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Abstract

Image matting refers to the estimation of the opacity of
foreground objects. It requires correct contours and fine
details of foreground objects for the matting results. To bet-
ter accomplish human image matting tasks, we propose the
Cascade Image Matting Network with Deformable Graph
Refinement(CasDGR), which can automatically predict pre-
cise alpha mattes from single human images without any
additional inputs. We adopt a network cascade architecture
to perform matting from low-to-high resolution, which cor-
responds to coarse-to-fine optimization. We also introduce
the Deformable Graph Refinement (DGR) module based on
graph neural networks (GNNs) to overcome the limitations
of convolutional neural networks (CNNs). The DGR mod-
ule can effectively capture long-range relations and obtain
more global and local information to help produce finer al-
pha mattes. We also reduce the computation complexity
of the DGR module by dynamically predicting the neigh-
bors and apply DGR module to higher–resolution features.
Experimental results demonstrate the ability of our Cas-
DGR to achieve state-of-the-art performance on synthetic
datasets and produce good results on real human images.

1. Introduction
Image matting refers to the problem of extracting high–

quality alpha mattes (the opacity of foreground object at
each pixel) from a set of given images. As a practical image
processing technology, matting has a variety of applications
for image and video editing. Generally, the composition of
image I is expressed as a linear equation as follows:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1)

where Ii is the RGB color at pixel i, αi is the matte value
at pixel i and Fi and Bi are the RGB colors of the fore-
ground and background at pixel i. Matting is a highly ill-
posed problem, i.e., there are seven unknown values and

*Joint first authors.
†The corresponding author is Li Chen.

only three known values at each pixel, which increases the
difficulty of solving matting problems. Although existing
works have provided effective ways to perform matting,
they still present limitations.

The first limitation is that most existing works [47, 1,
19, 12, 52] have predicted alpha mattes by using a one-
pass encoder–decoder network, which may result in inac-
curate contours and artifacts when foreground and back-
ground have similar local features. This is mainly due to
that those methods predict alpha mattes from single–scale
features and cannot make full use of the global and local
information contained in the image.

The second limitation is that existing CNN-based mat-
ting methods cannot well handle certain slender objects
(e.g., human hair). In addition to the basic use of CNN in
the network architecture, some matting works have tried to
refine the details of alpha mattes after the backbone network
with CNN-based module. Xu et al. [47] used a lightweight
fully convolutional neural network (CNN) to generate sharp
boundaries for alpha mattes. Cai et al. [1] proposed a prop-
agation unit that could refine alpha mattes with accurate de-
tails and less artifacts. However, these CNN-based refine-
ment methods are restricted by the fixed shape of convolu-
tional kernels and a limited receptive field, leading to per-
formance degradation when manipulating slender objects.

To overcome the first limitation, we simulate the matting
logic of human. While meeting the matting tasks, people
generally first determine the overall contour of the fore-
ground object and then iteratively improve the details in
boundary areas under the guidance of the contour. There-
fore, we design a network cascade architecture for image
matting to generate more accurate contours and details of
foreground objects. Our method predicts coarse alpha mat-
tes from low–resolution images as contours and then pro-
gressively supplements the details from high–resolution im-
ages under the guidance of the contours. Through this low-
to-high, coarse-to-fine pipeline, our network can supple-
ment local information with global information and esti-
mate extremely finer alpha mattes with correct contours and
precise details.

To overcome the limitations of CNN and produce bet-
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ter performance on slender objects, we apply a graph neu-
ral network(GNN) to extract features with higher quality.
Compared with CNN, GNN has shown its ability to better
capture long-range dependencies from data. Some existing
works [33, 21, 51] used GNN to improve the performance
of detection and segmentation. However, these GNN-based
methods are limited by high computation complexity and
time consumption, as GNN requires large number of nodes
and thus can only be applied to low–resolution feature maps
or superpoints set obtained by clustering.

Inspired by deformable convolutional networks [10] that
can dynamically adjust kernel shapes according to objects,
we propose the Deformable Graph Refinement (DGR) mod-
ule to reduce the computation cost of graph construction and
propagation. The DGR module uses the convolutional net-
work to predict the coordinates of neighbors and performs
information aggregation and transmission among pixels.

We combine two solutions above and propose a method
called the Cascade Image Matting Network with De-
formable Graph Refinement (CasDGR). First, the network
cascade architecture is designed to enhance the simulation
of the coarse-to-fine matting logic. Second, the DGR mod-
ule is adopted to improve the obtaining of more appropriate
features and the handling of slender objects.

The main contributions of this study are as follows:

• We propose an end-to-end automatic image matting
approach to produce high-quality alpha mattes from
single RGB images.

• We design a network cascade architecture to estimate
alpha mattes in a coarse-to-fine manner.

• We present a Deformable Graph Refinement module
based on GNN that can preserve more details of the
matting results and be applied on higher–resolution
features.

Some existing work [47, 31, 26] require trimaps as ad-
ditional inputs. However, the construction of high–quality
trimaps is complicated. Automatic matting methods [52,
38, 34, 30] whose inputs do not contain trimaps are more
challenging, but more convenient and feasible for some
applications, such as matting for human only. Our Cas-
DGR is also automatic and can achieve good matting per-
formance with single RGB images. Similar to [38], we test
our method on Adobe human image dataset [47]. The ex-
perimental results demonstrate that our method can achieve
state-of-the-art performance and produce excellent visual
results. What’s more, our automatic matting approach out-
performs existing trimap-based methods both quantitatively
and qualitatively. We also test the CasDGR on natural hu-
man images. Our method shows good performance on real-
world human images as well.

2. Related Work

2.1. Image Matting

Current image matting methods can be divided into tra-
ditional methods and learning-based methods.

Traditional methods. Sampling-based methods [9, 13,
39, 17, 45] mainly use statistical methods to sample and
model the color of known foreground and background re-
gions and determine the best color pair of each unknown
pixel and calculate the alpha mattes. Propagation-based
methods [6, 23, 42, 22, 24] propagate the alpha values
of known regions to unknown regions according to the
affinities among adjacent pixels. Nevertheless, traditional
methods utilize color information and location information
instead of semantic information and context information,
which may lead to loss of essential detail.

Learning-based methods. Learning-based matting
methods compensate the disadvantages of traditional meth-
ods and generally offer better performance. Trimap-based
learning methods require annotated trimaps as additional in-
puts. Cho et al. [8] utilized the results of [6] and [23] and
normalized RGB color to predict alpha mattes by using a
deep CNN. Xu et al. [47] first proposed an encoder–decoder
structure network to estimate alpha mattes. The refinement
stage in their work could produce extrmely sharp bound-
aries. Hou et al. [19] used two encoders to extract local
and global context information and perform matting. Cai
et al. [1] adopted a multi-task learning method to complete
two subtasks, and a propagation unit was used to process
the results of the two subtasks and consequently obtain the
final alpha mattes. Forte and Pitié [12] proposed to predict
foregrounds, backgrounds, alpha mattes by using a single
encoder–decoder. Hao et al. [31] optimized the upsampling
operator and applied it to image matting. Tang et al. [43]
utilized sampling networks and a matting network to per-
form color sampling and matting.

Automatic methods do not need additional trimaps,
hence avoid the constraints of trimaps. Shen et al. [40] esti-
mated trimaps by using a CNN and performed matting with
method of [23]. Sengupta et al. [38] used disturbed back-
grounds and segmentation results as additional inputs to si-
multaneously predict alpha mattes and foregrounds. Zhang
et al. [52] first obtained the probability maps of a fore-
ground and a background and then fused them to obtain the
final alpha mattes. Liu et al. [30] used coarse annotated data
coupled with fine annotated data to improve matting perfor-
mance. Qiao et al. [34] used channel and spatial attention
mechanisms to extract multi-level features from a set of sin-
gle images.

Most deep learning methods aim to enhance the mat-
ting based on the single encoder–decoder architecture and
do not provide effective refinement stage.We apply the net-
work cascade architecture to our CasDGR to perform the
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matting process in a coarse-to-fine manner. A novel DGR
module is proposed for feature refinement. The experimen-
tal results prove that both proposed techniques can achieve
a considerably improvement in the matting results.

2.2. Network Cascade

Network cascade is an effective architecture for many
computer vision tasks, such as detection [28, 3], segmen-
tation [25], and pose estimation [7]. The central idea of
using the network cascade is to solve challenging tasks in
a coarse-to-fine manner. Cai et al. [3] presented Cascade
R-CNN to achieve progressive refinement of detection re-
sults. Chen et al. [7] predicted multiple heatmaps of human
keypoints in high-to-low resolution and fused them using
RefineNet. Li et al. [25] handled easy regions in shallow
layers and hard regions in deep layers to improve the ac-
curacy and speed of semantic segmentation. To the best of
our knowledge, the CasDGR is an early attempt to adopt a
network cascade architecture into image matting tasks.

2.3. Graph Neural Network

Many graph neural networks (GNN) [37, 27, 8, 20, 16,
44] have been proposed to solve the general problems of
graphs. Compared with CNN, GNN can better capture
long-range dependencies from data, which benefits many
computer vision tasks, such as detection [41, 32, 48], seg-
mentation [33, 21, 51, 48] , and pose estimation [50, 2]. Luo
et al. [32] designed Cascade-GNN for RGBD salient object
detection to exploit useful information from RGB and depth
images. Cai et al. [2] used the graph convolution network
to exploit the spatial and temporal relationship of 3D human
body and hand pose. In [33, 21, 41], the authors proposed
GNN-based methods for segmentation and detection on 3D
point clouds. However, the methods manifest restrictions
on data size resulting from the high computation cost and
low running speed of GNN. DGMN [51] and RepGNN [48]
can reduce the computation cost by dynamically sampling
the nodes, consequently improving the performance of seg-
mentation and detection. Our work can predict the neigh-
bors of each node and adopted into higher resolution feature
maps, thus helping to obtain more details to solve the image
matting problems.

3. Approach
In this section, we first introduce the overall network ar-

chitecture and details of our CasDGR. Then, the loss func-
tions and implementation details are presented.

3.1. Cascade Network Design

As shown in Figure 1, the central idea of our approach is
to use a network cascade architecture to predict alpha mat-
tes from low to high resolution. The CasDGR consists of

five stages in total. Similarly to most previous works, each
stage is composed of an encoder–decoder U-structure net-
work. Inspired by U2-Net [35], we use Residual U-block
(RSU) as the backbone network in each stage owing to its
ability to extracting multi-scale features and its low com-
putation cost. The input of each stage contains an image
with different resolutions scaled from the original image.
No other additional inputs are required by our network. In
stage m (m ∈ [2, 4]), we first use a 3×3 convolutional layer
to generate the 64-channel feature map Fm

in from the input
image. Then the Fm

in is concatenated with the refined fea-
ture map Fm−1

re from the previous stage. The RSU block
takes the concatenation of two feature maps as the input
and then outputs feature map Fm

out with the same resolution
as Fm

in. Fm
out is fed into the Deformable Graph Refinement

(DGR) module to generate the 64-channel refined feature
map Fm

re. Finally, a 3×3 convolutional layer is used to pre-
dict the 1-channel alpha mattes from Fm

re. Moreover, Fm
re

is upsampled two times for concatenation with Fm+1
in in the

next stage.

The details of the RSU blocks are also shown in Fig-
ure 1. The encoder part continuously performs convolution
and downsampling on the feature map, whereas the decoder
part performs upsampling and convolution to restore the
feature map to the original resolution. Skip connections are
applied to corresponding layers between the encoder and
decoder. Atrous convolution is used in the deep layers to
further enlarge the receptive field. Different from original
RSU blocks, we use group normalization (GN) [46] instead
of batch normalization (BN) after each convolutional layer
in our network, because our CasDGR is trained with small a
batch size (2 on each GPU). Furthermore, the performance
of BN may degrade when the batch size is small.

The CasDGR handles image matting tasks in a coarse-
to-fine manner and predicts multiple alpha mattes from
low to high resolution. In the earlier stages, the network
extracts more global information in concordance with the
much larger receptive field from the downsampled input im-
age. This approach can help to improve the detection of the
foreground object area. The predicted alpha mattes from
these earlier stages can be regarded as coarse segmentation
masks of the foreground object in visual perception. In the
later stages, the predicted alpha mattes are further improved
by using both higher–resolution input images and feature
maps from previous stage; the former supplements the de-
tail that may have been lost in earlier stages, whereas the
latter provides rich semantic information. The DGR module
further improves the quality of the generated feature maps
by means of a graph-based model, which will be discussed
in the succeeding sections. Thus, our CasDGR can progres-
sively refine the details from stage 1 to 5 while maintain-
ing the correct contour of the foreground correct and conse-
quently produce high–quality alpha mattes.
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Figure 1. Overview of the proposed CasDGR. The main architecture is a cascade network contains 5 stages, where each stage is an encoder–
decoder network followed by a DGR module. Given an input image, we downsample it to multi-scale inputs for each stage and estimate
multi–resolution alpha mattes from low to high. We only use the predicted alpha matte of the last stage for further evaluation.

3.2. Deformable Graph Refinement

We propose the Deformable Graph Refinement (DGR)
module for feature map refinement. The details of the DGR
module are shown in Figure 2. We regard the feature map
with a shape of H × W × C as a composition of H × W
nodes and construct a graph on them in which each node en-
tails a C-dimension feature. The DGR module is inspired
by deformable convolutional networks [10], which dynami-
cally adjust convolution kernels. We assume that each pixel
in the feature map Fout ∈ RH×W×C outputed from the de-
coder initially has K adjacent neighbors initially and use a
convolutional layer to apply a 2D offset to each neighbor.
Then, we calculate the neighbor coordinates and use the bi-
linear interpolation method to obtain the neighbor feature
values from Fout. We design a model for the neighbors’ in-
formation aggregation and the feature map refinement. For
a node i in Fout, we refine its feature as follows:

sij = (W1F
i
out)

T (W2F
j
out), j ∈ N (i), (2)

βij =
exp (sij)∑

k∈N (i) exp (sik)
, (3)

Fi
re = σ(

∑
j∈N (i)

βijW2F
j
out), (4)

, where N (i) is the neighbors set of node i. W1,W2 ∈
RC

′
×C are two weight matrices that can be optimized. Eq.

2 calculates the similarity sij between node i and its neigh-
bor j. Then, Eq. 3 is calculated with a softmax function to
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Figure 2. Illustration of the Deformable Graph Refinement (DGR)
module. The input is the feature map output by the RSU block.
DGR first predicts K neighbor coordinates for each node and cal-
culates feature values of neighbors. Then DGR updates feature
values of each node by a refinement stage.

normalize sij . The βij after normalization are the weights
of neighbor j for node i. Finally, in Eq. 4, we aggregate
the features of all neighbors with different weights. σ is
the ReLU activation function. This feature refinement stage
can be performed iteratively. By using the DGR module,
our network can capture long-range relations between the
distant pixels. DGR can also reduce the computation com-
plexity and time consumption of graph construction by dy-
namically predicting the neighbors. We apply the DGR
module to stages 1 to 4 in the cascade network and the
highest resolution of the feature map refined by DGR can
reach 256×256, which is higher than those in the previous
works [33, 48]. We use the refined feature maps for feature
connection and alpha prediction.
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3.3. Loss Functions

In the training process, we use supervision at each stage
of the CasDGR. Our loss function is defined as follows:

L =

M−1∑
m=1

λm
a Lm

a + LM
a + λcLM

c + λgLM
g , (5)

, where Lm
a (M = 5 represents five stages) is the alpha pre-

diction loss between the output alpha of stage m and the la-
bels with the same resolution, Lc is the compositional loss,
and Lg is the gradient loss. We use all three losses for the
last stage and only use alpha prediction loss for the previous
stages. λm

a , λc, and λg are the weights of each loss item. We
use the normalized L1 loss to calculate all three losses:

Lm
a =

1

|Ω|
∑
i∈Ω

||α̂m
i − αm

i ||1, (6)

, where αm
i is the predicted alpha values of stage m at pixel

i, α̂m
i is the ground truth alpha values resized to the same

resolution as αm at pixel i, and |Ω| is the number of pixels
in αm

i and α̂m
i .

Lc =
1

|Ω|
∑
i∈Ω

||Ii − αiFi − (1− αi)Bi||1, (7)

, where I is the input image combined by foreground F,
background B, and ground truth alpha matte, similiar to
those in Eq. 1. α is the predicted result of the last stage.

Lg =
1

|Ω|
∑
i∈Ω

||∇α̂i −∇αi||1, (8)

, where ∇α̂ and ∇α represent the normalized gradient of
the predicted alpha and the ground truth alpha.

The training process aims to minimize the L of Eq. 5.
La,Lc can improve the pixel-wise accuracy of the pre-
dicted alpha mattes, and Lg is beneficial to the production
of highly precise boundaries. We choose the predicted re-
sults of the last stage as the final of the output alpha mattes.

3.4. Implementation Details

We implement CasDGR by using PyTorch. In the train-
ing process, all images are randomly cropped to a resolu-
tion between 512×512 and 800×800 and then resized to
512×512. For the data augmentation, we adopt horizontally
random flipping together with brightness, contrast, and sat-
uration augmentation on each training pair to avoid overfit-
ting. We downsample the 512×512 images to lower resolu-
tions and feed them into the different stages of our method.
The training set is shuffled at each epoch. For the group
normalization layer in our network, the input feature map
is separated into several 32-channel groups. We train our
network from scratch until the loss converges. All convolu-
tional layers in RSU blocks are initialized using the Xavier

method [14]. Parameters of the 3 × 3 convolutional layers
in the DGR module are initialized to zero. The adam opti-
mizer is used for loss optimization, with the initial learning
rate set to 1e-4 and the other hyper parameters set to default.
We clip the predicted alpha values of each stage to 0 to 1 for
loss calculation and set λm

a = λc = λg = 1 in Eq. 5 in the
experiments.

During testing, the input images are resized to 512×512
before feeding them into the network. We evaluate different
metrics between the 512×512 predicted alpha mattes and
ground truth. We train our CasDGR on 2 RTX 3090 GPUs
with a batch size of 4. Only about 1 day are needed for the
network to converge on the training set.

4. Experiments

In this section, we compare our approach with existing
matting methods on the Adobe human image dataset, which
is collected from the Adobe Composite-1k Dataset [47]. We
show the quantitative and visual results of all testing meth-
ods and perform ablation studies on our CasDGR to demon-
strate the importance of essential architectures and compo-
nents in our method.

4.1. Dataset and Evaluation Metrics

Dataset. Adobe Composite-1k Dataset [47] contains
431 foreground images for training and 50 foreground im-
ages for testing with high–quality alpha annotations. Fol-
lowing Sengupta’s work [38], we use a subset of 280 images
in the experiments (269 images for training and 11 images
for testing). We filter the semi-transparent objects in the
dataset to closely simulate the data distribution to the human
matting scene in the real world. For the training set, each
foreground image is combined with 100 background images
from the COCO dataset [29]. For the testing set, each fore-
ground image is combined with 20 background images from
the PASCAL VOC2012 dataset [11].

Evaluation metrics. We use four common metrics
in image matting to evaluate the predicted alpha mattes,
namely sum of absolute differences (SAD), mean squared
error (MSE), gradient error (Grad), and connectivity error
(Conn). Generally, the SAD and MSE metrics are more fo-
cused on numerical differences, whereas the Grad and Conn
metrics proposed by [36] pay more attention to the visual
perception of human observers.

4.2. Ablation Study on the Adobe Testing Dataset

To verify the role of some architectures and components
of our method, we completed the ablation studies discussed
below by using the Adobe testing dataset.

Ablation on DGR. Table 1 shows the influence of differ-
ent number of neighbors and iteration times of refinement
stage on matting performance. Compared with Cascade net-
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Model SAD MSE Grad Conn
Ours-Baseline 3.78 0.0065 4.67 3.73
Ours-Cascade 2.92 0.0046 2.85 2.77
CasDGRK=1,1−layer 2.25 0.0025 2.45 2.10
CasDGRK=1,2−layer 2.05 0.0021 2.16 1.88
CasDGRK=5,1−layer 1.93 0.0018 1.95 1.74
CasDGRK=5,2−layer 1.76 0.0015 1.66 1.54
CasDGRK=9,1−layer 2.16 0.0023 2.30 1.99
CasDGRK=9,2−layer 1.84 0.0017 1.79 1.63

Table 1. Ablation study on DGR module. Ours-Baseline: 1-stage
network. Ours-Cascade: 5-stage cascade network without DGR.
CasDGR: cascade network with DGR, K means the number of
neighbors in DGR, and layer means the number of iterations.

Model Ours-CasDCN Ours-CasDGR
layer 1 1 2
SAD 2.13 1.93 1.76
MSE 0.0023 0.0018 0.0015
Grad 2.27 1.95 1.66
Conn 1.93 1.74 1.54
Flops(G) +8.71 +5.65 +8.36
Params(M) +0.57 +0.12 +0.16
Inference Time(ms) 51.23 41.33 48.56

Table 2. Ours-CasDCN vs Ours-CasDGR(K = 5). The value of
FLOPs and Params are the increased value in contrast to Ours-
Cascade. The results are measured with 512 × 512 input size on
one GeForce RTX 3090 card. The batch size is 1.

work without DGR, CasDGR with different settings can im-
prove all four metrics on on Adobe testing dataset. We find
that only considering 1 neighbor can increase four evalu-
ation metrics effectively. As the number of neighbors in-
creases form 1 to 5, test results are improved too. However,
further increasing the number of neighbors to 9 will lead a
decline of matting performance.

Increasing the iteration times of refinement stage is also
beneficial to image matting. For different settings of K,
CasDGR with 2 iterations produce better results than 1 it-
eration. More iterations will increase the time and memory
consumption as well. To balance the efficiency and effec-
tiveness of the model, we choose K = 5 and set iteration
times to 2 as default in other experiments.

Role of Network Cascade Architecture. As shown
in Table 1, the cascade network has achieved substantially
improvement on all metrics compared with the the base-
line network, which only uses the 1-stage network for mat-
ting. According to the visual results in Figure 3, Ours-
Baseline produces some artifacts in the results, whereas
Ours-Cascade can generate more visually accurate alpha
mattes. The network cascade architecture has effectively
improved the quantitative and visual results for matting.

Role of the DGR. Table 1 has shown the improvement of

Input Image Ours-Baseline Ours-Cascade

Ours-CasDGR GTOurs-CasDC

Input Image Ours-Baseline Ours-Cascade

Ours-CasDGR GTOurs-CasDC

Figure 3. Visual results of ablation studies.

DGR on evaluation metrics. In terms of the visual results in
Figure 3, Ours-CasDGR can further refine the results com-
pared with Ours-Cascade, which reduces some artifacts and
is completed with more detail for the alpha mattes.

In addition, certain details in Figure 3, can be used
to clearly analyze the matting refinement process of our
method. In the case of the image of women with hand-held
hair dryers, Ours-Baseline does not predict the complete
wire of hair dryer in the lower left corner. After the net-
work cascade, Ours-Cascade can predict a relatively com-
plete wire, but some artifacts around it are apparent. Finally,
after the refinement processing of Ours-CasDGR, the arti-
facts are removed, and a complete and fine wire is obtained.
This step-by-step refinement process also verifies the design
ideas and feasibility of our method.

Comparision with the DCN. We demonstrate the supe-
riority of DGR module by replacing the DGR in our mat-
ting network with deformable convolutional networks [10].
As shown in Table 2, Ours-CasDGR outperforms Ours-
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Input CFM LBM

GTOurs-CasDGRBGMLFMGCA

KNNLKM

DIM

KNNLKM
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Figure 4. The visual results on Adobe testing dataset.

CasDCN on all metrics. According to the comparison of
some model attributes, Ours-CasDGR can achieve better
matting results with less Flops, Params, and inference time,
which further demonstrates the improvements from using
our approach. The visual results in Figure 3 show that Ours-
CasDGR is also visually superior to Ours-CasDCN, based
on the finer alpha mattes of the former method.

4.3. Comparison on the Adobe Testing Dataset

We compare our approach on the constructed Adobe
human image dataset with different kinds of available ap-
proaches. The traditional methods: Closed-Form Matting
(CFM) [23], Learning Based Matting (LBM) [53], KNN
Matting (KNNM) [6], Random Walks Matting (RWM) [15],

7173



Method SAD MSE Grad Conn
CFM [23] 3.48 0.0040 3.87 3.35
LBM [53] 3.68 0.0047 4.17 3.65
KNNM [6] 3.73 0.0044 3.90 3.67
RWM [15] 4.96 0.0093 10.56 4.93
LKM [18] 5.52 0.0053 5.32 4.65
IM [31] 2.29 0.0022 2.51 2.06
DIM [47] 2.58 0.0025 2.93 2.42
GCAM [26] 1.89 0.0017 1.99 1.68
BGM [38] - Seg, B′ 2.30 0.0025 2.34 2.10
BGM [38] - Seg, B 2.28 0.0024 2.29 2.08
LFM [52] 4.35 0.0067 4.01 3.98
Ours-CasDGR 1.76 0.0015 1.66 1.54

Table 3. Results on the Adobe testing dataset. Seg, B′, B:
coarse segmentation results, disturbed backgrounds with Gaussian
noises, and original backgrounds for Background-Matting [38].

and Large Kernels Matting (LKM) [18]. The trimap-
based learning methods: Deep Image Matting (DIM) [47],
IndexNet Matting (IM) [31], and Guided Contextual At-
tention Matting (GCAM) [26]. The automatic learning
methods: Late Fusion Matting (LFM) [52] and Background
Matting (BGM) [38].

During the evaluation, we resize input images to
512×512 resolution to inference the alpha mattes and com-
pute four metrics between the predicted alpha mattes and
ground truths. For the approaches requiring trimaps, we re-
size the original trimaps in Adobe dataset to 512×512 res-
olution as additional inputs. As BGM [38] needs segmenta-
tion results and disturbed backgrounds as additional inputs,
we generate the segmentation results by applying person
segmentation [4] and adding erosion (5 iterations), dilation
(10 iterations) and a Gaussian blur (σ = 5). We also gen-
erate the disturbed backgrounds by adding Gaussian noises
η ∼ N (µ = 3, σ = 3) to the original backgrounds. The man-
ner of generating segmentation results and disturbed back-
grounds are the same as those in BGM [38].

The quantitative results are shown in Table 3. The impli-
cations of our experimental results are as follows:

Our CasDGR can achieve state-of-the-art results on all
metrics among all testing approaches on Adobe testing
dataset, i.e., the traditional methods, trimap-based, and au-
tomatic methods mentioned above. The experimental re-
sults demonstrate that our approach can achieve the best
human matting performance by using a single input image.

Our CasDGR outperforms other matting methods espe-
cially on the Grad and Conn metrics. As Grad and Conn
focus more on the visual effects of human observers, the
comparison results indicate that the CasDGR can achieve
great matting performance in visual perception, which is
also proven by the visual results in Figure 4.

Figure 5. Results on real-world images.

As shown in Figure 4, our CasDGR has a high–quality
visual effect on human images and can preserve fine contour
and detail of the foreground object. Although GCA [26]
and BGM [38] can also generate precise alpha mattes, they
require fine trimaps or backgrounds when inferencing. Our
CasDGR only needs single RGB images, which is much
more convenient for matting applications.

4.4. Results on Real Image Dataset

As a real-world application, the performance on real-
world data is also significant for matting methods. To verify
the matting effect of our CasDGR on real-world images, we
test our approach on 1) human matting dataset constructed
by Chen et al. [5] and 2) Real World Portrait-636 dataset
provided by Yu et al. [49]. Figure 5 shows that our CasDGR
model trained on Adobe human image dataset can also pro-
duce high-quality alpha mattes on real-world images with-
out additional inputs.

5. Conclusions
In this study, we propose a Cascade Image Matting Net-

work with Deformable Graph Refinement (CasDGR), that
can produce high–quality alpha mattes from single RGB
images. We adopt the network cascade architecture to pro-
gressively refine the foreground details. The proposed DGR
module applies GNN on higher–resolution features to fur-
ther improve matting performance. The experimental re-
sults on the synthetic dataset and real-world images demon-
strate the superiority and generalization of our approach.
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