ai}N×K

i=1 . We have A(n−1)×K+i =
A(n−1)×K+j for n = 1, · · · , N and 1 ≤ i, j ≤ K (i.e.,
|CT | = N ), with {Ai}N×K+M

i=N×K+1 ⊂ CT .

In this work, we use meta-learning [13] to define few-
shot visual-semantic learning problems, and it generally
consists of two phases, meta-training and meta-testing.
During the meta-training, a set of T tasks {Tt}Tt=1 are gen-
erated from a meta-training dataset Dmtr, and we develop
a method that takes as input the support sets {St}Tt=1 and
returns a model which minimizes the loss over the cor-
responding query sets {Qt}Tt=1. During the meta-testing,
another set of T ′ tasks {TT+t}T

′
t=1 are generated from a

meta-testing dataset Dmte, and for t = 1, · · · , T ′, we ex-
pect the trained model can learn quickly from the N × K
labeled image-text samples in the support set ST+t and de-
liver highly-accurate labels for samples from the query set
QT+t. Note that the labels used in meta-training and meta-
testing are mutually exclusive, i.e., Cmtr ∩ Cmte = ∅ where
Cmtr =

S
1≤t≤T CTt

and Cmte =
S

1≤t≤T ′ CTT+t
. See details

of the meta-training/testing in supplementary material.

Additionally, the problem can be extended to semi-
supervised learning if a portion of labels in all support sets
{St}T+T ′

t=1 are unknown. In Section 4.3, the effectiveness of
our model on semi-supervised setting will be presented.
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Figure 2. The architecture of Hierarchical Graph Attention Network. A 4-way 1-shot problem with one query sample (N = 4, K = 1,
M = 1) is presented for simplicity. GNN nodes with solid line (Nodes 2-5) correspond to the samples from the support set S, and nodes
with dashed line (Node 1) correspond to the samples from the query set Q. Dotted arrows between GNN layers represent node inheritances.

3.3. Hierarchical Graph Attention Network

This section describes the architecture of the Hierarchi-
cal Graph Attention Network (HGAT) as shown in Figure 2.

3.3.1 Image and Text Embedding

To capture and preserve useful visual and semantic repre-
sentations, we resort to modality-specific deep networks on
image and text inputs. The neural networks for both image
embedding and text embedding, i.e., ϕ(·;θϕ) and ψ(·; θψ),
are jointly trained with other modules of HGAT. See more
details of the model architecture for image embedding and
text embedding in supplementary material.

3.3.2 Graph Construction for Modal-specific GNNs

For each task T , given the visual and semantic represen-
tations (extracted from the image and text embedding neu-
ral networks respectively) of all the image-text samples, we
construct two graphs, the visual-specific GNNs (with blue
nodes in Figures 2 and 3) and the semantic-specific GNNs
(with red nodes), respectively. As shown in Figure 2, in
Stage-1 of HGAT, both of the visual-specific and semantic-
specific GNNs are two-layer GNNs. Each GNN layer con-
tains N × K + M fully-connected nodes, and each node
corresponds to an image-text sample from either the sup-
port set or the query set.

For each sample (Ii,Qi,Ai), the feature vector of its cor-
responding node in the first layer of GNNs (V1

i and S1
i ) is

initialized as the concatenation of its visual or semantic rep-
resentation and the one-hot encoding of its label.

V1
i = [ϕ(Ii;θϕ)||h(Ai)] (1)

S1
i = [ψ(Qi;θψ)||h(Ai)] (2)

where || denotes vector concatenation operation, and
h(Ai) ∈ [0, 1]

N represents the one-hot encoding of the
label Ai. For any image-text sample (Ii,Qi,Ai) from the
query set Q or with unknown labels in the semi-supervised
setting, we set h(Ai) to be a zero vector 0N instead.

For each node in the lth layer (l > 1), its feature vector
is a concatenation of features inherited from its correspond-
ing node in previous layer (Vl−1

i or Sl−1
i ) and an updated

feature vector (Vl
i or Sl

i) computed via the attention-based
co-learning described in the following section.

3.3.3 Attention-based Co-learning Framework

Each layer of the two modal-specific GNNs conducts as-
sociated node feature update in the proposed attention-
based co-learning framework. For the node feature up-
date in the lth layer (l = 1, 2), the inputs are two sets
of nodes {Vl

i}N×K+M
i=1 , Vl

i ∈ RF l
V and {Sl

i}N×K+M
i=1 ,

Sl
i ∈ RF l

S , and the outputs are two updated sets of nodes
{Vl+1

i }N×K+M
i=1 , Vl+1

i ∈ R2F l′
V and {Sl+1

i }N×K+M
i=1 ,

Sl+1
i ∈ R2F l′

S , where F l
V , 2F l′

V , F l
S , and 2F l′

S represent the
number of input and output feature channels of each node
in the two modal-specific GNNs, respectively.

As an initial step, two shared learnable linear transfor-
mations, parametrized by Wl

V ∈ RF l′
V ×F l

V and Wl
S ∈

RF l′
S ×F l

S , are applied to the two sets of nodes. Then, for
each modal-specific GNN layer, a shared attentional mech-
anism a is performed for each pair of nodes to compute the
attention coefficients elVij

∈ R and elSij
∈ R.
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Figure 3. An illustration of the attention-based co-learning framework for one GNN layer. For simplicity, a 4-way 1-shot problem with one
query sample (N = 4, K = 1, M = 1) is presented as an example. Nodes with solid line (Nodes 2-5) represent the samples from the
support set S, and nodes with dashed line (Node 1) represent the samples from the query set Q. A two-dimensional attention is computed
for each pair of nodes, to capture their relationship of the visual and semantic modalities, respectively. For simplicity, only half of the
attentions (within the dotted triangles) are depicted in the node feature update.

elVij
= a(Wl

V Vl
i,Wl

V Vl
j) = LReLU

�
al
V

⊤ h
Wl

V Vl
i||Wl

V Vl
j

i�

(3)

elSij
= a(Wl

SSl
i,Wl

SSl
j) = LReLU

�
al
S

⊤ h
Wl

SSl
i||Wl

SSl
j

i�

(4)

where elVij
and elSij

indicate the importance of node Vl
j

to node Vl
i in the visual-specific GNN and that of node

Sl
j to node Sl

i in the semantic-specific GNN, respectively.
LReLU denotes the Leaky Rectified Linear Unit [33] func-
tion. alV ∈ R2F l′

V and alS ∈ R2F l′
S both serve as learnable

weight vectors, and a⊤ represents the transpose of a. The
attentions αl

Vij
∈ R and αl

Sij
∈ R are obtained by normal-

izing the attention coefficients using the softmax function.

αl
Vij

= softmax(elVij
) =

exp(elVij
)

PN×K+M
k=1 exp(elVik

)
(5)

αl
Sij

= softmax(elSij
) =

exp(elSij
)

PN×K+M
k=1 exp(elSik

)
(6)

where αl
Vij

and αl
Sij

represent the attentions of the visual
modality (blue-hue square matrix in Figure 3) and those of
the semantic modality (red-hue square matrix), respectively.
The values of αl

Vij
and αl

Sij
are expected to be positively

correlated.

Once obtained, both attentions are shared by the associ-
ated node feature update of the two modal-specific GNNs.
For example, the attentions of visual modality not only
serve for the node feature update of the visual-specific
GNNs but also utilize the relationship on visual modality to
refine the semantic-specific GNNs. Analogously, the atten-
tions of semantic modality are also helpful to both semantic-
specific and visual-specific GNNs.

Vl+1
i = ELU

 
N×K+MX

j=1

αl
Vij

Wl
V Vl

j ||
N×K+MX

j=1

αl
Sij

Wl
V Vl

j

!

(7)

Sl+1
i = ELU

 
N×K+MX

j=1

αl
Vij

Wl
SSl

j ||
N×K+MX

j=1

αl
Sij

Wl
SSl

j

!

(8)

where αl
Vij

and αl
Sij

form the two-dimensional attention be-
tween each pair of nodes in both modal-specific GNNs and
ELU denotes the Exponential Linear Unit [9] function.

Based on the attentions shared by the visual and seman-
tic modalities, the associated node feature update is con-
ducted, and the inter-modal relationships are modeled under
the attention-based co-learning framework. Note that while
the basic attention mechanism used here follows the Graph
Attention Network [48], our proposed attention-based co-
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learning framework is agnostic to the particular choice of
attention mechanism.

3.3.4 Relation-aware GNNs

The layerwise outputs of the modal-specific GNNs, i.e.,
{Vl+1

i }N×K+M
i=1 and {Sl+1

i }N×K+M
i=1 for l = 1, 2, ex-

tracting the hierarchical features with intra-relationship and
inter-relationship from both the visual and semantic modal-
ities, are further exploited by the relation-aware GNNs in
Stage-2 of HGAT.

We construct the relation-aware GNNs with N×K+M
nodes in each layer, which share similar structure with the
modal-specific GNNs but also take the relationships ob-
tained in Stage-1 for the feature initialization of each node.
To be more specific, for the node feature update in the lth
layer (l = 1, 2, 3), the inputs is a set of nodes {Rl

i}N×K+M
i=1 ,

Rl
i ∈ RF l

R and the outputs are an updated set of nodes
{Rl+1

i }N×K+M
i=1 , Rl+1

i ∈ RF l′
R where F l

R, F l′
R represent the

number of input and output feature channels of each node
in the relation-aware GNNs, respectively. The input to the
first layer R1

i is the concatenation of the visual and seman-
tic embeddings, the one-hot encoding of the label, and the
multi-modal features obtained in Stage-1.

R1
i =

�
ϕ(Ii;θϕ)||ψ(Qi;θψ)||h(Ai)||V2

i ||V3
i ||S2

i ||S3
i

�
(9)

The input to the lth layer (l > 1) is a concatenation of
features inherited from its corresponding node in previous
layer Rl−1

i and an updated feature vector Rl
i, which is com-

puted in a similar way to the modal-specific GNNs. First,
the attention coefficient elRij

∈ R indicating the importance
of node Rl

j to node Rl
i is calculated.

eRl
ij

= a(Wl
RRl

i,Wl
RRl

j) = LReLU
�

al
R

⊤ h
Wl

RRl
i||Wl

RRl
j

i�

(10)

where Wl
R ∈ RF l′

R ×F l
R and alR ∈ R2F l′

R are learnable pa-
rameters. Then the attentions are computed by normalizing
the attention coefficients using softmax function.

αl
Rij

= softmax(elRij
) =

exp(elRij
)

PN×K+M
k=1 exp(elRik

)
(11)

Afterwards, the attentions are used to compute the up-
dated node features through a linear combination of the cor-
responding features, followed by a non-linearity activation.

Rl+1
i = ELU




N×K+MX

j=1

αl
Rij

Wl
RRl

j


 (12)

Finally, to get the final prediction of the ith sample from
HGAT, we set the last output dimension F 3′

R to N , and use
softmax(R4

i ) ∈ [0, 1]
N as the confidence score vector over

the N answers. The predicted label is Âi = argmaxnR4
i,n,

where R4
i,n is the nth element of R4

i and 1 ≤ n ≤ N .

3.4. Training HGAT

Given a set of T tasks in the meta-training phase, the
learnable parameters of the proposed HGAT, θϕ ∪ θψ ∪
{Wl

V ,Wl
S , al

V , al
S}2l=1 ∪ {Wl

R, al
R}3l=1, are trained in an

end-to-end manner by minimizing the following loss func-
tion over the task set.

L =
1

TM

X

T ∈{Tt}T
t=1

N×K+MX

i=N×K+1

Lc(Ai, Âi) (13)

where Lc is defined as the cross-entropy loss, Ai and Âi

represent the ground truth answer and the predicted answer
of the image-text samples from the query set Q.

4. Performance Evaluation
We employed three compelling benchmarks, Toronto

COCO-QA [40], Visual Genome-QA [25] and COCO-
FITB [11] to evaluate the proposed HGAT on two typical
visual-semantic learning tasks, visual question answering
(VQA) and image captioning (IC).

4.1. Benchmark Datasets

Benchmark TC-QA VG-QA COCO-FITB

Task VQA VQA IC

#Pair Meta-training 57,834 554,795 181,844
Meta-testing 13,965 136,473 34,919

#Class Meta-training 256 244 159
Meta-testing 65 82 43

Table 1. Statistics on the three benchmark datasets. (TC-QA:
Toronto COCO-QA; VG-QA: Visual Genome-QA.)

Table 1 shows the statistics on the three benchmark
datasets for few-shot VQA and few-shot IC tasks. See
more details of the three benchmark datasets, including pre-
processing, in supplementary material.

4.2. Experimental Setup

Few-shot setup Following the common setup in few-shot
learning [13, 42], for each task T of N -way K-shot learn-
ing, we set N ∈ {5, 10}, K ∈ {1, 5} and M = 1. Take
a 10-way 5-shot VQA task for example: given 10 different
answers, each answer has 5 labeled image-question pairs,
and these 50 samples serve as the support set to predict
the result out of the 10 answers for the 1 unlabeled image-
question pair from the query set. Therefore, we can evaluate
both VQA and IC tasks in terms of the standard classifica-
tion accuracy.

Implementation details In the meta-training phase, the
proposed model was trained with Adam optimizer [23] with
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Method
Toronto COCO-QA Visual Genome-QA COCO-FITB

5-way accuracy 10-way accuracy 5-way accuracy 10-way accuracy 5-way accuracy 10-way accuracy
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FPAIT 59.38 71.92 45.11 60.20 75.49 79.12 61.66 67.62 60.13 70.88 47.10 59.31
FPAIT+CLT 60.61 72.17 46.37 60.92 75.05 79.28 60.82 67.48 61.01 71.13 47.79 60.91

Prototypical Net 60.12 71.72 45.31 59.67 75.43 80.33 62.32 67.23 60.56 71.16 47.52 59.38
Relation Net 61.75 71.89 45.60 60.13 77.21 80.72 63.14 68.10 61.35 71.68 47.92 59.55

R2D2 61.83 72.60 47.13 59.36 77.44 81.08 64.71 71.55 60.87 71.60 47.73 59.33
DN4 62.60 74.12 47.68 60.44 78.33 84.25 64.92 71.20 62.09 73.62 48.57 60.82
GNN 61.42 72.55 46.35 58.95 76.72 81.43 63.19 68.65 61.85 72.70 48.14 59.86

EGNN 62.21 73.41 46.99 60.01 77.67 83.26 64.07 70.87 62.67 72.98 48.22 60.13

HGAT 63.13 75.41 48.10 61.50 79.56 86.10 66.62 72.13 63.36 74.14 49.26 61.31
Table 2. Comparison of accuracy on Toronto COCO-QA, Visual Genome-QA, and COCO-FITB.

an initial learning rate of 1 × 10−3 and weight decay of
1×10−6. The task mini-batch sizes were set to 128, 32, 64,
and 16 for 5-way 1-shot, 5-way 5-shot, 10-way 1-shot, and
10-way 5-shot, respectively. Our code was implemented in
PyTorch [37] and run with NVIDIA Tesla P100 GPUs.

Baselines FPAIT [11] directly leverages MAML [13]
to deal with few-shot VQA and IC tasks; Prototypical
Net [42], Relation Net [44], R2D2 [6], and DN4 [28] focus
on few-shot classification. GNN [14] and EGNN [22] are
two GNN-based few-shot classification models. None of
these algorithms, including MAML, has paid any attention
to the few-shot visual-semantic learning, but it is noting that
all of them can be extended to tackle few-shot VQA and IC
as few-shot classification tasks. See implementation details
of baseline methods in supplementary material.

4.3. Experimental Results

Results on the three benchmarks are shown in Table 2,
and we can make the following observations:

1) HGAT outperforms all baselines in terms of classifi-
cation accuracy in all settings. Concretely, in the case of
5-way 5-shot VQA on Toronto COCO-QA, HGAT gives
a accuracy of 75.41%, excelling the second best by 1.29
percentage points, which indicates that the modeling of the
intra- and inter-modal relationships using the hierarchical
graph-based structure can lead to consistent advantages on
few-shot visual-semantic learning. Similar trends can be
observed for other test cases and benchmark datasets.

2) Among the graph-based methods, our HGAT brings
noticeable improvements over GNN and EGNN. For exam-
ple, when few-shot VQA is conducted on Visual Genome-
QA, HGAT obtains classification accuracies of 79.56%,
86.10%, 66.62% and 72.13% in the four test cases, respec-
tively, which are 1.89%, 2.84%, 2.55% and 1.26% higher
than those of EGNN. Similar improvements can be ob-
served regarding GNN. Although GNN and EGNN utilize
the pairwise relationships of nodes, the intra-relationship of

each modality, as well as the inter-relationship between dif-
ferent modalities, have not been fully exploited.

To further justify the superiority of HGAT for the few-
shot visual-semantic learning tasks, experimental compar-
isons have been expanded to standard VQA and IC meth-
ods that are not specifically designed for few-shot learn-
ing, including HCA [31], SAAA [21], and CNN+TCN [11].
Please see the details in supplementary material.

4.4. Ablation Studies

Case S1 S2 VR SR AC 5-way accuracy 10-way accuracy
1-shot 5-shot 1-shot 5-shot

1 ✓ 76.10 82.14 63.99 66.30
5 ✓ ✓ ✓ ✓ 77.47 83.26 64.90 70.03
6 ✓ ✓ ✓ 77.55 84.01 63.77 69.26
7 ✓ ✓ ✓ 78.14 83.88 64.23 68.61
8 ✓ ✓ ✓ ✓ 78.86 84.55 65.21 70.06

9 ✓ ✓ ✓ ✓ ✓ 79.56 86.10 66.62 72.13
Table 3. Ablation studies on Visual Genome-QA. (S1: Stage-1;
S2: Stage-2; VR: Visual Relations; SR: Semantic Relations; AC:
Attention-based Co-learning; Please see the full table in supple-
mentary material.)

To validate the superiority of the proposed HGAT, sev-
eral ablation experiments were conducted based on Visual
Genome-QA for few-shot VQA. The following observa-
tions are made based on Table 3:

1) HGAT conducts separate exploitation of the intra-
relationship of each modality, which can lead to better per-
formance. Compared with Case-1, where no intra-modal
relationships are exploited, there exists a jump on accuracy
when the visual-specific relationships are modeled in Case-
6. A similar improvement can be observed in Case-7, where
semantic-specific relationships are modeled. Moreover, an
additional gain can be noticed if both visual- and semantic-
specific relationships are exploited in Case-8.

2) To validate the effectiveness of the attention-based co-
learning framework, the experiment is conducted in Case-
9, which achieves 0.70%, 1.55%, 1.41% and 2.07% im-
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provements over Case-8. Note that the attention-based
co-learning can only be achieved when both visual- and
semantic-specific GNNs are leveraged in Stage-1.

3) The relation-aware GNNs in Stage-2 can deliver an
additional performance gain on few-shot visual-semantic
learning. For instance, compared with Case-5, where the
relation-aware GNNs are replaced by fully-connected neu-
ral networks for label prediction, Case-9 brings up improve-
ments of 2.09%, 2.84%, 1.72% and 2.10% on accuracies.

4) It should be noted that the Case-1 with only Stage-2
represents a 3-layer GNNs, and the initial feature of each
node is the concatenation of the corresponding visual and
semantic representations as well as the one-hot encoding of
label. Case-1 performs comparably with the graph-based
methods, GNN and EGNN as expected.

Moreover, for experimental analysis about the number of
GNN layers, please refer to the supplementary material.

4.5. Semi-supervised Few-shot Learning

Toronto COCO-QA 5-way 5-shot accuracy
40% 60% 80% 100%

GNN-LabeledOnly 64.62 67.30 70.31 72.55
GNN-Semi 66.04 68.44 71.48 72.55

EGNN-LabeledOnly 65.86 69.08 71.57 73.41
EGNN-Semi 67.18 69.92 72.61 73.41

HGAT-LabeledOnly 66.09 69.83 73.12 75.41
HGAT-Distractor 64.25 68.94 73.01 75.41

HGAT-Semi 67.16 70.78 73.95 75.41
Table 4. Comparison of semi-supervised learning results on
Toronto COCO-QA for few-shot visual question answering.

Table 4 presents the comparisons of semi-supervised
learning among HGAT, GNN, and EGNN. Experiments are
conducted on the 5-way 5-shot VQA on Toronto COCO-
QA, and results are presented when 40%, 60%, 80% of
the image-text samples are labeled. Note that the labeled
samples are balanced among the 5 classes. Take the 40%
case for example, for a task, each of the class contains 2
labeled samples and 3 unlabeled samples from the support
set. ‘LabeledOnly’ is equivalent to the supervised few-shot
setting, where only the labeled support samples are used.
For instance, the 5-way 5-shot 40% VQA with ‘Labele-
dOnly’ is equivalent to the 5-way 2-shot VQA. ‘Semi’ de-
notes the semi-supervised few-shot setting, where all the
support samples are used, regardless of whether they are la-
beled. In addition, ‘Distractor’ means the unlabeled support
samples are randomly sampled from other classes instead of
the 5 classes of the labeled support samples.

Besides, each of the three methods can acquire notice-
able improvements when semi-supervised learning is per-
formed compared with ‘LabeledOnly’ which demonstrates
the unlabeled support samples can contribute to the learning
in a few-shot setting. Moreover, for the proposed HGAT,

the ‘Distractor’ leads to a minor performance degradation
for each case compared with ‘LabeledOnly’. This obser-
vation clearly shows that only the unlabeled samples from
the classes of interest can contribute to the few-shot visual-
semantic learning. Notably, for semi-supervised few-shot
visual-semantic learning, the HGAT consistently outper-
forms the GNN and EGNN, except the 40% case, where
HGAT achieves a comparable accuracy given by EGNN.

4.6. Visualization

Figure 4. Attention visualizations of the 3rd layer in the relation-
aware GNNs for 5-way 1-shot VQA on Visual Genome-QA.
Dark/light color denotes higher/lower values. See more visual-
ization samples in supplementary material.

Figure 4 shows the computed attentions for a 5-way 1-
shot VQA task sampled from the meta-testing set. The left
and right square matrix represent the attentions before and
after the meta-training, respectively. We can notice that the
attention between the query sample and the third support
sample is larger than other off-diagonal attentions, which
implies a stronger correlation between these two samples.
Though the “apple” trademark, which is the decisive clue,
occupies only a small portion of both images, HGAT can
still associate the query to the support sample within the
same class and give the correct answer.

5. Conclusions
This paper, through introducing Hierarchical Graph

ATtention network (HGAT), presents a novel method for
few-shot visual-semantic learning. Comprehensive exper-
iments have been conducted on the widely-used Toronto
COCO-QA, Visual Genome-QA and COCO-FITB bench-
marks. The extensive experimental results have shown
that 1) HGAT delivers the state-of-the-art performance in
terms of accuracy on both few-shot VQA and IC tasks com-
pared with few-shot learning and standard (non-few-shot)
methods; 2) It sheds light on tackling the few-shot multi-
modal learning problems, especially for the few-shot visual-
semantic learning tasks, through hierarchical exploitation
and co-learning of the multiple modalities. 3) It can be
easily extended to the semi-supervised setting, outperform-
ing other few-shot visual-semantic learning baselines in the
semi-supervised setting.
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