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Abstract

Physical-world adversarial attacks based on universal
adversarial patches have been proved to be able to mis-
lead deep convolutional neural networks (CNNs), expos-
ing the vulnerability of real-world visual classification sys-
tems based on CNNs. In this paper, we empirically reveal
and mathematically explain that the universal adversarial
patches usually lead to deep feature vectors with very large
norms in popular CNNs. Inspired by this, we propose a
simple yet effective defending approach using a new feature
norm clipping (FNC) layer which is a differentiable module
that can be flexibly inserted in different CNNs to adaptively
suppress the generation of large norm deep feature vectors.
FNC introduces no trainable parameter and only very low
computational overhead. However, experiments on multiple
datasets validate that it can effectively improve the robust-
ness of different CNNs towards white-box universal patch
attacks while maintaining a satisfactory recognition accu-
racy for clean samples.

1. Introduction

Deep convolutional neural networks (CNNs) have
achieved remarkable success on various computer vision
tasks. However, researches have shown that most CNNs
are vulnerable to adversarial attacks [14, 19], where mali-
ciously crafted perturbations are added to the input image
to fool the network. The existence of adversarial examples
under different constraints has become a serious concern
to visual systems and applications based on CNNs espe-
cially in safety-critical domains. Compared to the conven-
tional adversarial attacks which add perturbation with input
norm constraints directly to the whole digital image, physi-
cal world attack is relatively more challenging. In the phys-
ical world, it is hard and expensive to accurately manip-
ulate pixels that may scatter all around the image. A more
promising way is to generate a spatially localized patch-like
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Figure 1. Illustration of the proposed method based on feature
norm clipping (FNC) layers.

perturbation in which the pixel values can be arbitrarily se-
lected. Usually, such a patch is generated so that it is ef-
fective no matter what the image is and where it is placed
in the image to achieve real-world attacking robustness.
Such an approach is called the universal adversarial patch
attack [2], which has remained as the most effective and
widely adopted way to attack real-world computer vision
systems built upon CNNs including image classifier [2, 8],
object detector [4, 24, 7] and face recognizer [17].

Despite its clear threat to real-world applications, re-
search on defending against the universal adversarial patch
attack is still limited. Some previous defending approaches,
including Digital Watermarking (DW) [5] and Local Gra-
dient Smoothing (LGS) [13], are based on patch detection
following empirical clues. Lacking theoretical foundations,
their performance usually drops dramatically when facing
white-box or adaptive attacks in which the defending strat-
egy is transparent to attackers [1]. By iteratively generat-
ing adversarial patches in the training process, the adver-
sarial training can also be used in defending against patch
attacks [22]. However, such an approach requires extra
training with extremely high computational overhead and
there has been no work to show its feasibility for large-scale
datasets like ImageNet [10] by far. Chiang et al. [3] pro-
posed a certified defense against the adversarial patch when
the output lies in the interval bound. However, this esti-
mated bound gets looser with the increase of the network
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depth, leading to the difficulty in its scaling up to commonly
used deep networks like ResNet [6] and Inception [18].

In this paper, we propose an effective defending method
against universal adversarial patch attacks based on a math-
ematical analysis of how a universal adversarial patch im-
pact deep feature representations. Generally, a universal ad-
versarial patch only occupies a small image area. However,
it can mislead the CNN to predict the same wrong target
class no matter where it is placed and what the original im-
age is. How is this achieved? Empirical observations re-
veal that when an adversarial patched image is passing for-
ward through a CNN, usually the norm of the feature vec-
tor spatially located at the position of the adversarial patch
is significantly larger than that of other feature vectors.
This makes sense considering that under the widely adopted
global average pooling strategy, a large norm feature vector
can dominate in deciding the direction of the pooling re-
sult no matter what other feature vectors are. Such a phe-
nomenon exists only when the adversarial perturbation is
localized like adversarial patches. This can be explained by
the fact that the effective receptive field (ERF) of a practi-
cal CNN is exponentially centered and is obviously smaller
than the theoretical receptive field [11]. As such, the impact
of the adversarial patch on the feature map has to be spa-
tially concentrated. This indicates that most feature vectors
will not be essentially affected, leading to inevitable exis-
tence of large norm feature vector at the patch position.

We present a mathematical explanation of the phe-
nomenon, based on which a defending method is proposed.
Specifically, we propose to restrict the norm of deep fea-
tures on different layers through the forward propagation by
introducing Feature Norm Clipping (FNC) layers as illus-
trated in Fig. 1. FNC is a differentiable layer and can be in-
serted among the cascaded modules in CNNs, e.g. the resid-
ual block in ResNet. FNC reduces the variance of feature
norms by one-side clipping, so as to prevent the generation
of feature vectors with extremely large norms. Analysis on
ERF demonstrates that the influence of the adversarial patch
can be intrinsically weakened by FNC, leading to improved
classification accuracy against adversarial patch attacks. We
conduct extensive experiments on CIFAR10 [9] and Ima-
geNet [10] with different CNN architectures and attacking
methods. Significant improvements on robustness against
white-box adversarial patch attacks are achieved. More-
over, in contrast to previous defending methods [5, 13], our
proposed approach is implemented in an end-to-end man-
ner with very low computational overhead in both training
and inference, leading to its high applicability to real-word
visual classification systems based on CNNs.

There are three main contributions in this paper. 1) We
analyze the impact of the universal adversarial patch on the
deep feature representation, and mathematically explain the
existence of large norm feature vectors at the patch loca-

tion. 2) We propose a simple yet effective defending method
using the FNC layer to weaken the effect of the adversar-
ial patch by restricting the generation of large norm feature
vectors. 3) We achieve improvements in adversarial accu-
racy for different networks and datasets. Our method out-
performs state-of-the-art patch defending methods.

2. Related Works

Researches on the adversarial patch have raised increas-
ing interest since it was first proposed by Brown et al. [2]
due to its effectiveness in attacking real-world systems.
Karmon et al. proposed to generate adversarial patches aim-
ing at inducing targeted misclassification [8]. Later, adver-
sarial patch attacks have been also studied in other vision
tasks such as object detection [4, 24, 7], semantic segmen-
tation [16] and person re-identification [21].

In this paper, we focus on defending against universal
adversarial patch attacks in visual classification, for which
several methods have been proposed. Hayes proposed Dig-
ital Watermarking (DW) in which the adversarial patch is
localized and masked out based on the saliency map [5].
However, the performance on clean images is severely com-
promised since the salient parts of the objects are usually
falsely masked out. Naseer et al. proposed Local Gradient
Smoothing (LGS) in which a soft mask is applied to the in-
put image during pre-processing based on the assumption
that pixels within the patch areas tend to change dramati-
cally in space [13]. Nevertheless, the performance of LGS
drops severely against the white-box attack which takes the
pre-processing step into consideration. Wu et al. proposed
Defense over Occluded Attack (DOA) by combining a new
substitute attack approach that represents physically real-
izable attacks with adversarial training [12] to increase ro-
bustness [22]. This method, however, requires extra train-
ing with high computational overhead and is difficult to be
extended to large-scale datasets such as the ImageNet [10].
Chiang et al. proposed a certified defense against the adver-
sarial patch attack [3]. Despite its theoretical contribution,
such an optimization-based method is computationally inef-
ficient and difficult to be scaled up to practical deep neural
networks. Xiang et al. proposed PatchGuard to realize effi-
cient robustness verification for models with small receptive
fields [23]. However, a specially designed neural network
is required to perform the feature extraction, which means
that widely adopted CNN models cannot be directly used
for robust classification.

3. Method

In this section, we first provide a mathematical analysis
on how the adversarial patch impacts the feature representa-
tions of a CNN equipped with global average pooling. Then
we elaborate on the proposed defending method.
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3.1. Preliminaries

For an input image x ∈ RH×W×C , denote its predicted
logit for class y by a CNN as F(y|x). A universal adver-
sarial patch p is expected to mislead the network to pre-
dict a wrong target class in a variety of contexts, includ-
ing different images and locations placed [2]. Formally,
the patched adversarial example x̂ for clean image x̃ can
be formulated as Eq. 1, where ⊙ is Hadamard product,
M ∈ {0, 1}H×W×C is the binary mask indicating the po-
sition of the patch, and A(p, t) is an operator which applies
the geometric transformation t to the patch p so that it is
located at the position indicated by M. The adversarial
patch p is generated by solving the optimization problem
in Eq. 2, where ŷ is the target class of the adversarial at-
tack, and Pr(y|x) is the classification probability calculated
by applying softmax operation to the logits.

x̂ = (1−M)⊙ x̃+M⊙A(p, t), (1)

max
p

Ex̃∼X,t∼T log Pr(ŷ|x̂), (2)

Variants have been proposed to improve the attack-
ing effectiveness. For example in the LaVAN attack [8],
log Pr(ŷ|x̂) in Eq. 2 is replaced by F(ŷ | x̂) − F(ỹ | x̂),
where ỹ is the classifier’s predicted class on the benign in-
put x̃. We will show that our proposal keeps effective as
long as the patch is formulated following Eq. 1.

3.2. Impact of Adversarial Patch on Feature Maps

With the help of the effective receptive fields (ERF) the-
ory [11], we present a mathematical explanation for the ex-
istence of large norm feature vectors in feature maps under
adversarial patch attacks. We start with analysis on the final
feature map (FFM), which is the output of the last convolu-
tion layer. We then extend the conclusion to the intermedi-
ate feature maps of shallow layers.

3.2.1 Properties of Effective Receptive Fields

Luo et al. [11] defined the effective receptive field (ERF)
to measure how much each input pixel in a receptive field
can impact the output. Assume the pixels on each layer are
indexed by (i, j), with their center at (0, 0). To simplify
notation, consider a CNN with N convolutional layers of
one single channel for each layer. Denote the (i, j)th pixel
on the input to the network and the output of the N th layer
as xi,j and yi,j respectively. ERF measures how much each
xi,j contributes to y0,0 by calculating the expectations of the
partial derivative ∂y0,0/∂xi,j over input distribution. Luo
et al. demonstrated that ERF converges to the probability
density function of a 2D Gaussian distribution ΦN subject
to Eq. 3, in which Ωn is a random variable following the

distribution of the weights of the nth convolutional layer.

ΦN ∼ N (0,

N∑
n=1

Var[Ωn]) (3)

Although Eq. 3 requires quite strong assumptions, it agrees
well with experiments. It can be concluded that ERF only
occupies a small area (with size proportional to

√
N ) of the

theoretical receptive field (with size proportional to N ) and
is shaped like a Gaussian function decaying from the center.

3.2.2 Impact on the Final Feature Map

Denote the FFM of input x by f(x), where f : RH×W×C →
Rh×w×c. The feature vector at location (i, j) of the FFM
and its kth channel are denoted by fi,j(x) and fi,j,k(x) re-
spectively. To simplify notation, we further denote f̃i,j =

fi,j(x̃), f̂i,j = fi,j(x̂) and f∗i,j = fi,j(x̂)− fi,j(x̃).
It has been discussed in previous works [25] that in-

tuitively universal perturbations contain dominant features
and images behave like noise to them. This means that the
difference in FFM caused by the universal adversarial patch
is nearly irrelevant to the input image, which can be vali-
dated by experiments. Inspired by this, we adopt the theory
of ERF to estimate the spatial properties of ∥f∗i,j∥ to mea-
sure the impact of the adversarial patch on different loca-
tions in FFM. Denote the gradient map as ∇xfi,j,k, we can
get Eq. 4, where · denotes inner product, L is an arbitrary
curve from x̃ to x̂, and U(0, 1) is the uniform distribution
from 0 to 1. Specifically, Eq. 4a holds because of the prop-
erty of the conservative field that its line integral along a
path depends only on the potential function value of the ini-
tial and final points [20]. We then choose a special path
L = {x̃ + γ(x̂ − x̃)}, γ : 0 → 1 to get Eq. 4b. Conse-
quently, Eq. 4c comes from the definition of expectation.

fi,j,k(x̂)− fi,j,k(x̃) =

∫
L

∇xfi,j,k · dx (4a)

= (

∫ 1

0

∇x̃+γ(x̂−x̃)fi,j,kdγ) · (x̂− x̃) (4b)

= Eγ∼U(0,1)[∇x̃+γ(x̂−x̃)fi,j,k] · (x̂− x̃) (4c)

Note that ERF is the expectation of the gradient map with
output (0, 0). Therefore, the expectation term in Eq. 4c
approximately equals to tri,j(ERF), in which tri,j is the
translation to (i, j). Then, ∥f∗i,j∥ can be estimated as Eq. 5.

∥f∗i,j∥ ≈ (c(tri,j(ERF) · (x̂− x̃))2)
1
2

∝
∑

tri,j(ERF)⊙ (x̂− x̃). (5)

Note that (x̂ − x̃) is zero in the region except the
patch. From the properties of ERF, we can find that
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Figure 2. (a) Histogram of the maximum norm of feature vectors in the FFM for both clean and adversarial examples. (b) Curve
of the mean value and standard deviation of ∥f∗i,j∥ with the relative location of the adversarial patch. (c) Histogram of R in FFM
as well as the estimated lower bound. The experiments are conducted on ResNet-50 under LaVAN attack on ImageNet. The adversarial
patch covering 5% of the image is placed on random locations over the test images.

∑
tri,j(ERF) ⊙ (x̂ − x̃) is the weighed sum of values on

finite locations for a Gaussian function centered at (i, j).
It can be proved that ∥f∗i,j∥ is spatially distributed as a
weighed sum of Gaussian functions of the same variance
but different centers. It therefore has the same squared ex-
ponential decay rate as the Gaussian functions, which is fur-
ther elaborated in the Supplementary. Since the patch is far
smaller than the image, ∥f∗i,j∥ also has such a squared expo-
nentially centered property in the image.

Then we consider the classifier layer in which the final
feature before the fully connected layer is calculated by the
global average pooling of FFM. Suppose the weight and
bias of the fully connected layer corresponding to class y
to be wy ∈ Rc and by . The predicted logit for class y on the
adversarial example x̂ is computed by Eq. 6.

F(y|x̂) = 1

hw

∑
i,j

(f̃⊤i,jwy + f∗i,j
⊤wy) + by (6)

For an ideal universal adversarial patch, F(ŷ|x̂) >
F(ỹ|x̂) holds for all possible x̃ belonging to class ỹ. We
further assume that ∥wŷ∥ ≤ ∥wỹ∥ considering that the tar-
get class can actually be freely selected. Since the clean
image is classified to class ỹ, we have f̃⊤i,jwŷ/f̃

⊤
i,jwỹ ≈ 0.

Besides, we ignore by since it is generally far smaller than
F(y|x). As such, the condition for a successful patch attack
can be approximated by Eq. 7 where cos(a,b) denotes the
cosine similarity between two vectors a and b.

0 < F(ŷ|x̂)−F(ỹ|x̂)

=
1

hw

∑
i,j

(f̃⊤i,jwŷ + f∗i,j
⊤wŷ − f̃⊤i,jwỹ − f∗i,j

⊤wỹ) + bŷ − bỹ

≈ 1

hw

∑
i,j

(f∗i,j
⊤wŷ − f̃⊤i,jwỹ − f∗i,j

⊤wỹ)

≤ 1

hw

∑
i,j

∥wỹ∥(∥f∗i,j∥(cos(f∗i,j ,wŷ)− cos(f∗i,j ,wỹ))

− ∥f̃i,j∥ cos(f̃i,j ,wỹ)), (7)

Finally we manage to provide an estimated lower bound
of maxi,j∥f∗i,j∥/meani,j∥f̃i,j∥ according to Eq. 7 and Eq. 5.
Intuitively, ∥f∗i,j∥ is significantly more centered and de-
cays faster compared to ∥f̃i,j∥, and the cosine similarities
are limited. So the ratio is relatively large, leading to the
large norm of f(x̂) on the same location of the patch. For-
mally, we assume that the chosen wŷ is orthogonal to wỹ ,
which holds approximately in commonly adopted CNNs.
Mathematically, the bound depends on the cosine simi-
larities cos(f̃i,j ,wỹ) and (cos(f∗i,j ,wŷ) − cos(f∗i,j ,wỹ)),
which represent the saturation state of model training and
patch generation processes respectively and is decided by
the CNN. In this paper, we assume that cos(f̃i,j ,wỹ) and
(cos(f∗i,j ,wŷ) − cos(f∗i,j ,wỹ)) can reach their theoretical
upper limits (1 and

√
2 respectively) after sufficient train-

ing. The limits generally cannot be reached in both pro-
cesses, but the estimated bound based on the ratio of them
agrees well with experiments, which will be demonstrated
later. As such, Eq. 7 approximately turns to Eq. 8 according
to Eq. 5 and the above assumptions.

0 <
1

hw

∑
i,j

∥wỹ∥(
√
2∥f∗i,j∥ − ∥f̃i,j∥),

∥f∗i,j∥ = maxi,j∥f∗i,j∥
∑

tri,j(ERF)⊙ (x̂− x̃)

maxi,j

∑
tri,j(ERF)⊙ (x̂− x̃)

(8)

Then we can get an estimation of the lower bound as Eq. 9.

maxi,j∥f∗i,j∥
meani,j∥f̃i,j∥

>
hw√
2

maxi,j
∑

tri,j(ERF)⊙ (x̂− x̃)∑
i,j

∑
tri,j(ERF)⊙ (x̂− x̃)

(9)
We refer to the ratio R = maxi,j∥f∗i,j∥/meani,j∥f̃i,j∥

as the Incremental Feature Norm Ratio (IFNR), where the
maximum ∥f∗i,j∥ is generally on the center of the patch. The
lower bound of R shown in Eq. 9 is verified by the exper-
imental results on ResNet-50 illustrated in Fig. 2, in which
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Fig. 2 (a) shows the clear margin of the norm in FFM be-
tween clean and adversarial examples, and Fig. 2 (b) in-
dicates that the impact of the adversarial patch in FFM is
distributed with a Gaussian-like decay from the center of
the patch. We also calculate the estimated lower bound of
R in FFM over the input images according to Eq. 9 with
the measured ERF radius 71. The result is 2.2 as shown by
the dashed line in Fig. 2 (c), in which the histogram of the
empirical ratio among all the tested images is also shown.
The calculated bound holds for 99.2% of the tested images,
validating the mathematical analysis above.

3.2.3 Impact on the Intermediate Feature Maps

We have derived that the norm of feature vectors is obvi-
ously large at the patch location and has an approximate
squared exponential decay in FFM under the universal patch
attack. Then we extend the conclusion to the intermedi-
ate feature maps of shallow layers. We start with the adja-
cent feature maps, i.e. the input and the output feature map
of a convolution layer. To simplify notation, we consider
one spatial dimension and one channel for the convolution
layer without loss of generality, because any 2D convolu-
tion with the kernel of rank r can be regarded as a linear
combination of r multiplications of two 1D convolutions.
Denote fin[i] and fout[i] as the input and output features
respectively, where i is the 1D spatial location. The unit
impulse response of the convolution layer o[i] is formulated
by o[i] =

∑
m w[m]δ[i −m], where w[m] is the weight of

the convolution layer on location m.
We focus on the unit impulse response o−1[i] of

the inverse system of the layer. With the help of the
z-transformation, o−1[i] can be formulated as Eq. 10,
where O−1(z) denotes the z-transformation of o−1[i], and
{vs}Ss=1 are the poles of O−1(z). It can be observed that
each os[i] has a unilateral exponential decay, and o−1[i] is
their linear combination. Furthermore, it is validated by ex-
periments that when the kernel of the convolution layer is
randomly chosen, the mean decay radius is approximately
equal to the size of the convolution kernel.

o−1[i] =

S∑
s=1

qsos[i],

os[i] =

{
vs

iu[i] |vs| ≤ 1

−vs
iu[−i− 1] |vs| > 1

s.t. O−1(z) =
1∑

m w[m]z−m
=

S∑
s=1

qs
1

1− vsz−1
(10)

Table 1. Average R of intermediate feature maps in ResNet-50.
Layer Conv2-3 Conv3-4 Conv4-6 Conv5-3
Ratio 1.05 1.80 2.98 3.39

Figure 3. An example of the feature norm maps on Conv4-6
and Conv5-3 (FFM) of ResNet-50 as well as the input image.

As such, if fout[i] has large norm feature vectors cen-
tered at the location of the patch, fin[i] = o−1[i]∗fout[i] (∗
denotes convolution) may also have large norm feature vec-
tors centered. We generate the adversarial patch on ResNet-
50 under LaVAN attack on ImageNet and calculate the av-
erage R for intermediate feature maps on the last residual
blocks of each Convλ-ν architectures as is shown in Ta-
ble 1. Since the feature maps on shallow layers have rel-
atively high resolution and are not smooth enough, we re-
place maxi,j∥f∗i,j∥ with the mean ∥f∗i,j∥ on the center of the
patch. It can be observed that R keeps being greater than
1 and increases with the depth of the layer. Fig. 3 shows
an example of the feature norm maps on different layers as
well as the adversarial input image, revealing that the im-
pact on the intermediate feature maps keeps centered on the
patch and accumulates with the depth of the layer. Detailed
deduction and experiments are in the Supplementary.

3.3. Feature Norm Clipping

Based on the above analysis, we propose the Feature
Norm Clipping (FNC) layer to restrict the norm of the
features on different layers. Define a cascaded CNN ar-
chitecture with modules {D(n)}Nn=1 and the feature maps
{f (n) ∈ Rh(n)×w(n)×c(n)}Nn=1, where N is the number of
cascaded modules. Formally, the forward propagation of
the CNN can be formulated as Eq. 11.

f (1) = D(1)(x), f(x) = f (N),

f (n+1) = D(n+1)(f (n)) for n = 1, 2, ..., N − 1 (11)

FNC can be regarded as an operator on feature maps that
can be inserted among the CNN modules. The output g(n)

of applying FNC on f (n) is calculated by Eq. 12, where α
is the clipping parameter. Then g(n) is fed to the next CNN
module to compute f (n+1) as in Eq. 11 and Fig. 1.

g
(n)
i,j =

f
(n)
i,j

∥f (n)i,j ∥
min(∥f (n)i,j ∥, α∥f (n)∥),

∥f (n)∥ =
1

h(n)w(n)

∑
i,j

∥f (n)i,j ∥, (12)

Intuitively, FNC prevents the generation of feature vec-
tors with extremely large norm by one-sided clipping. Thus
the influence of the adversarial patch is weakened. Further-
more, we can measure the effect of FNC with the theory
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Figure 4. Normalized ERF of adversarial examples for ResNet-
50 with (right) and without (left) FNC. The adversarial patch is
located in the center of the test images for simplification.

of ERF. The Jacobi matrix of input f (n) and output g(n) of
FNC can be computed as Eq. 13, where f

(n)
i,j is the clipped

vector. Thus α∥f (n)∥/∥f (n)i,j ∥ is less than 1. I − P
(n)
i,j is a

projection matrix to the orthogonal direction of f (n)i,j , so that
the norm of the gradient will not increase afterwards.

∂g
(n)
i,j

∂f
(n)
i,j

=
α∥f (n)∥
∥f (n)i,j ∥

(I−P
(n)
i,j ) + ε

(n)
i,j,i,j ,

∂g
(n)
i,j

∂f
(n)
i′,j′

= ε
(n)
i,j,i′,j′ ,

P
(n)
i,j =

f
(n)
i,j f

(n)
i,j

T

∥f (n)i,j ∥2
, ε

(n)
i,j,i′,j′ =

α

h(n)w(n)

f
(n)
i,j f

(n)
i′,j′

T

∥f (n)i,j ∥∥f (n)i′,j′∥
≈ 0,

(13)

As a result, the gradient norm of the clipped vector will
be decreased with a scale of α∥f (n)∥/∥f (n)i,j ∥ at most. It
means that as long as the large norm feature vectors on the
corresponding location of the patch are clipped by FNC,
the gradient norm will be decreased, causing the ERF to
be significantly darker on the location of the patch than the
benign areas as is shown in Fig. 4. FNC is suitable for most
popular CNNs with GAP and cascaded architecture such as
ResNet, Inception and MobileNet [15] and has little effects
on clean data. After adding FNC to standard trained models,
we only need a little extra time going through the training
data to adjust the statistics of the BatchNorm layer.

4. Experiments
4.1. Experimental Setup

We use the ResNet-50 [6], Inception-V3 [18], and
MobileNet-V2 [15] models pretrained on ImageNet as well
as the ResNet-110 [6] pretrained on CIFAR10 as our target
model and test the classification accuracy of clean (clean
Acc) and patch-attacked adversarial examples (adversarial
Acc) before and after applying each defending method. The
original Adversarial Patch (AdvP) [2] as well as the La-
VAN [8] method is used to generate adversarial examples.
The target class is toaster for ImageNet and dog for CI-
FAR10. Other target classes lead to similar results as is
reported in ablation studies. The FNC layers are oper-
ated on feature maps of each cascaded module (e.g. resid-
ual block for ResNet, inception module for Inception, and

inverted residual block for MobileNet) without extra ex-
planations. The defense performances of Digital Water-
marking (DW) [5], Local Gradient Smoothing (LGS) [13],
PatchGuard [23] and Defense against Occlusion Attacks
(DOA) [22] are evaluated as comparisons.

In order to provide a fair platform for comparison,
all the experimental results are reported under the pure
white-box adversarial attack, which takes the defending ap-
proaches into consideration when training the adversarial
patch. Specifically, for our method, PatchGuard, and DOA
which are based on changing the forward propagating func-
tion of the CNN model, the adversarial patch is generated to
attack the modified model. For LGS which conducts a dif-
ferential pre-processing step to the input image, we add the
step into both forward and backward passes when training
the adversarial patch. For other methods like DW with non-
differential operators in pre-processing, Backward Pass Dif-
ferential Approximation (BPDA) [1] is adopted to approx-
imate gradients by forward propagating through the trans-
forming operator as well as ignoring the operator in back-
ward propagation. The reason why we adopt the pure white-
box attack instead of the gray-box attack is that it can better
reflect the robustness of the defending methods against ad-
versarial patch attacks. Since all the defending methods are
convenient to reproduce, the attackers can also design the
white-box or adaptive attack according to them easily.

4.2. Experimental Results

The results on ImageNet are presented in Table 2, in
which the highest accuracies are shown in bold. Since the
adversarial training based method DOA needs high compu-
tation overhead and currently cannot be adopted on Ima-
geNet scale, we also report the results on CIFAR10 in Ta-
ble 3 with the same model architecture ResNet-110 as DOA
uses. It can be observed that the proposed method sig-
nificantly and consistently outperforms previous defending
methods on different adversarial examples across different
CNNs. Our method keeps the highest adversarial Acc in
all the experiments. Besides, compared to other defending
methods, the clean Acc of our method is also satisfactory.
Comparison with PatchGuard, DW, and LGS. We start
with the comparison with non-adversarial training meth-
ods. Despite having a similar clean and adversarial Acc
with our method in CIFAR10, PatchGuard cannot work
well on large-scale ImageNet. PatchGuard is originally de-
signed for specially designed CNNs with very small re-
ceptive field and the size of the window is the largest re-
gion on FFM which can be theoretically affected by the
patch. Such CNNs generally perform poorly on large-scale
datasets. Unlike PatchGuard, FNC layers are operated on
multiple feature maps in our method, making the impact of
the patch better suppressed. The problem of DW is that
it suffers from dramatic clean Acc drops on both datasets.
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Table 2. Clean and adversarial Acc for defense methods evaluated on different target models against AdvP and LaVAN on ImageNet. The
best results are marked as bold.

ResNet-50 Inception-V3 MobileNet-V2
Defense Clean AdvP LaVAN Clean AdvP LaVAN Clean AdvP LaVAN
No Defense 76.1% 0.3% 0.3% 77.9% 0.4% 0.3% 71.6% 4.7% 4.8%
PatchGuard Window=4 67.0% 33.8% 31.6% 74.8% 28.8% 23.3% 63.0% 29.7% 27.4%
DW 42.4% 32.3% 32.7% 35.6% 32.4% 30.2% 38.0% 23.4% 23.1%
LGS 69.8% 1.0% 0.6% 75.0% 1.2% 1.7% 65.3% 10.5% 11.5%
Ours α = 1.0 72.4% 58.6% 58.3% 71.6% 58.7% 58.8% 64.1% 51.9% 52.0%
Ours α = 1.1 73.3% 59.6% 59.5% 74.3% 59.6% 59.0% 65.5% 49.5% 48.9%

Table 3. Clean and adversarial Acc for defense methods evaluated
on ResNet110 against AdvP and LaVAN on CIFAR10. The best
results are marked as bold.

Defense clean AdvP LaVAN
No Defense 94.1% 28.1% 27.2%
PatchGuard Window=4 92.5% 54.6% 54.9%
DW 49.1% 39.2% 33.7%
LGS 91.7% 33.7% 35.0%
DOA 93.4% 46.9% 44.8%
Ours α = 1.2 92.7% 54.7% 54.9%
Ours+DOA α = 1.2 91.9% 68.0% 67.3%

DW chooses the most salient areas in the image for a net-
work to erase, causing the most important areas in the be-
nign inputs to be erased. Nevertheless, our method can keep
a high adversarial Acc without sacrificing the clean Acc by
suppressing the impacts of the adversarial patch more rea-
sonably. It can be observed that LGS has almost no effect
on defending against the white-box attacks compared to no
defense added. LGS assumes that the spatial variation of
the pixel value in the patch is more severe than in other re-
gions, which is not necessary for the success of the adver-
sarial patch attack. As a comparison, our method is based
on large norms in feature maps causing by the adversarial
patch, which can be explained mathematically and regarded
as an intrinsic property of the adversarial patch.
Comparison with DOA. Despite adopting simulated attack
in the training process to reduce computation, DOA still
needs a lot of time in training the robust model and is hard to
be implemented on ImageNet scale. Besides, the difference
between the simulated attack and the actual attack leads to
the drop of adversarial Acc. In comparison, our method is
more effective and efficient than DOA with the increase of
FLOPs for about 5.0% in ResNet-50 and no extra training
parameters. Moreover, it can be observed from Table 3 that
our method is suitable to be combined with DOA to achieve
an even better defense.
Effect of FNC on Feature Representations. Fig. 5 shows
the IFNR on f(n) of different depths on ResNet-50 without
FNC, as well as that on f(n) and g(n) on ResNet-50 with
FNC. It can be observed that FNC can effectively restrict
the IFNR on feature maps in different layers, and the ac-
cumulated restriction increases with depth compared to the

Figure 5. Comparison of IFNR on feature maps in different lay-
ers of ResNet-50. From left to right are feature in model without
FNC, feature before FNC, and feature after FNC.

model without FNC. As such, the influence of the adversar-
ial patch is gradually suppressed by the clipping processes.

Such an effect is also reflected on the norm maps of
FFM and the gradient of the classification loss function as
is shown in Fig. 6, in which from up to bottom are the in-
put images, the FFM norm maps before and after FNC, and
the gradient norm maps. It can be observed from the FFM
norm maps that FNCs successfully suppress the large norm
feature vectors in both clean and adversarial images and de-
crease the variance of the norm of feature vectors. Conse-
quently, the features of the benign objects can dominate in
classification and the impact of the patch is suppressed as is
shown in the gradient norm maps in Fig. 6 (a)(c). The fail
case shown in Fig. 6 (b) is probably due to the reason that
the texture of the object of the ground truth label (chocolate
sauce) is not obvious enough, leading to small norm of the
features of the object. So the CNN classifier is still misled
by the suppressed feature vectors of the patch.

4.3. Ablation Studies

To demonstrate the effectiveness of FNC, we also per-
form ablation studies for different experimental settings in-
cluding the selection of hyper-parameters and target class,
non-square patches, and location independent patch for sin-
gle image. LaVAN attack with the 5% patch for ResNet-50
on ImageNet is employed in all the ablation experiments.
Selection of Hyper-Parameters. We test our method with
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(a) (b) (c)
Figure 6. Visualizations of the FFM norm map before/after
FNC and gradient norm map on ResNet-50 with FNC. (a) and
(b) are the success case and fail case for defending against adver-
sarial images, while the input of (c) is a clean image.

(a) (b)

Acc (%)

𝛼 𝑁!"#

Figure 7. (a) Curve of clean and adversarial Acc with α. (b)
Curve of clean and adversarial Acc with NFNC.

different clipping parameters α, numbers of FNC layers
NFNC as well as target classes. When changing NFNC, we
keep the last residual block clipped and other FNC layers
uniformly inserted. Fig. 7 illustrates the curve of clean and
adversarial Acc w.r.t. the change of α and NFNC. It can be
observed that the clean Acc increases with the increase of α
and the drop of NFNC. But when α turns too large and the
NFNC is too small, the adversarial Acc decreases. A proper
selection is to choose a relatively big NFNC and an α be-
tween 1.0 and 1.1. The adversarial Acc against attacks for
different target classes is shown in Table 4. Generally, our
method keeps effective for different target classes.
Patch of Different Aspect Ratios. We generate rectangle
patches of different aspect ratios and test the effectiveness

Table 4. Adversarial Accs for different target classes.
Target toaster black swan water jug paper towel
Acc 58.3% 57.5% 63.3% 55.7%

of our method against them. As is analyzed before, as long
as the size of the patch is far smaller than the entire image in
any dimension, ∥f∗i,j∥ has the same decay rate as the Gaus-
sian function. When one dimension of the size of the patch
gets large enough to be comparable to the image size, the
decay rate of ∥f∗i,j∥ in this dimension will decrease, leading
to the diffusion of the impact of the patch. Theoretically,
this will reduce the effectiveness of FNC. As is shown in
Table 5, the adversarial Acc drops slightly for the 1 : 2
patch, but quite obviously by 2.9% for the 1 : 4 patch, in
which the patch width is over 44% of that of the image.

Table 5. Adversarial Acc for patches of different shapes.
Aspect Ratio (height:width) 1:1 1:2 1:4
Acc 58.3% 58.1% 55.4%

Location Independent Patch for a Single Image. The uni-
versal assumptions in Section 3.2.2 do not hold in this case.
Intuitively, it is more difficult to defend against such an at-
tack for fewer restrictions in generating the patch. Never-
theless, it can be seen from Table 6 that the adversarial Acc
only drops for 7.7%. The reason why our method is still
effective for such an attack needs further investigation.

Table 6. Adversarial Acc for the universal patch (Universal) and
the location independent patch for single image (Single Image).

Attacks Universal Single Image
Acc 58.3% 50.6%

5. Conclusion
Empirically, a universal adversarial patch usually leads

to feature vectors with very large norms at the patched lo-
cation in commonly used CNNs with global average pool-
ing. We present a mathematical explanation to such a phe-
nomenon based on which a novel defending method named
FNC which adaptively clips deep feature norms is proposed.
FNC is effective as long as the adversarial patch is spatially
concentrated w.r.t. the original image, and it can be applied
to various popular CNN architectures with very low compu-
tational overhead. Experimental results validate that FNC is
effective against white-box patch attacks on various datasets
and models. FNC significantly outperforms previous patch
defending methods in terms of adversarial accuracy, and has
relatively low influence on the accuracy of clean samples.
Moreover, FNC can be readily combined with other de-
fending methods like adversarial training. This work is sup-
ported by the National Natural Science Foundation of China
(No. 61673234, No. U20B2062), and Beijing Science and
Technology Planning Project (No.Z191100007419001).
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