This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Benchmark Platform for Ultra-Fine-Grained Visual Categorization Beyond
Human Performance

Xiaohan Yu!
L Griffith University

xiaohan.yu@griffith.edu.au

Yang Zhao':2

yuanxiaohui@whut.edu.cn

Abstract

Deep learning methods have achieved remarkable suc-
cess in fine-grained visual categorization. Such success-
ful categorization at sub-ordinate level, e.g., different an-
imal or plant species, however relies heavily on the vi-
sual differences that human can observe and the ground-
truths are labelled on the basis of such human visual ob-
servation. In contrast, few research has been done for vi-
sual categorization at the ultra-fine-grained level, i.e., a
granularity where even human experts can hardly iden-
tify the visual differences or are not yet able to give af-
firmative labels by inferring observed pattern differences.
This paper reports our efforts towards mitigating this re-
search gap. We introduce the ultra-fine-grained (UFG)
image dataset, a large collection of 47,114 images from
3,526 categories. All the images in the proposed UFG im-
age dataset are grouped into categories with different con-
firmed cultivar names. In addition, we perform an exten-
sive evaluation of state-of-the-art fine-grained classifica-
tion methods on the proposed UFG image dataset as com-
parative baselines. The proposed UFG image dataset and
evaluation protocols is intended to serve as a benchmark
platform that can advance research of visual classification
from approaching human performance to beyond human
ability, via facilitating benchmark data of artificial intel-
ligence (Al) not to be limited by the labels of human in-
telligence (HI). The dataset is available online at ht tps :
//github.com/XiaohanYu-GU/Ultra-FGVC.

1. Introduction

The increasing popularity of deep learning methods has
led to tremendous success in the research field of fine-
grained visual categorization (FGVC). Human-observed
prior knowledge has played a key role in developing current
state-of-the-art fine-grained classification methods, e.g.,
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Figure 1. A visual comparison of the ultra-fine-grained visual cat-
egorization vs. the fine-grained visual categorization.

part-based methods [24, 61, 59, 68] driven by the human-
observed facts that visual differences among categories
might be subtle and reside in the unique properties of ob-
ject parts. Yet it remains unclear how these state-of-the-
art classification methods perform on what we call ultra-
fine-grained visual categorization (ultra-FGVC) tasks. The
ultra-FGVC is to classify images at an ultra-fine granularity
where even human experts may fail to identify or depict the
visual difference (see Fig.1 as an example).

Despite the significant importance of ultra-FGVC in
computer vision and artificial intelligence agriculture [65,
36], very few research has been reported to tackle the ultra-
FGVC tasks. This is mainly due to the absence of large-
scale ultra-fine-grained image datasets. To date, only a few
attempts have been made on the collection of ultra-fine-
grained image datasets [63, 35, 15]. Among these datasets,
the largest as well as the only publicly available dataset [63]
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contains 600 images from 100 categories, making it insuf-
ficient to provide current deep learning methods a practi-
cal and comprehensive test bed for ultra-FGVC evaluation.
Nevertheless, these pioneering works have reported encour-
aging similar to human performance on the ultra-FGVC
tasks, confirming the possibility of ultra-FGVC via machine
learning methods.

To develop effective deep learning models for such a
challenging scenario we require suitable and large-scale
ultra-fine-grained image datasets. Data collection in the
ultra-FGVC task, however, suffers from two limitations.
First, it is beyond the capability of human experts or volun-
teers to accurately annotate ultra-fine-grained images via vi-
sual observation, due to the very high inter-class similarity
(see Fig. 1). Second, as the spectrum of granularity moves
down from a fine level to an ultra-fine level, the number of
available samples in each category becomes smaller [53].
These limitations impede the progress towards building a
desirable dataset for ultra-FGVC tasks.

To the best of our knowledge, no large-scale dataset ex-
ists for the task of ultra-FGVC. As a first step to fill this gap
and to enable further research in the development of meth-
ods for ultra-FGVC, we introduce the ultra-fine-grained
(UFG) image dataset that facilitates a thorough evaluation
of such methods. The UFG image dataset contains in to-
tal 47,114 images from 3,526 ultra-fine-grained categories.
Despite the difficulty in the collection of large-scale ultra-
fine-grained images, our dataset is significantly larger than
existing ultra-fine-grained image dataset, making it a desir-
able test bed for current deep learning methods to perform
algorithm evaluations.

In contrast to existing fine-grained image datasets [54,

, 53,58, 60, 46, 32], the UFG image dataset differs in the
following aspects. Firstly, the label of each image is deter-
mined by the cultivar name of its plant seed from the genetic
resource bank. This solves one of the inherent problems
in current benchmark databases for visual categorization,
that is the ground truths are labelled by human, making the
Al systems learned from these databases in theory unable
to be more accurate than human. The proposed UFG im-
age dataset provides a benchmark platform and task for de-
veloping machine learning approaches whose performances
are not limited by human-observed labeling accuracy. Sec-
ondly, all the images are scanned in a laboratory environ-
ment, minimizing extra possible noises from complex back-
grounds. Given that ultra-FGVC remains a pioneering and
extremely challenging research problem, the major goal is
to stay focused on classifying the objects themselves in this
very early stage. Thirdly, more challenging than the cur-
rent fine-grained image datasets [54, 58, 32] that enable
the classification at a species level, the UFG image dataset
further moves down the granularity of category to the sub-
class of species, i.e., a cultivar level. Fig. 1 shows a visual

comparison of objects in the ultra-fine-grained visual cat-
egorization vs. the fine-grained visual categorization. Fi-
nally, compared with the fine-grained image datasets, the
UFG image dataset covers much smaller inter-class vari-
ations, making the ultra-FGVC a much more challenging
task for current fine-grained classification methods. A more
detailed discussion about the challenge of the UFG image
dataset is given in Section 3.3.

To explore the performance of current state-of-the-art
methods and motivate further research, we present an exten-
sive evaluation on the proposed UFG image dataset. Given
the extraordinary or even “superhuman” [44, 21] perfor-
mance of deep learning methods in classification tasks, we
evaluate 13 state-of-the-art classification methods as stan-
dard baselines for the UFG image dataset. The experimental
results show both the critical need and challenges of devel-
oping new methods for the ultra-FGVC tasks.

The main contributions of this paper are:

* Further advancing the fine-grained visual categoriza-

tion, we propose a challenging ultra-fine-grained vi-
sual categorization task that classifies objects at a
much finer granularity to the level that human may
fail to identify or provide affirmative description of
their visual differences. To facilitate this research, a
benchmark platform (dataset and evaluation baselines)
is created.

* A large scale ultra-fine-grained (UFG) image dataset,
which contains 47,114 images from 3,526 categories,
is structurally developed to enable the exploration and
evaluation for the ultra-FGVC tasks that is intended for
developing algorithms to achieve accuracies beyond
the capability of human.

* An extensive evaluation of recent state-of-the-art clas-
sification methods is performed, which serves as a
baseline platform together with the dataset for the
future advances towards addressing the challenging

ultra-FGVC problem.
The paper is organized as follows. Section 2 reviews

prior research on the ultra-fine-grained visual categorization
and related techniques. Section 3 describes the proposed
UFG image dataset. An extensive evaluation of current clas-
sification methods on the UFG image dataset is presented as
baselines of the dataset in Section 4. Finally Section 5 con-
cludes the paper.

2. Related Work

Ultra-Fine-Grained Visual Categorization. Ultra-fine-
grained visual categorization aims for classifying objects at
a very fine granularity where even human experts may fail
to identify or describe the visual difference. This challeng-
ing research topic has recently gained traction for its better
than human categorization capability and significant poten-
tial in artificial intelligence agriculture and smart farming,
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Table 1. Comparison with existing ultra-fine-grained leaf datasets. The “Object Only” indicates if the image contains nothing but the object

Dataset # of Categories  # of Images  Object Only  Publicly Available  Year
Soybean Leaf dataset [35] 3 422 Yes No 2014
Grapevine Leaf dataset [15] 16 282 Yes No 2018
SoyCultivarVein dataset [63] 100 600 Yes Yes 2019
UFG image dataset (Ours) 3,526 47,114 Yes Yes 2021

e.g., identifying the plant cultivars (a sub-class of species)
via leaf images [36, 35, 63, 65]. As a classification task,
the ultra-fine-grained visual categorization shares the same
goal with the popular fine-grained visual categorization, i.e.,
discriminating between large numbers of ultra-fine-grained
categories with small numbers of training samples in those
categories. However, very few research has been done on
the ultra-fine-grained visual categorization, mainly due to
the absence of ultra-fine-grained image datasets. There are
only a few ultra-fine-grained image datasets as listed in Ta-
ble 1. The first exploration of the ultra-fine-grained visual
categorization was reported in [35, 36], where 422 leaf im-
ages from three different soybean cultivars were collected
for classification. Their proposed vein-trait based classifi-
cation method delivered an average classification accuracy
ranging from 55.04% to 58.76%, significantly outperform-
ing the performance obtained by human experts (41.56%).
Despite the small number of cultivars included in the eval-
uation, their work showed that the ultra-fine-grained vi-
sual categorization (cultivar-level leaf classification) algo-
rithms achieved better accuracies beyond the capability of
human. Another exploration was performed on a grapevine
leaf dataset [15], which contains 282 leaf images from 16
different grapevine cultivars. Both the two datasets, how-
ever, are not made publicly available. A SoyCultivarVein
dataset [63] covering 600 leaf images from 100 different
soybean cultivars was recently released. The classification
on the SoyCultivar Vein dataset was then formally defined as
an ultra-fine-grained visual categorization task [65]. Clas-
sifying objects at such a fine granularity, inevitably brings a
significant challenge to current methods.

Despite these significant pioneering efforts in the ultra-
fine-grained visual categorization, existing datasets com-
prise only a few categories, making them insufficient to
provide a practical and comprehensive test bed for baseline
evaluations. The tremendous success of recent deep con-
volutional neural network methods in various areas of com-
puter vision heavily relies on the development of large-scale
image datasets. Consequently, recently published dataset
papers [25, 3, 52, 37,23, 19, 18, 27, 58, 47, 1, 45, 16, 72]
have devoted to the dataset characterization, baseline es-
tablishment, and future inspiration, rather than delivering
a specific method that is particular (or only) suitable for the

proposed dataset. As such, to enable further research on
the ultra-fine-grained visual categorization, we establish a
large-scale ultra-fine-grained image dataset and evaluation
baselines.

Fine-Grained Classification Methods. Fine-grained vi-
sual categorization has attracted extensive attention in the
recent decade [20, 11, 13, 62,7, 61, 57, 60, 34, 9, 53, 69,
, 2]. The release of various datasets
[54, 26,53, 58, 60, 46] has played a key role in driving such
a great progress. The taxonomy system of these datasets
enables the classification down to a fine granularity, e.g.,
species level. Consequently, various methods have been
developed to address the species-level classification tasks,
such as bird species classification [54], insect pest recogni-
tion [58], and plant species leaf classification [32], making
species classification a rich and mature research field.

s ’ s ) s )

Ultra-fine-grained visual categorization (ultra-FGVC)
originates from the popular fine-grained visual categoriza-
tion (FGVC) but differs significantly from FGVC regarding
the granularity of taxonomy system. While the FGVC deals
with images mostly relying on the human-observed prior
knowledge, the ultra-FGVC covers the images that even hu-
man experts may fail to identify or depict their differences.
Given the wealth of fine-grained classification methods and
the absence of the ultra-fine-grained research, we naturally
follow and investigate several popular algorithms that have
been proven effective in fine-grained species classification
tasks. To evaluate a newly proposed fine-grained image
dataset, a common strategy is to establish baselines using
the deep learning methods, e.g., Alexnet [31], VGG-16 [48]
and ResNet-50 [22] for their practicality and effectiveness
[58].

Since the subtle inter-class differences often reside in
the unique properties of object parts, localizing informative
sub-regions or parts is therefore considered as a promising
solution [42, 24, 14,70, 61]. By introducing extra part land-
mark annotations [42, 24] or additional network structure
[14, 70], these methods have obtained significant perfor-
mance improvements in fine-grained classification tasks. To
enable a more practical solution, Yang ez al. [61] introduced
a self-supervision mechanism, which can effectively local-
ize informative regions without requiring extra annotations
of parts or key areas.
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Figure 2. An overview of the proposed UFG image dataset. Each
row shows images from a subset of the UFG image dataset. Each
image represents a category in its associated subset.

SoyLocal

Another line of research focuses on improving feature
representations by employing second order statistics and co-
variance based representation [56, 39, 40]. Lin and Maji
[41] introduced statistics normalization methods such that
an architecture is able to capture second-order statistics of
convolutional features in a translationally invariant man-
ner. Li et al. [38] proposed an iterative matrix square root
normalization method for fast end-to-end training of global
covariance pooling networks. Despite the increase of fea-
ture dimension, these methods embedded the second order
statistics in the feature level, and achieved state-of-the-art
performances in various fine-grained classification tasks.

However, the number of images per category could
be very small in the ultra-fine-grained visual categoriza-
tion, leading to another challenge to the current classifi-
cation methods, i.e., how to avoid the overfitting problem.
Many attempts have been made to mitigate this problem
[50, 55, 51]. Among them, a data augmentation method
[33] was introduced to randomly erase patches of given im-
ages and has been proven very effective in avoiding the
overfitting. More recently, Chen ef al. [7] introduced an
effective Destruction and Construction (DCL) method for
the fine-grained classification tasks. In their design, the in-
put images are first partitioned into local regions and then
shuffled via a region confusion mechanism. Their method
effectively drives the learning within those discriminative
regions for spotting the subtle inter-class differences.

Despite the tremendous success made by the classifica-
tion methods in various fine-grained visual categorization
tasks, it remains unclear how these methods perform on the
ultra-fine-grained visual categorization tasks. This also mo-
tivates us to introduce the UFG image dataset that facilitates
a thorough evaluation of current fine-grained methods on
the ultra-fine-grained visual categorization tasks.

3. Dataset Collection and Design

In this section, we describe the image collection, design
consideration, taxonomic system and insight analysis of the
proposed UFG image dataset. An overview of the UFG im-
age dataset is shown in Fig. 2.

3.1. Image Collection

Previous explorations have already shown the extreme
difficulty of ultra-fine-grained visual categorization for both
human and machine learning methods. However, only a
small number of categories are involved (no more than 100
categories) in these works, impeding further progress to-
wards a more practical and large-scale ultra-fine-grained vi-
sual categorization. The absence of large-scale datasets is
mainly due to the fact that data collection for the ultra-fine-
grained visual categorization is extremely difficult. Unlike
general or fine-grained image datasets, which can be col-
lected via online resources and annotated by human experts
or volunteers, large-scale ultra-fine-grained images are dif-
ficult to be collected and accurately annotated via online
resources. This is mostly because the annotation via human
(experts or volunteers) observation is almost impossible for
the ultra-fine-grained images (see Fig. 1).

To that end, we consider two main objectives in the im-
age collection process. The first is to cover as many cat-
egories as possible. The second is to collect images in
a clear and complete manner, as well as to avoid includ-
ing noisy and complex backgrounds. This is because the
ultra-FGVC remains an early stage and extremely challeng-
ing research problem, and thus should avoid extra noises in
the current stage. In the collection, each of the plants has
been provided with a confirmed cultivar name attached to
the seed obtained from the genetic resource bank. Using
such a breeding based label ensures the annotation is accu-
rate, and can avoid the human observation bias or errors.
And more importantly, it opens the door for researchers to
develop visual categorization algorithms that can be more
accurate than human. These picked leaves are then sent to
be scanned in a laboratory environment, using an EPSON
perfection V850 Pro scanner with reflective scanning mode,
a resolution of 600 DPI and 48 bit true color setting. While
we can not completely avoid any possible noise, such as
the bug holes or dirty dots on the leaves, the collection pro-
cess to the fullest extent ensured that the images meet the
requirement of the ultra-fine-grained visual categorization.
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Figure 3. An example of illustrating the large intra-class variations
in the UFG image dataset. (a) Four leaf images from the same
category in SoyLocal subset. (b) Four leaf images from the same
category in Cotton80 subset.

3.2. Dataset Structure

In this section, we describe the composition of the pro-
posed UFG image dataset. According to the number of
samples per category, we split the UFG image dataset into
large-sample subsets and small-sample subsets. The first
group covers the subsets that have more than 20 images per
category, i.e., SoyAgeing subset and SoyGene subset. The
second group, on the contrary, is composed of subsets that
have less than 20 images per category, i.e., SoyLocal subset,
SoyGlobal subset and Cotton80 subset.

Large-sample subsets: (1) SoyAgeing Subset contains
the soybean leaves of five reproductive stages. There are
198 different categories in this subset. Each category con-
tains leaf images from the above 5 reproductive stages. In
each reproductive stage, there are 10 leaf images. Thus,
each category consists of 5 x 10 = 50 leaf images. The
total number of the leaf images is then 198 x 50 = 9, 900.
A more detailed introduction of this dataset is discussed in
Supplementary File (Section 1). (2) SoyGene Subset cov-
ers 23,906 leaf images in total, from 1,110 different soybean
categories. The number of images in each category ranges
from 6 to 27.

Small-sample Subsets: (3) SoyGlobal Subset contains
1,938 different soybean categories with 6 leaf images per
category, resulting in a total number of 11,628 images.
(4) SoyLocal Subset consists of 1,200 images of 200 cat-
egories, with 6 images per category. (5) Cotton80 Subset
includes 480 images of 80 categories, with 6 images per
category. The source leaves of images in this subset are all
from one plant species, cotton.

3.3. Challenges

We present an insightful analysis of the challenges
brought by the proposed UFG image dataset.
Large-sample Subsets. The large-sample subsets im-
prove existing ultra-fine-grained image datasets regarding
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Figure 4. An example of illustrating the small inter-class variations
in the UFG image dataset. (a) Four leaf images from four differ-
ent categories in SoyLocal subset. (b) Four leaf images from four
different categories in Cotton80 subset.

the number of images per category and the number of cat-
egories. However, it remains a challenging dataset for cur-
rent classification methods, due to the fact that very limited
prior knowledge about ultra-fine-grained visual categoriza-
tion is available to drive the learning.

Small-sample Subsets. The categories in the SoyCultival.-
ocal subset share closely related genotypes which may lead
to similar phenotypes, e.g., leaf shapes, among different cat-
egories. The main challenge of Cotton80 subset lies in the
fact that cotton leaves commonly have the palm-like shapes,
which may easily have a self-overlapping problem. The
SoyGlobal subset covers a huge number of categories, mak-
ing the classifier training a difficult task. Moreover, these
subsets contain a small number of samples per category,
which is more likely to suffer from overfitting problem.

In addition, a significant challenge exists in all the sub-
sets of the UFG image dataset, i.e., the large intra-class
variations as well as the small inter-class variations. An
example of illustrating the large intra-class variations and
small inter-class variations is given in Fig. 3 and Fig. 4,
respectively. In Section 4, we experimentally show that the
UFG image dataset poses a new challenging problem for the
state-of-the-art deep learning methods and the fine-grained
classification techniques.

Relation to CIFAR-10 and iNaturalist Datasets. General
object classification tasks such as CIFAR-10 [30] aim to
categorize objects where inter-class variances are visually
obvious and relatively large to distinguish. The recently de-
veloped iNaturalist2019 [53] includes 1,010 species from
72 genera (super-class of species) with 10-38 species per
genus. It is a dataset for species or genera classification that
belongs to Fine-Grained Visual Categorization (see top row
in Fig. 1). In contrast, the proposed UFG image dataset
further moves down the taxonomy granularity from species
to cultivar (see bottom row in Fig. 1) and covers to date
the largest number of cultivars (e.g. 3,446 within a single
species). Fig 5 shows the difference and relation among
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Figure 5. An example of illustrating the difference and relation
among CIFAR-10 dataset, iNaturalist2019 dataset and the pro-
posed UFG dataset.

CIFAR-10 dataset (for general object classification), iNat-
uralist2019 (for fine-grained object classification) and the
proposed UFG dataset (for ultra-fine-grained object classi-
fication).

4. Experimental Analysis

We perform an extensive evaluation of multiple state-of-
the-art methods for the ultra-fine-grained visual categoriza-
tion on the proposed UFG image dataset. These methods
serve as the associated baselines of this dataset for future
work. Specifically, we first introduce the adopted baselines
and their implementation details. Then we report an evalua-
tion on the large-sample subsets and small-sample subsets.
Finally, we present a discussion of the evaluation.

Table 2. The evaluation statistics of the UFG image dataset.

Datasets  # of Categories Training Test
SoyAgeing 198 4,950 4,950
SoyGene 1,110 12,763 11,143
Cotton80 80 240 240
SoyLocal 200 600 600

SoyGlobal 1,938 5,814 5814

4.1. Baselines and Implementation

A statistics overview of the five subsets from the UFG
image dataset is listed in Table 2. For the SoyAgeing subset
and small-sample subsets, we use a setup where half of the
images in each category are randomly selected as the train-
ing set, and the remaining images form the test set. As the

Table 3. The classification accuracy on the Cotton80 and SoyLocal
subsets.

Top 1 Accuracy (%)

Method

SoyLocal Cotton80

#3  #10 #50 #3  #10 #50

Human Expert 63.89 32.50 12.84 66.67 63.33 14.00
Alexnet [31]  88.89 53.33 33.33 88.89 66.67 24.67
VGG-16 [48]  77.78 50.00 56.00 77.78 56.67 53.33
ResNet-50 [22] 88.89 63.33 62.00 88.89 66.67 52.67
DCL [7] 88.89 63.33 60.67 77.78 73.33 54.67

SoyGene subset may contain odd-number images in some
categories, we equally split the images in each category into
training set and test set, and assign the extra images (if ex-
isted) to the training set. An extra experiment of validating
the effect of increasing training samples is discussed in Sec-
tion 4.4.

We include in total 13 state-of-the-art classification
methods as the baselines of the proposed UFG image
dataset. The baselines are broadly categorized into two
groups. One group covers the state-of-the-art deep learning
methods including Alexnet [31], VGG-16 [48], ResNet-50
[22]. The other group is composed of 10 state-of-the-art
fine-grained classification methods: SimCLR [5], MoCo v2
[6], BYOL [17], Cutout [12], Hide and Seek [49], ADL [&],
Cutmix [66], fast-MPN-COV [38], DCL [7], and MaskCOV
[64].

The baselines are implemented in the Pytorch frame-
work. To keep the aspect ratio of the original object shapes,
the training images are padded to square before being re-
sized to the size of 440 x 440, and then randomly cropped
to the size of 384 x 384. In the inference stage, the images
are directly resized to 384 x 384.

The deep learning baselines are trained for 160 epochs
using SGD with a batch size of 16. The learning rate is
0.001 initially and then decreases by a factor of 10 every 60
epochs. A more detailed implementation is given in Sup-
plementary File (Section 2). Top-1 accuracy is used as the
metric for classification evaluation.

4.2. Human Experts v.s. Deep Learning

Table 3 gives the classification accuracies from human
experts and deep learning methods. Following [35, 36], we
select the first three cultivars in SoyLocal and Cotton80 sub-
sets to perform an evaluation of deep learning methods and
human experts. The number of cultivars included is then in-
creased to 10 and 50 respectively for a comprehensive eval-
vation. The human expert results are average results con-
tributed from four soybean breeding experts and one cotton
breeding experts.
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Table 4. The classification accuracy on the Cotton80 (Cotton.), SoyLocal (Soy.Loc.), SoyGene (Soy.Gene), SoyGlobal (Soy.Glo.), Soy-
Ageing (Soy.Age.) datasets. For Soy.Age. dataset, the average classification accuracy on its five subsets (R1-R6) is reported.

Top 1 Accuracy (%)

Method Backbone
Cotton. Soy.Loc. Soy.Gene Soy.Glo. Soy.Age.

Alexnet [31] Alexnet 22.92 19.50 13.12 13.21 44.93
VGG-16 [48] VGG-16 50.83 39.33 63.54 45.17 70.44
ResNet-50 [22] ResNet-50 52.50 38.83 70.21 25.59 67.15
SimCLR [5] ResNet-50 51.67 37.33 62.68 42.54 64.73
MoCo v2 [6] ResNet-50 45.00 32.67 56.49 29.26 59.13
BYOL [17] ResNet-50 52.92 33.17 60.65 41.35 64.75
Cutout [12] ResNet-50 54.58 37.67 61.12 47.06 65.70
Hide and Seek [49] ResNet-50 48.33 28.00 61.27 23.74 60.48
ADL [8] ResNet-50 43.75 34.67 55.19 39.35 61.70
Cutmix [66] ResNet-50 45.00 26.33 66.39 30.31 62.68
fast-MPN-COV [38] ResNet-50 50.00 38.17 45.26 11.39 63.66
DCL [7] ResNet-50 53.75 45.33 71.41 42.21 73.19
MaskCOV [64] ResNet-50 58.75 46.17 73.57 50.28 75.86

4.3. Evaluation on Large-Sample Subsets

Table 4 shows the performance of the baseline methods
on the SoyAgeing and SoyGene subsets. In addition to the
average accuracies of the five stages, we also report the clas-
sification accuracy obtained on each stage in Supplementary
File (Section 3 and Table 2). We observe that VGG-16 out-
performs the other two deep learning methods, and the DCL
achieves the best results among all the baselines. For the
SoyGene subset, 11 out of 13 competing baselines achieve
classification accuracies higher than 50%. Given that the
SoyGene subset contains more than 1,000 categories, the
baseline results seems to be very promising, which also con-
firms the possibility of addressing the ultra-fine-grained vi-
sual categorization.

The overall classification accuracies obtained on the
large-sample subsets are very encouraging comparing to the
accuracy of leading classification methods or human experts
on previous ultra-fine-grained image datasets. This is pos-
sibly due to (1) a larger number of samples covered in the
large-sample subsets which enables a more comprehensive
learning process, and (2) the advancement of current data-
driven deep learning techniques, especially the fine-grained
classification methods.

4.4. Evaluation on Small-Sample Subsets

Table 4 shows the classification accuracy results of the
baselines on the SoyGlobal subset. The Cutout achieves
the best performance, outperforming the other competing
baselines including the fine-grained classification methods.

With such a large number (1,938) of categories and small
number (6) of images per category, it makes sense that
all the baselines obtain low classification accuracies (lower
than 45.17%) on this challenging subset.

On the SoyLocal subset, MaskCOV and DCL obtain the
best and second best performances respectively among all
the baselines. Recall that the major challenge of SoyLo-
cal subset is the very small inter-class variations (as stated
in Section 3). This superior performance seems reasonable,
given that both methods are designed to focus more on those
local and subtle inter-class differences (as discussed in Sec-
tion 2). For the Cotton80 subset, despite that the number of
categories in this subset is only 80, the baselines achieve
classification accuracies lower than 60%. This is partly
due to the large intra-class variations caused by the self-
overlapping of cotton leaf images.

4.5. Discussion

A more detailed evaluation is provided in Supplementary
File (Section 3 and Tables 1&2). Throughout the extensive
evaluation, we observe several interesting phenomenons
that are discussed as follows. First, there is a large perfor-
mance gap between the large-sample subsets and the small-
sample subsets. Comparing the SoyGene subset and the
SoyLocal subset, the baselines consistently achieve a higher
classification accuracy on the SoyGene subset, which cov-
ers more training samples per category. For example, DCL
[7] delivers 71.41% average classification accuracy on the
SoyGene subset, which is 26.08% higher than that obtained
on the SoyLocal subset. Given that the two subsets may
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Figure 6. Examples of the Classification Activation Map (CAM)
of DCL and ResNet-50 on four images from one category.

have different characteristics, the number of samples per
category may not be the only factor to produce such a per-
formance gap. Therefore, we evaluate the Cotton80 subset
with two different protocols, i.e., adjusting the ratio of train-
ing samples and test samples to 3:1 and 5:1, respectively.
We report the results of VGG-16, ResNet-50, and DCL un-
der the two new settings in Table 5. The performances of
the baselines consistently improve as the training number
increases. Therefore, it might be reasonable to consider
improving data augmentation or other techniques that can
increase training samples to partly address the ultra-FGVC
task. Besides, we also report fine-grained classification re-
sults on the proposed UFG dataset by identifying objects at
a species level, i.e., differentiating cotton and soybean. We
observe that both ResNet-50 and DCL can achieve 100%
of classification accuracy on this fine-grained classification
task. More details are provided in Section 4 in the Supple-
mentary File.

Second, the fine-grained DCL method achieves compet-
itive performance over the other competing baselines on all
the five subsets. To provide a more comprehensive compar-
ison, we adopt the Classification Activation Map (CAM)
[71] to visualize the associated feature maps. Examples of
the CAMs are given in Fig. 6. We observe that, compared
with the ResNet-50, the DCL focuses in a more consistent
and compact manner on local regions among the leaf im-
ages from the same category. This indicates that localizing
local discriminative parts or regions might be a promising
solution to the ultra-FGVC task.

5. Conclusion

Ultra-fine-grained visual categorization (ultra-FGVC)
classifies objects further down the granularity of category
to the sub-class of those in current fine-grained visual cat-
egorization (FGVC) tasks. Despite the promising and even
saturated performance obtained by current state-of-the-art
deep learning methods in the FGVC tasks, it remains un-

Table 5. The classification accuracy on the Cotton80 subset with
different ratio of training samples and test samples.

Ratio (Training : Test)

Method

3:1 5:1
VGG-16 [48] 46.25 58.75
ResNet-50 [22] 46.25 57.50
DCL [7] 53.75 63.75

clear how these methods perform on the ultra-FGVC tasks
where the human-observed prior knowledge is no longer
available. The research on the ultra-FGVC has been heavily
impeded due to the absence of large-scale ultra-fine-grained
image datasets.

To fill this gap, we introduced the UFG image dataset,
which has covered so far the largest scale data in the ultra-
FGVC field. In contrast to existing fine-grained image
datasets, UFG image dataset has a unique annotation sys-
tem, i.e., categorizing images with breeding based labels
of the seeds from the genetic resource bank, making it a
benchmark platform for developing machine learning meth-
ods whose performances are not limited by human-observed
labeling accuracy. As such, the UFG image dataset opens
up possibilities to advance the research of visual categoriza-
tion from approaching human performance to beyond hu-
man capability, rather than serving merely as a challenging
benchmark platform for visual categorization.

The UFG image dataset has offered two large-sample
subsets and three small-sample subsets, depending on the
number of samples per category. We have included in total
13 state-of-the-art classification methods as the baselines of
the UFG image dataset. The evaluation on the large-sample
subsets have shown very encouraging performances com-
pared to those of leading methods or human experts on pre-
vious ultra-fine-grained image datasets, indicating the pos-
sibility of addressing the challenging ultra-FGVC tasks. In
contrast, the performances obtained on the small-sample
subsets are far from saturated, highlighting the difficulty in
addressing the overfitting problem often accompanied with
the ultra-FGVC. It is observed that localizing subtle dis-
criminative parts or regions has shown signs of importance
in addressing the ultra-FGVC. Given the extensive data and
accompanying annotations available for analysis and bench-
marking, the UFG image dataset may act as a cornerstone in
research into ultra-FGVC. Evidently, it would also serve as
a precious resource for potential applications in computer
vision, pattern analysis, and artificial intelligence agricul-
ture.
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