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Abstract

Photorealistic image generation has reached a new level
of quality due to the breakthroughs of generative adversar-
ial networks (GANs). Yet, the dark side of such deepfakes,
the malicious use of generated media, raises concerns about
visual misinformation. While existing research work on
deepfake detection demonstrates high accuracy, it is subject
to advances in generation techniques and adversarial iter-
ations on detection countermeasure techniques. Thus, we
seek a proactive and sustainable solution on deepfake de-
tection, that is agnostic to the evolution of generative mod-
els, by introducing artificial fingerprints into the models.

Our approach is simple and effective. We first embed
artificial fingerprints into training data, then validate a sur-
prising discovery on the transferability of such fingerprints
from training data to generative models, which in turn ap-
pears in the generated deepfakes. Experiments show that
our fingerprinting solution (1) holds for a variety of cutting-
edge generative models, (2) leads to a negligible side effect
on generation quality, (3) stays robust against image-level
and model-level perturbations, (4) stays hard to be detected
by adversaries, and (5) converts deepfake detection and at-
tribution into trivial tasks and outperforms the recent state-
of-the-art baselines. Our solution closes the responsibility
loop between publishing pre-trained generative model in-
ventions and their possible misuses, which makes it inde-
pendent of the current arms race.

1. Introduction

In the past years, photorealistic image generation has
been rapidly evolving, benefiting from the invention of gen-
erative adversarial networks (GANSs) [16] and its successive
breakthroughs [39, 17, 35, 5, 25, 26, 27, 50, 51]. Given
the level of realism and diversity that generative models can
achieve today, detecting generated media, well known as
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deepfakes, attributing their sources, and tracing their legal
responsibilities become infeasible to human beings.

Moreover, the misuse of deepfakes has been permeating
to each corner of social media, ranging from misinforma-
tion of political campaigns [24] to fake journalism [44, 40].
This motivates tremendous research efforts on deepfake de-
tection [53] and source attribution [34, 49, 46]. These tech-
niques aim to counter the widespread of malicious applica-
tions of deepfakes by automatically identifying generated
visual contents and tracking their sources. Most of them
rely on low-level visual patterns in GAN-generated im-
ages [34, 49,46, 19, 57] or frequency mismatch [13, 56, 14].
However, these techniques are unable to sustainably and
robustly prevent deepfake misuse in the long run; as gen-
erative models evolve, they learn to better match the true
distribution causing fewer artifacts [53]. Besides, detection
countermeasures are also continuously evolving [12, 6, 53].

Motivated by this, we tackle deepfake detection and at-
tribution through a different lens, and propose a proactive
and sustainable solution for detection, which is simple and
effective. In specific, we aim to introduce artificial finger-
prints into generative models that enable identification and
tracing. Figure | depicts our pipeline; we first embed artifi-
cial fingerprints into the training data using image steganog-
raphy [4, 42]. The generative model is then trained with its
original protocol without modification. This makes our so-
lution agnostic and plug-and-play for arbitrary models. We
then show a surprising discovery on the transferability of
such fingerprints from training data to the model: the same
fingerprint information that was encoded in the training data
can be decoded from all generated images.

We achieve deepfake detection by classifying images
with matched fingerprints in our database as fake and im-
ages with random detected fingerprints as real. We also
achieve deepfake attribution when we allocate different fin-
gerprints for different generative models. Our solution thus
closes the responsibility loop between generative model in-
ventions and their possible misuses. It prevents the misuse
of published pre-trained generative models by enabling in-
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Figure 1: Our solution pipeline consists of four stages. We first train an image steganography encoder and decoder. Then we
use the encoder to embed artificial fingerprints into the training data. After that, we train a generative model with its original
protocol. Finally, we decode the fingerprints from the generated deepfakes.

ventors to proactively and responsibly embed artificial fin-
gerprints into the models.

We summarize our contributions as follow:

(1) We synergize the two previously uncorrelated do-
mains, image steganography and GANSs, and propose the
first proactive and sustainable solution for the third emerg-
ing domain, deepfake detection and attribution.

(2) This is the first study to demonstrate the transferabil-
ity of artificial fingerprints from training data to generative
models and then to all the generated deepfakes. Our dis-
covery is non-trivial: only deep-learning-based fingerprint-
ing techniques [4, 42] are transferable to generative models,
while conventional steganography and watermarking tech-
niques [2, 1] are not. See Section 5.2 for comparisons.

(3) We empirically validate several beneficial properties
of our solution. Universality (Section 5.2): it holds for a va-
riety of cutting-edge generative models [25, 26, 27, 5, 36].
Fidelity (Section 5.3): it has a negligible side effect on gen-
eration quality. Robustness (Section 5.4): it stays robust
against many perturbations. Secrecy (Section 5.5): the ar-
tificial fingerprints are hard to be detected by adversaries.
Anti-deepfake (Section 5.6 and 5.7): it converts deepfake
detection and attribution into trivial tasks and outperforms
the state-of-the-art baselines [49, 46].

2. Related Work

Generative adversarial networks (GANs). GANs [16]
was first proposed as a workaround to model the intractable
real data distribution. The iterative improvements push the
generation realism to brand-new levels [39, 17, 35, 5, 25,

, 27]. Successes have also spread to many other vision
tasks (e.g. [37, 29, 23, 59, 60, 36, 48]). In Section 5, we fo-
cus on three categories of cutting-edge generative models:
unconditional (ProGAN [25], StyleGAN [26], and Style-

GAN2 [27]), class-conditional (BigGAN [5]), and image-
conditional (image-to-image translation) (CUT [36]).

Image steganography and watermarking. Image
steganography and watermarking hide information into car-
rier images [15]. Previous techniques rely on Fourier trans-
form [11, 7], JPEG compression [2, 1], or least signifi-
cant bits modification [38, 21, 22]. Recent works replace
hand-crafted hiding procedures with neural network encod-
ing [4, 18, 45, 58, 55, 42, 33]. We leverage recent deep-
learning-based steganography methods [4, 42] to embed
artificial fingerprints into training data, and validate their
transferability to generative models. This is non-trivial
because only deep-learning-based fingerprints are transfer-
able to generative models, while conventional ones [2, 1]
are not (Section 5.2). Besides, the stealthiness achieved
by steganography allows preserving the original generation
quality (Section 5.3) and fingerprint secrecy (Section 5.5).

Our fingerprinting is conceptually and functionally or-
thogonal to all of them. Instead of encoding information
into pixels of individual images, our solution encodes in-
formation into generator parameters such that all the gener-
ated images are entangled with that information. Compared
to the pipeline of a generator followed by a watermarking
module, our solution introduces zero generation overheads,
and obstructs adversarial model surgery that targets to de-
tach watermarking from image generation.

Network watermarking. Different from image water-
marking, network watermarking targets to hide information
into model parameters without affecting its original perfor-
mances, similar in spirit to our goal. There are two cat-
egories of them: black-box trigger-set-based solutions [3,

], and white-box feature-based solutions [43, 9, 41]. The
former ones embed watermarks through a trigger set of in-
put and decodes watermarks according to the input-output
behavior of the model. The latter ones directly embed wa-
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termarks in the model parameter space with transformation
matrices. It is worth noting that our solution renders con-
ceptual and technical distinctions from network watermark-
ing. In terms of concepts, the previous works target to only
discriminative models (e.g., classification), while a solution
for generative models is urgently lacking. In terms of tech-
niques, to adapt to generator watermarking, we tune our so-
lution to indirectly transfers fingerprints from training data
to model parameters. This is because (1) unconditional gen-
erative models do not allow deterministic input so that a
trigger set is not applicable, and (2) transformations in the
parameter space are not agnostic to model configurations so
that they are neither scalable nor sustainable along with the
evolution of generative models.

Deepfake detection and attribution. Images generated
by GAN models bear unique patterns. [34] shows that gen-
erative models leave unique noise residuals to generated
samples, which allows deepfake detection. [49] moves one
step further, using a neural network classifier to attribute
different images to their sources. [46] also train a classifier
and improve the generalization across different generation
techniques. [56, 13, 12] point out that the high-frequency
pattern mismatch can be used for deepfake detection, so can
the texture feature mismatch [32]. However, these cues are
not sustainable due to the advancement of detection coun-
termeasures. For example, spectral regularization [12] is
proposed to narrow down the frequency mismatch and re-
sults in a significant detection deterioration. Also, detec-
tors [46] are vulnerable to adversarial evasion attacks [0].

In contrast to the previous passive approaches, we pro-
pose a novel proactive solution for model fingerprinting
and, thus, for deepfake detection. We differentiate be-
tween our term artificial fingerprints which refers to the
information we deliberately and proactively embed into the
model, and the term GAN fingerprints [49] which refers
to the inherent cues and artifacts of different GAN mod-
els. Our work is also distinct from a follow-up proactive
technique [52]. They focus on fingerprinting scalability and
efficiency while we focus more fundamentally on its trans-
ferability and universality.

3. Problem Statement

Model inventors have concerns about releasing their
generative models because of potential deepfake misuses.
Therefore, we design solution from the model inventors’
side (e.g., OpenAl) that introduces traceable artificial fin-
gerprints in generative models. It enables deepfake detec-
tion and attribution by decoding the fingerprints from the
generated images and matching them to the known finger-
prints given to different models. This equips model inven-
tors with a means for a proactive and responsible disclo-
sure when publishing their pre-trained models. This distin-
guishes our model fingerprinting solution from watermark-

ing the generated images: we aim to defend against the mis-
use of generative models rather than single deepfakes.

In practice, the training is done by model inventors. The
fingerprinting encoder and decoder, and the unique finger-
prints given to different models, are privately maintained
by the model inventor. Once a deepfake misuse happens,
the inventor is able to verify if this is generated by one of
their models. If so, they can further attribute to the model
user. As a result, they can claim responsible disclosure with
a countermeasure against potential misuse when they pub-
lish their models.

4. Artificial Fingerprints

The goal of image attribution is to learn a map-
ping Do(x) ~— 1y that traces the source y € Y =
{real, Gy, ...,Gn} of an image x. If the domain Y is lim-
ited, predefined, and known to us, this is a closed-world
scenario and the attribution can be simply formulated as a
multi-label classification problem, each label correspond-
ing to one source, as conducted in [49]. However, Y can be
unlimited, undefined, continuously evolving, and agnostic
to us. This open-world scenario is intractable using dis-
criminative learning. To generalize our solution to being
agnostic to the selection of generative models, we formu-
late the attribution as a regression mapping D(x) — w,
where w € {0,1}" is the source identity space and n is
the dimension. We propose a pipeline to root the attribution
down to the training dataset X € X and close the loop of the
regression D. We describe the pipeline (Figure 1) below:

Steganography training. The source identity is repre-
sented by the artificial fingerprints w. We use a steganogra-
phy system [4, 42] to learn an encoder E(X, w) — X, that
embeds an arbitrary fingerprint w (randomly sampled dur-
ing training) into an arbitrary image X. We couple F with a
decoder D (X ) — w to detect the fingerprint information
from the image. F and D are formulated as convolutional
neural networks with the following training losses:

minEyD EiNX,WN{O,l}”LBCE(i7 Wi E./ D) —+ )\LMSE(}E, Wi E) (1)

Lyce(%, w; B, D) = L S0 (wylog Wy, + (1 — wy) log(1 — W) (2)
Lyse(%,w; E) = ||[E(x,w) — x|[3 3)

w = D(E(x,w)) 4)

where wy, and W, are the k'™ bit of the input fingerprint and
detected fingerprint separately; and A is a hyper-parameter
to balance the two objective terms. The binary cross-
entropy term Lgcg guides the decoder to decode the fin-
gerprint embedded by the encoder. The mean squared er-
ror term Lysg penalizes any deviation of the stego image
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E(x,w) from the original image x. The architectures of £
and D are depicted in the supplementary material.

Artificial fingerprint embedding. In this stage, we use
the well trained £/ and D networks. We allocate each train-
ing dataset Xa unique fingerprint w. We apply the trained
E to each training image X and collect a fingerprinted train-
ing dataset X, = {E(x, w)|x € X}.

Generative model training. In order to have a solution
that is agnostic to the evolution of generative models, we
do not intervene with their training. It makes our solution
plug-and-play for arbitrary generation tasks without touch-
ing their implementations, and introduces zero overhead to
model training. We simply replace X with Xy, to train the
generative model in its original protocol.

Artificial fingerprint decoding. We hypothesize the
transferability of our artificial fingerprints from train-
ing data to generative models: a well-trained generator
Gw(z) — Xy contains, in all generated images, the same
fingerprint information w (as embedded in the training data
Xw). We justify this hypothesis in Section 5.2. As a result,
the artificial fingerprint can be recovered from a generated
image X, using the decoder D: D(xy,) = w. Based on
this transferability, we can formulate deepfake attribution
as fingerprint matching using our decoder D.

Artificial fingerprint matching. To support robustness
to post-generation modifications that could be applied to the
generated images, we relax the matching of the decoded ar-
tificial fingerprints to a soft matching. We perform a null
hypothesis test given the number of matching bits k be-
tween the decoded fingerprint w and the fingerprint w used
in generative model training. The null hypothesis Hj is get-
ting this number of successes (i.e. matching bits) by chance.
Under the null hypothesis, the probability of matching bits
(random variable X) follows a binomial distribution: the
number of trials n is the number of bits in the fingerprint
sequence, and k is the number of successes where each bit
has a 0.5 probability of success. We can then measure the p-
value of the hypothesis test by computing the probability of
getting k or higher matching bits under the null hypothesis:

" /n
Pr(X > k|Hy) = 0.5" 5
r(X > k| Ho) ; (Z> 5)
The fingerprint is verified, w ~ w, if the null hypothesis re-
sults in a very low probability (p-value). Usually, when the
p-value is smaller than 0.05, we reject the null hypothesis
and regard 1 — p as the verification confidence.

S. Experiments
5.1. Setup

Generative models. As a proactive solution, it should
be agnostic to genetative models. Without losing repre-
sentativeness, we focus on three generation applications

with their state-of-the-art models. For unconditional gener-
ation: ProGAN [25], StyleGAN [26], and StyleGAN2 [27];
for class-conditional generation: BigGAN [5]; for image-
conditional generation, i.e., image-to-image translation:
CUT [36]. Each model is trained from scratch with the of-
ficial implementation.

Datasets. Each generation application benchmarks its
own datasets. For unconditional generation, we train/test
on 150k/50k CelebA [31] at 128 x 128 resolution, 50k/50k
LSUN Bedroom [47] at 128 x128 resolution, and the most
challenging one, 50k/50k LSUN Cat [47] at its original
256256 resolution. For class-conditional generation, we
experiment on the entire CIFAR-10 dataset [28] with the
original training/testing split at the original 32x32 resolu-
tion. For image-conditional generation, we experiment on
the entire Horse—Zebra dataset [59] and Cat—Dog [10]
dataset with the original training/testing split at the original
256256 resolution. We only need to fingerprint images
from the target domains.

5.2. Transferability

The transferability means that the artificial fingerprints
that are embedded in the training data also appear consis-
tently in all the generated data. This is a non-trivial hypoth-
esis in Section 4 and needs to be justified by the fingerprint
detection accuracy.

Evaluation. Fingerprints are represented as binary vec-
tors w € {0,1}". We use bitwise accuracy to evaluate the
detection accuracy. We set n = 100 as suggested in [42].
We also report p-value for the confidence of detection.

Baselines. For comparison, we implement an intuitive
baseline method. Instead of embedding fingerprints into
training data, we enforce fingerprint generation jointly with
model training. That is, we train on clean data, and enforce
generated images to not only approximate real training im-
ages but also contain a specific fingerprint. Mathematically,

minmax E, xo,1) x5 Loty (2, %; G, Dis)+ ©

NEzn(0,1),w~{0,1}» LBCE(Z, W; G, D)

where G and Dis are the original generator and discrimi-
nator in the GAN framework, L,qy is the original GAN ob-
jective, and Lpcg is adapted from Eq. 2 where we replace
w = D(E(x,w)) with w = D(G(z)). nissetto 1.0 as a
hyper-parameter to balance the two objective terms.

We also compare the deep steganography technique used
in our solution ([42]) to two well-established, non-deep
steganography techniques [2, 1] that alter the frequency co-
efficients of JPEG compression.

Results. We report the fingerprint detection performance
in Table 1 fourth and fifth columns. We observe:

(1) The “Data” row shows the detection accuracy on real
testing images for sanity checks: it reaches the 100% satu-
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Figure 2: CelebA samples at 128 x 128 for Table 1 last two columns. (a) Original real training samples. (b) Fingerprinted
real training samples. (c) The difference between (a) and (b), 10x magnified for easier visualization. (d) Samples from
the non-fingerprinted ProGAN. (e) Samples from the fingerprinted ProGAN. See more samples on the other datasets in the

supplementary material.

Fgpt Bit Orig  Fgpt
Dataset tech  Model accf}  p-value FID FID|
Eq.6 ProGAN 093 <107 | 1409 60.28
21 StyleGAN2 | 0.51 0.46 641 693
[11 StyleGAN2 | 0.53 0.31 641  6.82
CelebA [42] Data 1.00 R - 115
[42]  ProGAN 098 <10726 | 1409 14.38
[42]  StyleGAN | 099 <1072 | 898 9.72
[42]  StyleGAN2 | 099 <10728 | 641  6.23
[42]  ProGAN 093 <1079 ] 29.16 32.58
LSUN [42]  StyleGAN | 098 < 10726 | 2495 2571
Bedroom [42]  StyleGAN2 | 0.99 <10728 | 13.92 14.71
[42]  ProGAN 098 <10726 | 4522 4897
LSUN [42]  StyleGAN | 099 < 10728 | 3345 34.01
Cat [42]  StyleGAN2 | 0.99 <1072% | 31.01 32.60
CIFAR-10 [42]  BigGAN 099 <1072 | 625 680
Horse—Zebra [42]  CUT 099 <1072 | 2298 2343
Cat—Dog [42] CUT 099 <1072% | 55.78 56.09

Table 1: Artificial fingerprint detection in bitwise accuracy
(fy indicates higher is better) and generation quality in FID
({ indicates lower is better). The “Data” row corresponds to
real testing images for a sanity check. The “Orig FID” col-
umn corresponds to the original (non-fingerprinted) models
for references. The first three rows are the baselines.

rated accuracy, indicating the effectiveness of the steganog-
raphy technique by its nature.

(2) Our artificial fingerprints can be almost perfectly de-
tected from generated images over a variety of applications,
generative models, and datasets. The accuracy is > 0.98
except for ProGAN on LSUN Bedroom, but its 0.93 accu-
racy and 10~1Y p-value are far sufficient to verify the pres-
ence of fingerprints. Our hypothesis on the transferability
from training data to generative models (i.e. generated data)
is therefore justified. As a result, artificial fingerprints are
qualified for deepfake detection and attribution.

(3) The universality of fingerprint transferability over
varying tasks and models validates our solution is agnostic
to generative model techniques.

(4) The generalization of fingerprint autoencoder has
been validated across datasets. We have trained only one
128 x 128 E and D on CelebA, and have cross-validated
them on LSUN Bedroom. We have trained only one 256 x
256 E and D on LSUN Cat, and have cross-validated them
on Horse—Zebra and Cat—Dog.

(5) The baseline of joint fingerprinting and generation
training (first row) is also moderately effective in terms of
fingerprint detection, but we show in Section 5.3 it leads to
strong deterioration of generation quality.

(6) Conventional steganography methods [2, 1] (second
and third rows) do not transfer hidden information into
models, indicated by the random guess performance dur-
ing decoding. We attribute this to the discrepancy be-
tween deep generation techniques and shallow steganogra-
phy techniques. We reason that generative models leverage
deep discriminators to approximate common image patterns
including low-level fingerprints. Only comparably deep fin-
gerprinting techniques, e.g. [42], are compatible to hide and
transfer fingerprints to the models, while hand-crafted im-
age processing is not effective. Therefore, the transferabil-
ity of our fingerprinting is non-trivial.

5.3. Fidelity

The fidelity of generated images is as critical as the trans-
ferability. Fingerprinting should have a negligible side ef-
fect on the functionality of generative models. This pre-
serves the original generation quality and avoids the adver-
sary’s suspect of the presence of fingerprints. The steganog-
raphy should enable this, which we validate empirically.

Evaluation. = We use Fréchet Inception Distance
(FID) [20] to evaluate the generation quality; the lower, the
more realistic. We measure FID between a set of 50k gener-
ated images and a set of 50k real non-fingerprinted images,
in order to evaluate the quality of the generated set.

Results. We compare the generation quality of origi-
nal and fingerprinted generative models in Table 1 sixth and
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Figure 3: Red plots show the artificial fingerprint detection in bitwise accuracy w.r.t. the amount of perturbations over
ProGAN trained on CelebA. In the left four plots (robustness against image perturbations), blue dots represent detection
accuracy on the fingerprinted real training images, which serve as the upper bound references for the red dots. See the
supplementary material for additional results of ProGAN trained on LSUN Bedroom. In the right two plots (robustness

against model perturbations), blue dots represent the FID of generated images from the perturbed models.
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Figure 4: Perturbed image samples from the fingerprinted ProGAN and the corresponding fingerprint detection accuracy.
The detection still performs robustly (bitwise accuracy > 0.75) even when the image quality heavily deteriorates.

seventh columns. We observe:

(1) The “Data” rows are for sanity checks: embedding
fingerprints into real images does not substantially deterio-
rate image quality: FID < 1.15 is in an excellent realism
range. This validates the secrecy of steganography and lays
a valid foundation for high-quality model training.

(2) For a variety of settings, the performance of the fin-
gerprinted generative models tightly sticks to the original
limits of their non-fingerprinted baselines. The heaviest de-
terioration is as small as +3.75 FID happening for ProGAN
on LSUN Cat. In practice, the generated fingerprints are
imperceptibly hidden in the generated images and can only
be perceived under 10 x magnification. See Figure 2 and the
supplementary material for demonstrations. Therefore, the
fidelity of fingerprinted models is justified and it qualifies
our solution for deepfake detection and attribution.

(3) The baseline of joint fingerprinting and generation
training (first row) deteriorates generation quality remark-
ably. This indicates model fingerprinting is a non-trivial
task: direct fingerprint reconstruction distracts adversarial
training. In contrast, our solution leverages image steganog-
raphy and fingerprint transferability, sidesteps this issue,
and leads to better performance.

5.4. Robustness

Deepfake media and generative models may undergo
post-processing or perturbations during broadcasts. We val-
idate the robustness of our fingerprint detection given a va-

riety of image and model perturbations, and investigate the
corresponding working ranges.

Perturbations. We evaluate the robustness against four
types of image perturbation: additive Gaussian noise, blur-
ring with Gaussian kernel, JPEG compression, center crop-
ping. We also evaluate the robustness against two types
of model perturbations: model weight quantization and
adding Gaussian noise to model weights. For quantization,
we compress each model weight given a decimal precision.
We vary the amount of perturbations, apply each to the gen-
erated images or to the model directly, and detect the finger-
print using the pre-trained decoder.

Results. We evaluate the artificial fingerprint detection
over 50k images from a fingerprinted ProGAN. We plot the
bitwise accuracy w.r.t. the amount of perturbations in Fig-
ure 3 (see the supplementary material for additional results
of ProGAN trained on LSUN Bedroom). We observe:

(1) For all the image perturbations, fingerprint detection
accuracy drops monotonously as we increase the amount of
perturbation, while for small perturbations accuracy drops
rather slowly. We consider accepting accuracy > 75% as a
threshold (p-value = 2.8 x 10~7). This results in the work-
ing range w.r.t. each perturbation: Gaussian noise standard
deviation ~ [0.0,0.05], Gaussian blur kernel size ~ [0, 5],
JPEG compression quality ~ [50, 100], center cropping size
~ [86,128], quantization decimal precision < 107!, and
model noise standard deviation ~ [0.0, 0.18], which are rea-
sonably wide ranges in practice.
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(2) For image perturbations (the left four subplots) out-
side the above working ranges, the reference upper bounds
drop even faster and the margins to the testing curves shrink
quickly, indicating that the detection deterioration is irrele-
vant to model training but rather relevant to the heavy qual-
ity deterioration of training images.

(3) For model perturbations (the right two subplots) out-
side the above working ranges, image quality deteriorates
faster than fingerprint accuracy: even before the accuracy
gets lower than 75%, FID has already increased by > 500%.

(4) As a result of (2) and (3), before fingerprint detec-
tion degenerates close to random guess (~ 50% accuracy),
image quality has been heavily deteriorated by strong per-
turbations (Figure 4), which indicates that our fingerprints
are more robust than image functionality itself in the case
of these studied perturbations.

5.5. Secrecy

The presence of a fingerprint embedded in a generative
model should not be easily detected by a third party, other-
wise, it would be potentially manipulated.

Attack. In order to quantify the secrecy, we formulate it
as a binary classification problem: the presence of a finger-
print in an image. We follow the attack protocol in [58] to
perform the Artificial Training Sets (ATS) attack [30]. We
aim to classify between fingerprinted and non-fingerprinted
test images, but we have no supervision. The intuition is to
train another steganography encoder to expand the test set
and establish an artificial setting with known labels which
enables supervised training. The original test class space is
now a subspace of the artificial training class space and is
separable by the training task.

The attack is as follows: We independently train an-
other steganography encoder. We consider the original
test images as negative training samples. Then, we ap-
ply the encoder twice to the test set to obtain extra im-
ages fingerprinted 2 times (corresponding to originally non-
fingerprinted images) or 3 times (corresponding to origi-
nally fingerprinted images), which are regarded as positive
training samples. Then we train an SVM classifier [8] using
such positive and negative samples, in order to separate be-
tween images fingerprinted 0-1 time (original set), and the
ones fingerprinted 2-3 times (artificial training set).

During testing, we first apply the encoder once to the
test images so that the originally non-fingerprinted images
are now fingerprinted 1 time (belonging to 0-1 class), and
the originally fingerprinted images are now fingerprinted 2
times (belonging to 2-3 class). Then we can use the clas-
sifier to separate them and propagate the predictions back
to the original images. We evaluate the attack on a set of
250/250 fingerprinted/non-fingerprinted deepfake images.

We investigate in three scenarios: (I) the weak attacker
cannot access our F and D, so he trains his shadow autoen-

Attacker Accessto E & D Fgpt ‘ Cls acc |

Weak No Arbitrary 0.503
Medium Yes Arbitrary 0.503
Strong Yes 10-bit diff 0.504

Table 2: Validation on the secrecy of fingerprints. The last
column shows the binary classification accuracy of the pres-
ence of fingerprints, the smaller the more secret.

coder and applies with arbitrary fingerprint codes; (II) the
medium attacker can access our well-trained £ and D but
applies with arbitrary fingerprint codes; (III) the strong at-
tacker can access our E and D and be partially aware of our
fingerprint codes, so applies with the fingerprint codes only
10 bits different from ours.

Results. In Table 2 all the attackers fail with the binary
classification accuracy on the presence of fingerprint close
to 0.5 (random guess). It indicates our fingerprinting is se-
cret enough from being detected by adversaries regardless
of their access to our encoder and decoder.

5.6. Deepfake Detection

We now discuss how to use our fingerprinting solu-
tion for deepfake detection and attribution. Unlike exist-
ing methods that detect intrinsic differences between the
real and deepfake classes [49, 50, 46, 12], we, standing for
model inventors, propose a proactive solution by embed-
ding artificial fingerprints into generative models and con-
sequently into the generated images. Then we convert the
problem to verifying if one decoded fingerprint is in our fin-
gerprint regulation database or not. Even with a non-perfect
detection accuracy, we can still use our solution based on
the null hypothesis test in Section 4. We consider deep-
fake verification given > 75% (p-value = 2.8 X 10~7) bit
matching. This is feasible based on two assumptions: (1)
The decoded fingerprint of a real image is random; and (2)
the fingerprint capacity is large enough such that the ran-
dom fingerprint from a real image is unlikely to collide with
a regulated fingerprint in the database. The second condi-
tion is trivial to satisfy, considering we sample fingerprints
w € {0,1}" and n = 100. 2!% is a large enough capac-
ity. Then we validate the first assumption by the deepfake
detection experiments below.

Baselines. We compare to two recent state-of-the-art
CNN-based deepfake detectors [49, 460] as baselines. [49]
is trained on 40k real images and 40k generated images
equally from four generative models with distinct finger-
prints. We consider the open-world scenario where disjoint
generative models are used in training and testing, to chal-
lenge the classifier’s generalization. For [46] we use the
officially released model because they claim improved gen-
eralization across different generation techniques.

Results. We compare our solution to the two base-
lines on a variety of generation applications, models, and
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Detection  Attribution
Dataset Model Detector acc acc
[49] 0.508 0.235
ProGAN  [46] 0.924 N/A
Ours 1.000 1.000
| [49] 0.497 0.168
CelebA StyleGAN  [46] 0.906 N/A
Ours 1.000 1.000
[49] 0.500 0.267
StyleGAN2  [46] 0.895 N/A
Ours 1.000 1.000
[49] 0.493 0.597
ProGAN  [46] 0.952 N/A
Ours 1.000 1.000
[49] 0.499 0.366
LSUN StyleGAN  [46] 0.956 N/A
Bedroom Ours 1.000 1.000
[49] 0.491 0.267
StyleGAN2  [46] 0.930 N/A
Ours 1.000 1.000
[46] 0.951 N/A
ProGAN (5 1 1.000 1.000
LSUN [46] 0.923 N/A
Cat SyleGAN 6 1 1.000 1.000
[46] 0.905 N/A
StyleGANZ 5 1.000 1.000
] [46] 0.815 N/A
CIFAR-10 BigGAN (5 1 1.000 1.000
, [46] 0.836 N/A
Horse—Zebra CUT Ours 1.000 1.000
[46] 0.902 N/A
Cat=Dog CUT Ours 1.000 1.000

Table 3: Deepfake detection and attribution accuracy ({} in-
dicates higher is better). [46] is not applicable to the multi-
source attribution scenarios in the last column.

datasets. We test on 4k real images and 4k generated im-
ages equally from four generative models with distinct fin-
gerprints. We report deepfake detection accuracy in Table 3
fourth column. We observe:

(1) Our solution performs perfectly (100% accuracy) for
all the cases, turning open-world deepfake detection into a
trivial fingerprinting detection and matching problem.

(2) [49] deteriorates to random guess (~ 50% accuracy)
because of the curse of domain gap between training and
testing models. In contrast, our solution benefits from be-
ing agnostic to generative models. It depends only on the
presence of fingerprints rather than the discriminative cues
that are overfitted during training.

(3) Our solution outperforms [46] with clear margins. In
particular, [46] degenerates when model techniques evolve
to be more powerful (from ProGAN to StyleGAN2), or
condition on some input guidance. On the contrary, our
proactive solution synergizes with this evolution with high
fingerprint detection accuracy, and therefore, with perfect

deepfake detection accuracy. In general, our work offers
higher sustainability in the long run by proactively enforc-
ing a margin between real and generated images.

5.7. Deepfake Attribution

The goal of attribution is to trace the model source that
generated a deepfake. It upgrades the binary classification
in detection to multi-class classification. Our artificial fin-
gerprint solution can be easily extended for attribution and
enable us, standing for model inventors, to attribute respon-
sibility to our users when misuses occur.

Baseline. [40] is not applicable to multi-source attribu-
tion. We only compare to [49] in the open-world scenario,
i.e., the training and testing sets of generative models are
not fully overlapping. Given 40k generated images equally
from four generative models with distinct fingerprints, we
use [49] to train four one-vs-all-the-others binary classifiers.
During testing, all four classifiers are applied to an image.
We assign the image to the class with the highest confidence
if not all the classifiers reject that image. Otherwise, it is as-
signed to the unknown label.

Results. We compare our solution to [49] on CelebA
and LSUN Bedroom. We test on 4k/4k generated images
equally from four model sources that are in/out of the train-
ing set of [49]. We report deepfake attribution accuracy in
Table 3 last column. We obtain the same conclusions as
those of deepfake detection in Section 5.6. The open-world
attribution deteriorates for [49] while our fingerprinting so-
lution maintains the perfect (100%) accuracy.

6. Conclusion

Detecting deepfakes is a complex problem due to the
rapid development of generative models and adversarial
countermeasure techniques. For the sake of sustainabil-
ity, we investigate a proactive solution on the model inven-
tors’ side to make deepfake detection agnostic to generative
models. We root deepfake detection into training data, and
demonstrate the transferability of artificial fingerprints from
training data to a variety of generative models. Our empiri-
cal study shows several beneficial properties of fingerprints,
as well as perfect detection and attribution accuracy. Our
solution opens up possibilities for inventors’ responsibility
disclosure by allocating each model a unique fingerprint.
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