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Abstract

In multi-object detection using neural networks, the
fundamental problem is, “How should the network learn
a variable number of bounding boxes in different input
images?”. Previous methods train a multi-object detec-
tion network through a procedure that directly assigns the
ground truth bounding boxes to the specific locations of
the network’s output. However, this procedure makes the
training of a multi-object detection network too heuristic
and complicated. In this paper, we reformulate the multi-
object detection task as a problem of density estimation of
bounding boxes. Instead of assigning each ground truth to
specific locations of network’s output, we train a network
by estimating the probability density of bounding boxes in
an input image using a mixture model. For this purpose,
we propose a novel network for object detection called
Mixture Density Object Detector (MDOD), and the cor-
responding objective function for the density-estimation-
based training. We applied MDOD to MS COCO dataset.
Our proposed method not only deals with multi-object de-
tection problems in a new approach, but also improves de-
tection performances through MDOD. The code is avail-
able: https://github.com/yoojy31/MDOD.

1. Introduction

Multi-object detection is the task of finding multiple ob-
jects through bounding boxes with class information. Since
the breakthrough of the deep neural networks, multi-object
detection has been extensively developed in terms of com-
putational efficiency and performance, and is now at a level
that can be used in real life and industry.

Unlike image classification and sementic segmentation
tasks, multi-object detection has a variable number of
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bounding boxes as targets. In this aspect, the fundamen-
tal problem in training a multi-object detection network
is, “How should the network learn a variable number of
bounding boxes in different input images?”

As an answer to this question, instead of directly mod-
eling a variable number of bounding boxes, methods have
been developed to learn a variable number of bounding
boxes by discretizing the bounding box space and directly
assigning the ground truth to the network’s output. These
methods have become the mainstream of training multi-
object detection networks.

Figure 1 shows the training procedure of these meth-
ods. First, the matching algorithm compares each ground
truth bounding box with each reference point such as an an-
chor box or a center, and determines whether they match or
not. Second, as a result of the matching algorithm, the net-
work output corresponding to the reference point location
matched with the ground truth bounding box is extracted as
the assignment location. Third, targets (e.g. displacements,
classes) for each assigned location of output are generated.
Finally, the assigned location is trained by the generated tar-
get through the objective function. Here, the unassigned lo-
cations are considered background areas, and are not trained
by the coordinate of the ground truth bounding box.

However, in order to successfully train a multi-object de-
tection network through this procedure, thoughtful consid-
eration for each step is required. First, in both the localiza-
tion and the classification, the steps to assign each ground
truth to the network’s output are needed to learn the coor-
dinates of the ground truth bounding box. In these steps,
a matching algorithm and the reference points such as an-
chor boxes are important, since the ground truth are only
assigned to the locations determined by the matching result.
Second, in the classification, there exists a severe imbal-
ance between foreground and background. By the match-
ing result, assigned locations are trained as corresponding
ground truth classes regarded as foreground, but unassigned
locations are trained as the background class. Generally,
unassigned locations outnumber the assigned ones. This
foreground-background imbalance problem makes training
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Figure 1: (a) The conventional training procedure that directly assigns the ground truths to specific locations of the network’s
output.(b) Our proposed density estimation-based training that learns bounding box distribution.

difficult. To alleviate this problem, separate process such as
heuristic sampling [17, 25] or focal loss [15] is required.
Third, some hyper-parameters and hand-crafted compo-
nents make the detection performance sensitive. For exam-
ple, design of anchor boxes [24, 22], matching algorithm
[28], and hyper-parameters of the focal loss [15] sensitively
affect the detection performance. This sensitivity increases
the cost of training a multi-object detection network.

In this paper, our goal is to propose a novel method to
reduce the complex processing and heuristics for training
multi-object detection network. To this end, we reformu-
late the multi-object detection task as a density estimation
of bounding boxes (See Fig. 1). Our proposed multi-object
detection network, Mixture-Density-based Object Detector
(MDOD), predicts the distribution of bounding boxes for
an input image using a mixture model of components con-
sisting of continuous (Cauchy) and discrete (categorical)
probability distribution. For each component of the mix-
ture model, the continuous Cauchy distribution is used to
represent the distribution of the bounding box coordinates
(left, top, right and bottom) and the categorical distribu-
tion is used to represent the class probability of that box.
For localization, the MDOD is trained to maximize the log-
likelihood of the estimated parameters for the mixture of
Cauchy (MoC) given the ground truth bounding boxes of
input images. For classification, to include the background
class into the learning process, we propose to use region of
interest (RoI) sampling for obtaining RoIs, but, the RoIs are
stochastically sampled from the estimated MoC, and not ob-
tained heuristically. The log-likelihood of the sampled RoIs
is maximized instead of that of the ground truth. The con-
tributions of the proposed method are threefold as the fol-
lowing:

1. Unlike the previous methods, we reformulate the multi-
object detection task as a density estimation of bounding
boxes for an input image. Through this novel approach, the
complex processings and heuristics in the training of multi-
object detection can be reduced.

2. We estimate the density of bounding boxes using a mix-
ture model consisting of continuous (for the location) and
discrete (for the class) probability distribution. To this end,
we propose a new network architecture, MDOD, and the
objective function for it.

3. We measured the detection performance and speed of our
proposed method on MS COCO. In some primary evalua-
tion results, MDOD outperforms the previous detectors in
both terms of detection performance and speed.

2. Related Works

In most modern multi-object detection methods, the
ground truth bounding boxes must be assigned to the net-
work’s output based on reference points such as anchor
boxes or center locations. Faster R-CNN [24] attempts
to represent the space in which a box can exist on an
image as much as possible by using a large number of
anchor boxes having various scales and aspect ratios. A
ground truth bounding box is assigned to an anchor box
if the intersection over union (IoU) between this anchor
box and the ground truth bounding box is above a thresh-
old. In later studies, the use of anchor boxes became a
standard. [17, 7, 21]. To design an anchor box, most of
methods inherit the shape heuristically found in previous
studies. YOLOv2 [22] and YOLOv3 [23] find the opti-
mal anchor boxes through K-means clustering. However, a
large number of anchors worsens the so-called foreground-
background imbalance problem, since the unassigned back-
ground anchor boxes outnumber the assigned foreground
ones, which makes training difficult. Also, a careful design
of the anchor is required as the scale and aspect ratio of
the anchor affect detection performance much. To alleviate
the foreground-background imbalance problem, Hard nega-
tive mining [17] and OHEM [25] sample the negative RoIs
(Region of Interests) with a high loss. Focal Loss [15] tack-
les this problem by concentrating on the loss of hard ex-
amples. However, it has the hyperparameters that should
be heuristically searched. Recently, studies not using an-
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chors have been conducted. [27] learn ground truth bound-
ing boxes based on the center location instead of anchor
boxes. [12, 5, 32] use the keypoint-based method used in
pose estimation. They learn the keypoints of the bounding
boxes in the form of heatmaps. However, these methods still
directly assign the ground truths to specific locations of net-
work’s output and use focal loss to alleviate the foreground-
background imbalance problem.

On other hand, there are studies dealing with matching
algorithm. [28] argues that what is important is how to as-
sign the ground truth bounding boxes, not the anchor box
shapes, and proposes an adaptive method that automati-
cally divides positive and negative samples. [30] points out
that the IoU-based hand-crafted assignment is a problem.
It learns the matching between a ground truth bounding
box and an anchor through maximum likelihood estima-
tion. However, this only learns matching weights and it still
needs to construct the hand-crafted bag of anchors based on
IoU.

In the previous studies, the concept of probability
distribution in multi-object detection is mainly used to
express the uncertainty of bounding box coordinates.
For each predicted RoI (roik), [9] modeled a bounding
box coordinate prediction (bicoord) as a Gaussian distri-
bution to estimate p(bicoord|roik, image). [4] estimated
the density of a specific bounding box coordinate for
a specific anchor (anchork) as a Gaussian distribution:
p(bicoord|anchork, image) ∼ N .

In this paper, we perform multi-object detection by learn-
ing the distribution of bounding boxes (b) for an image us-
ing a mixture model, i.e. we estimate p(b|image). Unlike
the previous methods mentioned above, our MDOD does
not require to directly assign the ground truth bounding
boxes to the specific locations of the network’s output.

3. Problem Formulation: Mixture Model for
Object Detection

The bounding box b can be represented as a vector con-
sisting of four coordinates (position) bp for the location
(left-top and right-bottom corners) and an one-hot vector
bc for the object class. In the problem of multi-object detec-
tion, the conditional distribution of b for an image may be
multi-modal, depending on the number of objects in an im-
age. Therefore, our object detection network must be able
to capture the multi-modal distribution. We propose a new
model MDOD that can estimate the multi-modal distribu-
tion by extending the mixture density network [1] for ob-
ject detection. MDOD models the conditional distribution
of b for an image using a mixture model whose components
consist of continous and discrete probability distribution,
which respectively represents the distribution of bounding
box coordinates and the class probability. In this paper, we
use the Cauchy distribution as a continuous distribution and

Figure 2: The pdfs of Gaussian and Cauchy distribution.
Because of the limited precision of the floating point, for
Gaussian, p(x) = 0 for |x| > 7.202, i.e. underflow in log-
likelihood calculation.

the categorical distribution as a discrete distribution. The
probability density function (pdf) of this mixture model is
defined as follows:

p(b|image) =

K∑
k=1

πkF(bp;µk, γk)P(bc; pk). (1)

Here, F denotes the pdf of Cauchy1, and P denotes the
probability mass function (pmf) of categorical distribution.
The parameters µk, γk, and πk are the location, scale,
and, mixing coefficient of the k-th component. The C-
dimensional vector pk is the probability for C classes. The
Cauchy distribution represents the four-coordinates of the
bounding box bp = {bl, bt, br, bb}. To prevent the model
from being overly complicated, we assume that each dimen-
sion of the bounding box coordinates is independent from
the others. Thus, the pdf of Cauchy for the bounding box
coordinates can be factorized as follows:

F(bp|image) = F(bl;µk,l, γk,l)×F(bt;µk,t, γk,t)

×F(br;µk,r, γk,r)×F(bb;µk,b, γk,b).
(2)

The objective of the MDOD is to accurately estimate the
parameters of the mixture model by maximizing the log-
likelihood of the ground truth bounding box b, as follows:

θ = argmax
θ

Eb∼pdata(b|image) log p(b|image; θ). (3)

Here, pdata(b|image) is the empirical distribution of b for a
given an input image and θ is the parameter vector that in-
cludes mixture parameters (µk, γk, πk) and the class prob-
ability pk.
Cauchy vs. Gaussian: Gaussian distibution is one of the
representative continous probability distribution. But, the
likelihood of Gaussian distribution decreases exponentially

1F(x;µ, γ) = 1
π

γ
(x−µ)2+γ2 , where µ is the location parameter and

γ is the scaling parameter.
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Figure 3: The architecture of MDOD. The parameters of the mixture model (µ, γ, p, and π) are predicted by MDOD. The
network produces its intermediate output (o1 - o4) from each feature-map of the feature-pyramid.

as the distance from µ increases. Therefore, even if the pre-
dicted coordinate is slightly far away from the ground truth,
underflow may arise due to the limited floating point preci-
sion in the actual implementation. It causes the problem that
the likelihood becomes zero and the loss can not be back-
propagated. On the other hand, as can be seen in Fig. 2, the
Cauchy distribution has a heavier (quadratically decreasing)
tail compared to the Gaussian distribution. Thus, there is
much lesser chance of the underflow problem.

4. Mixture Density Object Detector (MDOD)
4.1. Architecture

Fig. 3 shows the architecture of MDOD. The network
outputs o1, o2, o3, and o4 from the input feature-map. The
parameter maps of our mixture model, µ-map, γ-map, p-
map, and π-map are obtained from o1, o2, o3, and o4, re-
spectively. The mixture component is represented at each
position on the spatial axis of the paramter-maps.

The µ-map is calculated from o1 ∈ Rhm×wm×4. First,
each element of o1 is scaled by a factor of s = 2l−5 depend-
ing on the level l ∈ {1, · · · , 5} of the feature map in the fea-
ture pyramid as follows: o′1 = s × o1. Then, o′1 is inputted
to the decoder block. In the decoder block, the center-offset
(x̄, ȳ) is the default center position of the mixture compo-
nents that are spatially aligned. Also, the center-limit opera-
tion illustrated in Fig. 4 restricts the output not to deviate too
much from the center-offset. This prevents the spatial mis-
alignment of µk. It is implemented by applying tanh and
multiplying the limit factor slim. In this paper, we set slim
equal to the spacing between adjacent center-offsets (see
Fig. 4). The first two channels (dx′, dy′) of o′1 which cor-
respond to the deviation from the center-offset are inputted
to the center-limit operation. And then, the center-offset is
added to the output of the center-limit operation. The over-
all computation of a center coordinate in x-direction is as
follows: x = x̄+ slim × tanh(dx′). The same applies also

to the y-direction. The last two channels of o′1 act as the
width and height. The ltrb-transformation converts coordi-
nates represented by the center, width, and height (xywh)
to the left-top and right-bottom corners (ltrb).

The γ-map is obtained by applying the softplus [6] ac-
tivation to o2 and then multiplying the level-scale. The p-
map is obtained by applying the softmax function along
the channel axis to o3 ∈ Rhm×wm×(C+1), and the π-
map is obtained by applying the softmax to the en-
tire five spatial maps of o4 ∈ Rhm×wm×1 such that∑5

l=1

∑hl
m

h=1

∑wl
m

w=1 π
l
(h,w) = 1. Here, C denotes the num-

ber of object classes and the last channel of o3 is for the
background class.

The network of MDOD consists of a 3×3 kernel convo-
lution layer and three 1×1 kernel convolution layers. Swish
[20] is used for the activation function of these layers ex-
cept the output layer. We use 5-level Feature Pyramid Net-
work (FPN) as a feature extractor [14]. MDOD estimates
only one mixture model from all levels of feature-maps.
Thus, the number of components K is the summation of the
number of components (hm × wm) of each parameter-map
corresponding to the feature-map. Here, each feature-map
(o1 − o4) and the corresponding parameter-map (µ, γ, p, π)
at the same layer have the same dimension.

4.2. Training

RoI sampling: To take the probability of the negative pre-
dictions into account, the class probabilities considering the
background are commonly used as the confidence score of
the predicted bounding box. But, while the input image has
a background area, the set of ground truth bounding boxes
{bgt} generally does not include the background class. To
obtain the bounding boxes of both foreground and back-
ground classes, we randomly sample the bounding box can-
didates from µ using π which means the probabilities of the
mixture components. If the IoU between a sampled candi-
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Figure 4: Illustration of the center-limit operation. The cir-
cles denote the center-offset. This operation limits µk within
the gray area.

date and a ground truth is above a threshold, we label it as
the class of the ground truth with the highest IoU, other-
wise, we label it as the background. Through this process,
we create the RoI set {broi}.

The {broi} is sampled from µ and π of the estimated
MoC that are trained to represent the ground truth bound-
ing box coordinates distribution for an input. Therefore,
the foreground-background imbalance problem does not
occur if the MoC estimates the distribution of bounding
boxes well. The background bounding boxes in the {broi}
can be regarded as hard-negative samples. In the RoI sam-
pling, these background samples are acquired stochasti-
cally, unlike the previous heuristic negative-mining meth-
ods [17, 25]. In addition, since the RoI sampling is com-
pletely separated from the network structure, the structure
of the network’s output doesn’t need to be considered. We
need only apply the commonly used criterion (IoU>0.5) of
the background.
Loss function: For training MDOD to represent the back-
ground probability using {broi}, we define the loss function
of MDOD into two terms. The first term is the negative log-
likelihood of the MoC:

LMoC = − 1

Ngt

Ngt∑
i=1

log

(
K∑

k=1

πkF(bigt,p;µk, γk)

)
. (4)

Here, (πk, µk, γk) depends on the image that contains the
i-th ground truth bounding box bigt. Note that Eq.(4) learns
only the distribution of the coordinates of the ground truth
bounding box {bgt,p} = {b1gt,p, · · · , b

Ngt

gt,p}, excluding class
probability using the MoC parameters (π, µ, γ). The second
loss term is a complete form of our mixture model including
class probability and is calculated as:

LMM = − 1

Nroi

Nroi∑
j=1

log p(bjroi|image). (5)

LMM is used to learn the class probability of the esti-
mated mixture model. Note that LMM is calculated using
{broi} = {b1roi, · · · , b

Nroi
roi } sampled from µ and π of the

estimated MoC. Also, it is trained such that the MoC is not
relearned by itself. To this end, the error is not propagated
to other parameters of mixture models except class proba-
bilities pk. The final loss function is defined as:

L = LMoC + αLMM (6)

Here, α controls the balance between the two terms. In our
experiments, we set α = 2.

4.3. Inference

In the inference phase, we choose µ’s of mixture com-
ponents as coordinates of the predicted bounding boxes. We
assume that these µ’s have a high possibility to be close to
the local maxima of the estimated mixture model. In the as-
pect of mixture-model-based clustering, we consider the µ’s
as representative values for the corresponding clusters. Be-
fore performing the non-maximum suppression (NMS), we
can filter out the mixture components with relatively low
pc or π values. Since the scale of π depends on the input
image, we filter mixture components through normalized-
π (π′), which is obtained by normalizing π-vector with its
maximum element, i.e. π′ = π/max(π).

5. Experiments
5.1. Analysis for MDOD

To analyze the MDOD, we use the MS COCO [16]
‘train2017’ and ‘val2017’ for training and evaluation. In-
put images are resized to 320×320. ResNet50 [8] with FPN
is used as feature extractor. Training details are described in
the supplementary materials.
Foreground-background balance: Since we perform
sampling from the estimated MoC, the sampled {broi} con-
tains both foreground and background samples. In order to
check the balance of foreground and background in {broi},
we measure the foreground ratio (#foreground / #total) of
{broi}. In Fig. 5, the foreground ratio is temporarily low at
the initial of training but quickly increases as training pro-
gresses, and converges to a certain value. This shows that
the foreground-background imbalance problem is solved
naturally as the training progresses (#foreground : #back-
ground = 1.7 : 1 at the final epoch).
Gaussian and Cauchy distribution: In practice, the like-
lihood of Gaussian and Cauchy distribution can be zero due
to underflow caused by the limited floating-point precision.
In order to show this problem during training, we measure
the ratio of components where underflow occurs due to a
large distance from a ground truth bounding box coordinate.
As can be seen in Fig. 6, in the Cauchy distribution, under-
flow rarely occurs, whereas in Gaussian, underflow occurs
at a high ratio throughout the training process (about 0.9
ratio). The APs of MDOD using Gaussian and Cauchy dis-
tribution are 32.7 and 33.8, respectively.
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Figure 5: The ratio of foreground samples in the set {broi}
which is sampled from the mixture of Cauchy distribution
at each training epoch.

The number of RoIs: Table 1 shows the APs changes ac-
cording to Nroi, the size of {broi}. We set Nroi proportional
to Ngt, the number of the ground truth bounding boxes. As
a result of the experiment, the performance is not sensitive
to the Nroi. In this paper, Nroi is set to three-times Ngt.
Ablation study: MDOD has components that play a spe-
cific role in the intermidate feature-map. In this experiment,
we change the following components in the MDOD archi-
tecture one by one to see the effect: ltrb-transformation
(ltrb), center-limit and level-scale operation. Table 2 shows
the results. MDOD that uses all the components shows the
best performance. Removing center-limit and level-scale
operation results in a slight decrease in performance. The
center-limit and level-scale operation seems to have a posi-
tive effect on detection results. If ltrb-transformation is not
used, bounding box is learned in xywh coordinate. In our
method, learning through the ltrb coordinate shows around
1.0 better APs than learning through xywh.

5.2. Evaluation result comparison

We compared MDOD with other object detection meth-
ods. MS COCO ‘train2017’ dataset is used as the training-
set and ‘test-dev2017’ is used for evaluation. The frame-
per-second (FPS) for MDOD is measured using a single
nvidia Geforce 1080Ti including the post processing with
batch size 1 without using tensorRT. Likewise, the FPSs
for the other compared methods are also measured by the
GPU with Nvidia Pascal architecture. Training details are
described in the supplementary materials.
Comparison with the baseline: We set up a simple base-
line that learns bounding boxes through the conventional
training method. In order to compare this baseline and
MDOD as fairly as possible, we use the completely same
batch size, augmentation strategy, and network architecture
excluding the output layer to the baseline and MDOD. The
baseline network is trained by smooth l1 and the cross en-
tropy with hard negative mining. And, the baseline uses nine
shapes of anchor boxes per each cell of output. As can
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Figure 6: The ratios of underflowed components for Cauchy
and Gaussian distributions at each training epoch.

Nroi AP AP50

Ngt × 1 33.8 53.3
Ngt × 3 33.8 53.4
Ngt × 5 33.9 53.3

Table 1: The size of {broi} (Nroi) and APs.

MDOD

ltrb ✓ ✓ ✓
center-limit ✓ ✓ ✓
level-scale ✓ ✓

AP 33.8 32.9 32.3 32.8
AP50 53.4 52.9 51.6 52.5

Table 2: The effectiveness of the components of MDOD.

be seen in the Table 3, MDOD outperforms the baseline.
Also, in Table 4, MDOD shows a faster inference speed
than the baseline. The reasons are as follows: The predic-
tions of MDOD is only 1 for each cell in the output. Thus,
the number of filters of output layer becomes smaller than
that of the baseline (MDOD: 90, Baseline: 765). In addition,
MDOD predicts fewer boxes than the Baselines (MDOD:
2134, Baseline: 19206). The number of predictions can af-
fect the speed of the post-processing using NMS.
Comparison with EfficientDet: We compared the detec-
tion performance of MDOD with that of EfficientDet [26],
a state-of-the-art method using the conventional training
method. For the sake of fairness, the feature extractor used
in EfficientDet is also applied to MDOD. In Table 3, this
version of MDOD taking the structural superiority of Effi-
cientDet’s feature extractor shows better APs than the orig-
inal EfficientDet in all the cases using the same feature ex-
tractor and input size. Especially, MDOD with Efficient-
D1 achieved the highest AP (40.5) in this table. What is
remarkable about these results is that this improvement is
not caused by structural changes, heuristic or complex pro-
cessing, but by a novel approach of learning distribution of
bounding boxes in multi-object detection networks.
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method feature extractor input size AP AP50 AP75 APS APM APL

Baseline ResNet50-FPN 320x320 30.1 45.9 32.4 6.4 34.7 50.8
MDOD ResNet50-FPN 320x320 33.9 53.8 35.5 14.7 35.1 49.6
Baseline ResNet101-FPN 320x320 31.1 46.8 33.6 6.7 36.1 52.3
MDOD ResNet101-FPN 320x320 35.0 54.8 36.8 14.4 36.5 51.8
Baseline ResNet50-FPN 512x512 35.0 53.2 38.1 15.0 40.2 50.7
MDOD ResNet50-FPN 512x512 37.9 59.1 40.2 19.8 40.7 50.5
Baseline ResNet101-FPN 512x512 36.6 54.5 39.8 15.6 42.0 53.2
MDOD ResNet101-FPN 512x512 40.0 60.7 42.6 20.7 43.1 53.8

EfficientDet [26] Efficient-D0 512x512 33.8 52.2 35.8 12.0 38.3 51.2
MDOD Efficient-D0 512x512 35.2 56.5 36.8 16.9 37.3 48.7

EfficientDet [26] Efficient-D1 640x640 39.6 58.6 42.3 17.9 44.3 56.0
MDOD Efficient-D1 640x640 40.5 62.0 42.8 21.5 42.8 55.3

Table 3: Evaluation result comparison of Baseline and EfficientDet with MDOD.

method feature extractor input size net-time pp-time total-time FPS

Baseline ResNet50-FPN 320x320 17 4 21 47.6
MDOD ResNet50-FPN 320x320 16 2 18 55.6
Baseline ResNet50-FPN 512x512 22 6 28 37.5
MDOD ResNet50-FPN 512x512 21 2 23 43.5

Table 4: Inference time (ms) comparison of Baseline and MDOD. ‘net-time’, ‘pp-time’ and ‘total-time’ mean network infer-
ence, post processing and total inference time, respectively.

Comparison with other methods: Tab. 5 and Fig. 7 show
the APs and FPSs of object detectors. We compared MDOD
with other representative methods using the similar feature
extractor based on ResNet to focus on the methodology of
multi-object detection. For comparison with more multi-
object detection methods, we performed evaluations using
not only static sized input images (320x320, 512x512) but
also variable sized input (short-800). Here, the same aug-
mentations used in RetinaNet, FCOS, and etc are applied
to train short-800 model. In the comparison with the meth-
ods using a static sized input, MDOD clearly outperforms in
both terms of detection performance and speed without any
bells and whistles. The MDOD is not designed to speed up
the inference time nor to reduce the computation. However,
since MDOD has the advantages mentioned in the ‘compar-
ison with the baseline’ and does not use modified convolu-
tion modules that require more computation, it shows faster
inference speed than other methods when using the same
input size and similar feature extractor. In comparison with
the method using variable size input, MDOD shows promis-
ing results as a new detection methodology. But unlike the
case of using a static sized input, it does not outperform the
other state-of-the-art detectors. In the training with short-
800 images, the number of mixture components K is large
and changed depending on the size of the input. Therefore,
we speculate that large K, which changes during training,
may interfere with the optimization. However, as the new

approach to using mixture model-based density estimation,
our method has a lot of room for advancement by further
research for the mixture model and density estimation.

6. Conclusion
In this paper, we treat the multi-object detection task as

a density estimation of bounding boxes for an input image.
We proposed a new multi-object detector called as MDOD
and the objective function to train it. MDOD captures the
distribution of bounding boxes using the mixture model
whose components consist of Cauchy and categorical distri-
bution. Through this density-esimation-based approach and
a new architecture of MDOD, we can reduce the complex
precessing and heuristic for training multi-object detec-
tion network. In addition, we verified that the foreground-
background imbalance problem is solved naturally as the
training progresses in our method. We measured the detec-
tion performance and speed of MDOD on MS COCO. In
the evalation using a static sized input, MDOD outperforms
the other state-of-the-art multi-object detection methods in
both terms of detection performance and speed. It is note-
worthy that this performance is achieved not by structural
changes or heuristic and complex processings, but by a new
approach to multi-object detection. We believe that MDOD
laid an initial step towards a new direction to multi-object
detection which has a large room for improvements that can
be achieved by further research and development.
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method feature extractor input size AP AP50 AP75 APS APM APL FPS

static size input image:
SSD321 [17, 7] ResNet-101 321x321 28.0 45.4 29.3 6.2 28.3 49.3 -
RefineDet [29] ResNet-101 TCB 320x320 32.0 51.4 34.2 10.5 34.7 50.4 -

M2Det [31] ResNet-101 MLFPN 320x320 34.3 53.5 36.5 14.8 38.8 47.9 21.7
PASSD ◦ [10] ResNet-101 FPN 320x320 32.7 52.1 35.3 10.8 36.5 50.2 34.5

MDOD ResNet-101 FPN 320x320 35.0 54.8 36.8 14.4 36.5 51.8 37.0
SSD513 [17, 7] ResNet-101 513x513 31.2 50.4 33.3 10.2 34.5 49.8 -
RefineDet [29] ResNet-101 TCB 512x512 36.4 57.5 39.5 16.6 39.9 51.4 -

M2Det [31] ResNet-101 MLFPN 512x512 38.8 59.4 41.7 20.5 43.9 53.4 15.8
PASSD ◦ [10] ResNet-101 FPN 512x512 37.8 59.1 41.4 19.3 42.6 51.0 22.2
EFGRNet [18] ResNet-101 512×512 39.0 58.8 42.3 17.8 43.6 54.5 21.7
NETNet [13] ResNet-101 NNFM 512×512 38.5 58.6 41.3 19.0 42.3 53.9 27.0

MDOD ResNet-101 FPN 512x512 40.0 60.7 42.6 20.7 43.1 53.8 29.4

variable size input image:
Faster R-CNN [24] ResNet-101 FPN short-800 36.2 59.1 39.0 18.2 39.0 48.2 -
Libra R-CNN [19] ResNet-101 FPN short-800 41.1 62.1 44.7 23.4 43.7 52.5 9.5

Cascade R-CNN [3] ResNet-101 FPN+ short-800 42.8 62.1 46.3 23.7 45.5 55.2 7.1
RetinaNet [15] ResNet-101 FPN short-800 39.1 59.1 42.3 21.8 42.7 50.2 9.6
FoveaBox [11] ResNet-101 FPN short-800 40.8 61.4 44.0 24.1 45.3 53.2 -

FSAF [33] ResNet-101 FPN short-800 40.9 61.5 44.0 24.0 44.2 51.3 -
FCOS [27] ResNet-101 FPN short-800 41.5 60.7 45.0 24.4 44.8 51.6 -
ATSS [28] ResNet-101 FPN short-800 43.6 62.1 47.4 26.1 47.0 53.6 -

MDOD ResNet-101 FPN short-800 42.2 61.6 45.1 25.3 44.6 51.7 10.5

Table 5: Evaluation results of various methods with MDOD. ‘◦’ denotes soft-nms [2]. The ‘short-800’ means to use an image
that the shorter side is resized as 800 and the longer side is resized as smaller than 1333, while maintaining the aspect ratio.
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