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Abstract

Generative Adversarial Networks (GANs) produce im-
pressive results on unconditional image generation when
powered with large-scale image datasets. Yet generated im-
ages are still easy to spot especially on datasets with high
variance (e.g. bedroom, church). In this paper, we pro-
pose various improvements to further push the boundaries
in image generation. Specifically, we propose a novel dual
contrastive loss and show that, with this loss, discriminator
learns more generalized and distinguishable representations
to incentivize generation. In addition, we revisit attention
and extensively experiment with different attention blocks
in the generator. We find attention to be still an important
module for successful image generation even though it was
not used in the recent state-of-the-art models. Lastly, we
study different attention architectures in the discriminator,
and propose a reference attention mechanism. By combining
the strengths of these remedies, we improve the compelling
state-of-the-art Fréchet Inception Distance (FID) by at least
17.5% on several benchmark datasets. We obtain even more
significant improvements on compositional synthetic scenes
(up to 47.5% in FID).

1. Introduction

Photorealistic image generation has increasingly become
reality, benefiting from the invention of generative ad-
versarial networks (GANs) [24] and its successive break-
throughs [67, 3, 25, 60, 5, 41, 42, 43]. The progress is
mainly driven by large-scale datasets [18, 57, 91, 38, 54, 42],
architectural tuning [10, 98, 42, 43, 69], and loss de-
signs [58, 3, 25, 60, 39, 101, 105, 96, 40, 106, 36]. GAN
techniques have been popularized into extensive computer
vision applications, including but not limited to image
translation [35, 107, 108, 54, 33, 82, 64, 20, 63], post-
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Figure 1. The diagram of our GAN framework using three key
components: self-attention in the generator, reference-attention
in the discriminator, and a novel dual contrastive loss. Technical
diagrams are in Fig. 2 and 4.

processing [46, 71, 44, 45, 77, 62, 102], image manipula-
tion [13, 14, 70, 1, 4, 80], texture synthesis [94, 53, 59],
image inpainting [34, 52, 92, 93], and text-to-image genera-
tion [68, 99, 100, 74].

Yet, behind the seemingly saturated performance of the
state-of-the-art StyleGAN2 [43], there still persists open
issues of GANs that make generated images surprisingly ob-
vious to spot [95, 81, 21, 28]. Hence, it is still necessary to
revisit the fundamental generation power when other concur-
rent deep learning techniques keep advancing and creating
space for GAN improvements.

We investigate methods to improve GANs in two dimen-
sions. In the first dimension, we work on the loss function.
As the discriminator aims to model the intractable real data
distribution via a workaround of real/fake binary classifi-
cation, a more effective discriminator can back-propagate
more meaningful signals for the generator to compete against.
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However, the feature representations of discriminators are
often not generalized enough to incentivize the adversari-
ally evolving generator and are prone to forgetting previ-
ous tasks [11] or previous data modes [72, 49]. This often
leads to the generated samples with discontinued semantic
structures [51, 98] or the generated distribution with mode
collapse [72, 96]. To mitigate this issue, we propose to
synergize generative modeling with the advancements in
contrastive learning [61, 8]. In this direction, for the first
time, we replace the logistic loss of StyleGAN2 with a newly
designed dual contrastive loss.

In the second dimension, we revisit the architecture of
both generator and discriminator networks. Specifically,
many GAN-based image generators rely on convolutional
layers to encode features. In such design, long-range de-
pendencies across pixels (e.g., large-size semantically cor-
related layouts) can only be formulated with a deep stack
of convolutional layers. This, however, does not favor the
stability of GAN training because of the challenge to co-
ordinate multiple layers desirably. The minimax formula-
tion and the alternating gradient ascent-descent in the GAN
framework further exacerbate such instability. To circum-
vent this issue, attention mechanisms that support long-range
modeling across image regions are incorporated into GAN
models [98, 5]. After that, however, StyleGAN2 claimed
the state of the art with a novel architectural design with-
out any attention mechanisms. Therefore, it turns not clear
whether attention still improves results, which of the popular
attention mechanisms [37, 85, 83, 103] improves the most,
and in return of how many additional parameters. To answer
these questions, we extensively study the role of attention in
the current state-of-the-art generator, and during this study
improve the results significantly.

In the discriminator, we again explore the role of atten-
tion as shown in Fig. 1. We design a novel reference atten-
tion mechanism in the discriminator where we allow two
irrelevant images as the inputs at the same time: one in-
put is sampled from real data as a reference, and the other
input is switched between a real sample and a generated
sample. The two inputs are encoded through two Siamese
branches [6, 15, 73, 97] and fused by a reference-attention
module. In this way, we achieve to guide real/fake classifica-
tion under the attention of the real world. Contributions are
summarized as follow:

• We propose a novel dual contrastive loss in adversarial
training that generalizes representation to more effec-
tively distinguish between real and fake, and further
incentivize the image generation quality.

• We investigate variants of the attention mechanism in
GAN architecture to mitigate the local and stationary
issues of convolutions.

• We design a novel reference-attention discriminator
architecture that benefits limited-scale datasets.

• We redefine the state of the art by improving FID scores
by at least 17.5% on several large-scale benchmark
datasets. We also achieve more realistic generation on
the CLEVR dataset [38] which poses different chal-
lenges from the other datasets: compositional scenes
with occlusions, shadows, reflections, and mirror sur-
faces. It comes with 47.5% FID improvement.

2. Related work
Generative adversarial networks (GANs). Since the

invention of GANs [24], there have been rapid progress to
achieve photorealistic image generation [67, 3, 25, 25, 60,
5, 41, 42, 43]. Significant improvements are obtained by
careful architectural designs for generators [10, 98, 42, 43,
69], discriminators [82, 56] and new regularization tech-
niques [58, 3, 25, 60, 101, 105, 96, 40, 106, 36]. Architec-
tural evolution in generators started from a multi-layer per-
ceptron (MLP) [24] and moved to deep convolutional neural
networks (DCNN) [67], to models with residual blocks [60],
and recently style-based [42, 43] and attention-based [98, 5]
models. Similarly, discriminators evolved from MLP to
DCNN [67], however, their design has not been studied as
aggressively. In this paper, we propose changes in both
generators and discriminators, and for the loss function.

Contrastive learning. Contrastive learning targets a
transformation of inputs into an embedding where associated
signals are brought together, and they are distanced from the
other samples in the dataset [26, 76, 8, 9]. The same intuition
behind contrastive learning has also been the base of Siamese
networks [6, 15, 73, 97]. Contrastive learning is shown to
be an effective tool for unsupervised learning [61, 27, 87],
conditional image synthesis [63, 40, 106], and domain adap-
tation [23]. In this work, we study its effectiveness when it is
closely coupled with the adversarial training framework and
replaces the conventional adversarial loss for unconditional
image generation. It is orthogonal to [40, 106, 36, 47] where
their contrastive losses serve only as an incremental auxiliary
to the conventional adversarial loss, apply to the generator
rather than the discriminator, and/or require expensive class
annotations or augmentation for generation.

Attention models. Attention models have dominated the
language modeling [78, 86, 17, 19, 89], and became popu-
lar among various computer vision problems from image
recognition [16, 79, 31, 32, 104, 109, 30, 85] to image cap-
tioning [88, 90, 7] to video prediction [37, 83]. They are
proposed in various forms: spatial attention that reweights
the convolution activations [98, 83, 12], in different chan-
nels [79, 31, 32], or a combination of them [7, 84, 22]. At-
tention models with their reweighting mechanisms provide
a possibility for long-range modeling across distant image
regions. As attention models outperform others in various
computer vision tasks, researchers were quick to incorporate
them into unconditional image generation [10, 98, 65, 5],
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semantic-based image generation [56, 75], and text-guided
image manipulation models [48, 66]. Even though atten-
tion models have already benefited the image generation
tasks, we believe the results can be further improved by em-
powering the state-of-the-art image synthesis models [43]
(attention not involved) with the most recent achievements
in the attention modules [103]. In addition, we design a
novel reference-attention architecture for the discriminator
and show a further boost on limited-scale datasets.

3. Approach
Our improvements for GANs include a novel dual con-

trastive loss and variants of the attention mechanisms. For
each improvement, we organize the context in a combination
between method formulation and experimental investigation.
After validating our optimal configuration, we compare it to
the state of the art in Section 4.

3.1. Dual contrastive loss

Adversarial training relies on the discriminator’s ability
on real vs. fake classification. As in other classification tasks,
discriminators are also prone to overfitting when the dataset
size is limited [2]. On larger datasets, on the other hand,
there is no study showing that disciminators overfit but we
hypothesize that adversarial training can still benefit from
novel loss functions which encourage the distinguishability
power of the discriminator representations for their real vs.
fake classification task.

We put another lens on the representation power of the
discriminator by incentivizing generation via contrastive
learning. Contrastive learning associates data points and
their positive examples and disassociates the other points
within the dataset which are referred to as negative examples.
It is recently re-popularized by various unsupervised learning
works [26, 61, 76, 8, 9] and generation works [63, 40, 106].
Among these works, contrastive learning is used as an auxil-
iary task. For example in image to image translation task, a
translator learns to output a zebra image given a horse image
via adversarial loss and in addition learns to align the input
horse image and the generated zebra image via contrastive
loss function [63]. Contrastive loss in that work is utilized
such that given a patch showing the legs of an output zebra
should be strongly associated with the corresponding legs
of the input horse, more so than the other patches randomly
extracted from the horse image.

In this work, different from the previous ones, we do
not use contrastive learning as an auxiliary task but directly
couple it in the main adversarial training by a novel loss
function formulation. We, to the best of our knowledge, for
the first time train an unconditional GAN by solely relying
on contrastive learning. As shown in Fig. 2 Right Case I, our
contrastive loss function aims at teaching the discriminator
to disassociate a single real image against a batch of gener-

Figure 2. Comparisons between the diagram of conventional GAN
loss and diagram of our dual contrastive loss. Our contrastive loss
in Case I aims at teaching the discriminator to disassociate a single
real image (R) against a batch of generated images (F). Dually in
Case II, the discriminator learns to disassociate a single generated
image against a batch of real images.

ated images. Dually in Case II, the discriminator learns to
disassociate a single generated image against a batch of real
images. The generator adversarially learns to minimize such
dual contrasts. Mathematically, we derive this loss function
by extending the binary classification used in [24, 43] to a
noise contrastive estimation framework [61], a one-against-a-
batch classification in the softmax cross-entropy formulation.
The novel formulation is as follows:
In Case I:

Lcontr
real (G,D) = E

x∼p(x)

log eD(x)

eD(x) +
∑

z∼N (0,Id)

eD(G(z))


= − E

x∼p(x)

log
1 +

∑
z∼N (0,Id)

eD(G(z))−D(x)


(1)

In Case II:

Lcontr
fake (G,D) = E

z∼N (0,Id)

log e−D(G(z))

e−D(G(z)) +
∑

x∼p(x)

e−D(x)


= − E

z∼N (0,Id)

log
1 +

∑
x∼p(x)

eD(G(z))−D(x)


(2)

Comparing between Eq. 1 and 2, the duality is formulated
by switching the order of real/fake sampling while keeping
the other calculation unchanged. Comparing to the logistic
loss [24, 43], contrastive loss enriches the softplus formu-
lation log(1 + eD(·)) with a batch of inner terms and using
discriminator logit contrasts between real and fake samples.
Finally, our adversarial objective is:

min
G

max
D

Lcontr
real (G,D) + Lcontr

fake (G,D) (3)

Investigation on loss designs. We extensively validate
the effectiveness of dual contrastive loss compared to other
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FFHQ Bedroom Church Horse CLEVR

Non-saturating [24] (default) 4.86 4.01 4.54 3.91 9.62
Saturating [24] 5.16 4.26 4.80 5.90 10.46
Wasserstein [25] 7.99 6.05 6.28 7.23 5.82
Hinge [50] 4.14 4.92 4.39 5.27 14.87
Dual contrastive (ours) 3.98 3.86 3.73 3.70 6.06

Table 1. Comparisons in FID among different GAN losses. Based
on StyleGAN2 config E backbone, it shows our contrastive loss
outperforms a variety of other losses on four out of five large-scale
datasets. Wasserstein loss is better than ours on CLEVR, but are
the worst on the other datasets.

Loss FFHQ Bedroom Church Horse CLEVR

Non-saturating [24] (default) 245. 332. 517. 1285. 199.
Dual contrastive (ours) 377. 580. 856. 1645. 513.

Table 2. Comparisons in FDDF between StyleGAN2 default loss
and our loss. A larger value is more desirable, indicating the learned
discriminator features are more distinguishable between real and
fake.

Figure 3. The tSNE plots for the distributions of discriminator
features. The distinguishability of features based on our contrastive
loss is much more significant than that based on the default non-
saturating loss in StyleGAN2 baseline. Our loss learns to associate
fake features to a “core” clique (green) while pushing real features
in the wild outwards as “satellites” (black). The baseline loss fails
to differentiate features from the two sources (red v.s. blue) with a
clear margin.

loss functions as presented in Table 1. We replace the loss
used in StyleGAN2 [43], non-saturating default loss, with
other popular GAN losses while keeping all the other pa-
rameters the same. As shown in Table 1, dual contrastive
loss is the only loss that significantly improves upon the de-
fault loss of StyleGAN2 consistently on all the five datasets.
Wasserstein loss is better than ours on CLEVR dataset, but is
the worst among all the loss functions on the other datasets.
We reason the success of the dual loss to its formulation that
explicitly learns an unbiased representation between real and
generated distributions.

The distinguishability of contrastive representation.
Motivated by the consistent improvement from our dual
contrastive loss, we delve deeper to investigate if and by how
much our contrastive representation is more distinguishable
than the original discriminator representation. We measure
the representation distinguishability by the Fréchet distance

of the discriminator features in the last layer (FDDF) be-
tween 50K real and generated samples. A larger value indi-
cates the feature is more distinguishable between real and
fake. We find our dual contrastive features to be consistently
more distinguishable than the original discriminator features
as shown in Table 2 and Fig. 3, which back-propagates more
effective gradients to incentivize our generator.

3.2. Self-attention in the generator

The majority of the GAN-based image generators rely
solely on convolutional layers to extract features [67, 3, 25,
60, 41, 42, 43], even though the local and stationary con-
volution primitive in the generator can not model the long-
range dependencies in an image. Among recent GAN-based
models, SAGAN [98] uses the self-attention block [83] and
demonstrates improved results. BigGAN [5] also follows
this choice and uses a similar attention module for better
performance. After that, however, StyleGAN [42] and Style-
GAN2 [43] redefine the state of the art with various modi-
fications in the generator architecture which do not include
any attention mechanism. StyleGAN2 also shows that gen-
eration results can be improved by larger networks with an
increased number of convolution filters. Therefore, it is now
not clear what the role of attention is in the state-of-the-art
image generation models. Does attention still improve the
network performance? Which attention mechanism benefits
the most and in the trade of how many additional parameters?
To answer these questions, we experiment with previously
proposed self-attention modules: Dynamic Filter Networks
(DFN) [37], Visual Transformers (VT) [85], Self-Attention
GANs (SAGAN) [98], as well as the state-of-the-art patch-
based spatially-adaptive self-attention module, SAN [103].

All the above self-attention modules are benefited from
their adaptive data-dependent parameter space while they
have their own hand-crafted architecture designs and in-
terpretability. DFN [37] keeps the convolution primitive
but makes the convolutional filter condition to its input
tensor. VT [85] compresses input tensor to a set of 1D
feature vectors, interprets them as semantic tokens, and
leverages language transformer [78] for tensor propagation.
SAN [103] generalizes the self-attention block [83] (as used
in SAGAN [98]) by replacing the point-wise softmax atten-
tion with a patch-wise fully-connected transformation.

We show the diagram of self-attention in Figure 4, with a
specific instantiation from SAN [103] due to its generalized
and state-of-the-art design. Note that the attention module is
agnostic to network backbone and can be switched to other
options for fair comparisons. For conceptual and technical
completeness, we formulate our SAN-based self-attention
below.

In details, let T ∈ Rh×w×c be the input tensor to
a convolutional layer in the original architecture. Fol-
lowing the mainstream protocol of self-attention calcula-
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Figure 4. The diagram of self-attention and reference-attention schemes. The attention module is instantiated by SAN [103] but is agnostic
to network backbone. It can flexibly switch to other options and be plug-and-play. We switch between the sources that are used to calculate
the Key and Query tensors, so as to implement self-attention and reference-attention respectively.

tion [83, 98, 65], we obtain the corresponding key, query,
and value tensors K(T),Q(T),V(T) ∈ Rh×w×c sepa-
rately using 1 × 1 convolutional kernel followed by bias
and leaky ReLU. For each location (i, j) within the ten-
sor spatial dimensions, we extract a large patch with size
s from K centered at (i, j), denoted as k ∈ Rs×s×c. We
then flatten the patch and concatenate it along the channel
dimension with q ∈ R1×1×c, the query vector at (i, j), to
obtain p ∈ R1×1×(s2c+c):

k = K(i− s
2 :i+

s
2+1, j− s

2 :j+
s
2+1)

q = Q(i,j)

p = concat (flatten(k),q)

(4)

In order to cooperate between the key and query, we feed
p through two fully-connected layers followed by bias and
leaky ReLU and obtain a vector with size w̃ ∈ R1×1×s2c:

ŵ = leakyReLU(pMw1 + bw1)

w̃ = ŵMw2 + bw2

(5)

Mw1 ∈ R(s2c+c)×s2c, Mw2 ∈ Rs2c×s2c, and bw1,bw2 ∈
R1×1×s2c are the learnable parameters in the fully connected
layers and biases.

On one hand we reshape w̃ back to the patch size
w ∈ Rs×s×c; on the other hand we extract a patch with the
same size from V centered at (i, j), denoted as v ∈ Rs×s×c.
Next, we aggregate v over spatial dimensions with the
correponding weights from w to derive an output vector
o ∈ R1×1×c:

w = reshape(w̃)

v = V(i− s
2 :i+

s
2+1, j− s

2 :j+
s
2+1)

o(i, j) =

s∑
m,n=1

w(m,n)v(m,n)

(6)

We loop over all the (i, j) to constitute an output ten-
sor Ōself ∈ Rh×w×c and define it as the self-attention out-
put. Finally, we replace the original convolution output with
Oself ∈ Rh×w×c, a residual version of this self-attention
output.

Ōself
(i,j) = o(i, j), ∀i = 1, . . . , h, j = 1, . . . , w

Ōself .
= attn (K(T),Q(T),V(T))

Oself = Ōself +T

(7)

It is worth noting that w plays a conceptually equivalent
role as the softmax attention map of the traditional key-
query aggregation [83, 98, 65], except it is not identical
across channels anymore but rather generalized to optimize
for each channel. w also aligns in spirit with the concept of
DFN [37], except the spatial size s×s is empirically set much
larger than 3×3, and more importantly, w is not “sliding”
anymore but rather generalized to optimize at each location.

Investigations on self-attention modules. In Table 3
we extensively compare among a variety of self-attention
modules by replacing the default convolution in the 32×32-
resolution layer in StyleGAN2 [43] config E backbone with
one of them. We justify that SAN [103] significantly im-
proves over the StyleGAN2 baseline and outperforms the
other attention variants on several datasets. DFN [37] is
better than ours on CelebA dataset, but is the worst on most
other datasets. We provide additional ablation studies on
network architectures in the supplementary material.

We visualize the attention map examples of the best per-
forming generator (StyleGAN2 + SAN) in Fig. 5. We find
attention maps to strongly correspond to the semantic layout
and structures of the generated images.

Complexity of self-attention modules. We also com-
pare in Table 4 the time and space complexity of these self-
attention modules. We observe that DFN [37] and VT [85]
moderately improve the generation quality yet in the trade
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CelebA Animal Face Bedroom Church

StyleGAN2 [43] 9.84 36.55 19.33 11.02
+ DFN [37] 8.41 35.10 26.86 11.31
+ VT [85] 9.18 34.70 16.85 10.64
+ SAGAN [98] 9.35 34.83 17.94 10.65
+ SAN [103] 8.60 32.72 16.36 9.62

Table 3. Comparisons in FID among different attention modules
in the generator. StyleGAN2 config E which does not include
an attention module is used as a backbone. For computationally
efficient comparisons, we use the 30k subset of each dataset at
128×128 resolution.

Figure 5. StyleGAN2 + SAN generated samples and their self-
attention maps in the generator for the corresponding dot positions.
Considering there is an attention weight kernel w ∈ Rs×s×c for
each position, we visualize the norm for each spatial position of
w. The attention maps strongly align to the semantic layout and
structures of the generated images, which enable long-range de-
pendencies across objects. See more samples in the supplementary
material.

Method FLOPS (G) #parameters (M)

StyleGAN2 [43] 1.08 48.77
+ DFN [37] 4.20 177.60
+ VT [85] 7.39 240.09
+ SAGAN [98] 0.99 44.99
+ SAN [103] 1.08 48.43

Table 4. Time complexity in FLOPS and space complexity in the
number of parameters for each method.

of undesirable > 3.6× complexity. On the contrary, the
improvements from SAGAN [98] or SAN [103] are not at
the cost of complexity, but rather benefited from the more
representative attention designs. They use a fewer number of
convolution channels and the multi-head trick [83] to control
their complexity. These results show that the improved
performance does not come from any additional parameters
but rather the attention structure itself.

3.3. Reference-attention in the discriminator

First, we apply SAN [103], the best attention mechanism
we validated in the generator, to the discriminator. However,
we do not see a benefit of such design as shown in Table

5. Then, we explore an advanced attention scheme given
that two classes of input (real vs. fake) are fed to the dis-
criminator. We allow the discriminator to take two image
inputs at the same time: the reference image and the primary
image where we set the reference image to always be a real
sample while the primary image to be either a real or gen-
erated sample. The reference image is encoded to represent
one part of the attention components. These components are
learned to guide the other part of the attention components,
which are encoded from the primary image. There are three
insights in this advancement. (1) An effective discriminator
encodes real images and generated images differently, so that
reference-attention is capable of learning positive feedback
given both images from the real class and negative feedback
given two images from different classes. Such a scheme am-
plifies the representation difference between real and fake,
and in turn potentially strengthens the power of the discrimi-
nator. (2) Reference-attention enables distribution estimation
in the discriminator feature level beyond the discriminator
logit level in the original GAN framework, which guides
generation more strictly towards the real distribution. (3)
Reference-attention learns to cooperate real and generated
images explicitly in one round of back-propagation, instead
of individually classifying them and trivially averaging the
gradients over one batch. Arbitrarily pairing up images miti-
gates discriminator from overfitting, similar to the spirit of
random data augmentation, but we instead conduct random
feature augmentation using attention.

In detail, we first encode the reference image and the
primary image through the original discriminator layers prior
to the convolution at a certain resolution. To align feature
embeddings, we apply the Siamese architecture [6, 15] to
share layer parameters as shown in Fig. 1. We then apply
the same attention scheme as used in the generator, except
we use the tensor Tref ∈ Rh×w×c from the reference branch
to calculate the key and query tensors, and use the tensor
Tpri ∈ Rh×w×c from the primary branch to calculate the
value tensor and the residual shortcut. Finally, we replace
the original convolution output with our reference-attention
output:

Oref .
= attn (K(Tref),Q(Tref),V(Tpri)) +Tpri (8)

After the reference-attention layer, the two Siamese
branches fuse into one and are followed by the remaining
discriminator layers to obtain the classification logit. We
show in Fig. 4 the diagram of reference-attention. Eq. 8
provides the flexibility how to cooperate between reference
and primary images. We empirically explore the other com-
positions of sources to the key, query, and value components
of reference-attention in the supplementary material as well
as additional ablation studies on network architectures.

From Table 5 we validate reference-attention mechanism
(ref attn) to improve the results whereas self-attention to be
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Figure 6. Comparisons in FID between StyleGAN2 config E baseline (blue) and that with our reference-attention in the discriminator
(orange). Our method consistently improves the baseline when dataset size varies between 1k and 30k images. For computationally efficient
comparisons, we use each dataset at 128×128 resolution. See the supplementary material for the values in these plots.

CelebA Animal Face Bedroom Church

StyleGAN2 [43] 9.84 36.55 19.33 11.02
+ self attn in D 10.49 42.41 17.22 11.06
+ ref attn in D 7.48 31.08 8.32 7.86

Table 5. Comparisons in FID among different attention configu-
rations in the discriminator. StyleGAN2 config E which does not
include any attention module is used as a backbone. For compu-
tationally efficient comparisons, we use the 30k subset of each
dataset at 128×128 resolution.

barely benefiting for the discriminator. Encouraged with
these findings, we run the proposed reference-attention on
full-scale datasets but do not see any improvements. There-
fore, we dive deep into reference-attentions behavior in the
discriminator with respect to the dataset size as given in
Fig. 6. We find that the reference-attention in the discrimina-
tor consistently improves the performance when dataset size
varies between 1k and 30k images, and on contrary slightly
deteriorates the performance when dataset sizes increase
further. We reason that the arbitrary pair-up of the refer-
ence and primary image inputs to prevent overfitting when
data size is small but causing underfitting with the increase
of data size Even though in this paper our main scope is
GANs on large-scale datasets, we believe these findings to
be very interesting for researchers to design their networks
for limited-scale datasets. We summarize our comparisons
on limited-scale datasets in the supplementary material.

4. Comparisons to the state of the art

Implementation details. All our models are built
upon the most recent state-of-the-art unconditional Style-
GAN2 [43] config E for its high performance and reasonable
speed. We leverage the plug-and-play advantages of all our
improvement proposals to strictly follow StyleGAN2 official
setup and training protocol, which facilitates reproducibil-
ity and fair comparisons. For dual contrastive loss, we first
warm up training with the default non-saturating loss for
about 20 epochs, and then switch to train with our loss.

Datasets. We use several benchmark datasets, 70K

FFHQ face dataset [42], 3M LSUN Bedroom dataset [91],
120K LSUN Church dataset [91], 2M LSUN Horse
dataset [91], CelebA face dataset [57] and Animal Face
dataset [55], and 70K CLEVR [38] dataset which con-
tains rendered images with random compositions of 3D
shapes, uniform materials, uniform colors, point lighting,
and a plain background. It poses different challenges from
the other common datasets: compositional scenes with oc-
clusions, shadows, reflections, and mirror surfaces. We
use 256×256 resolution images for each of these datasets
except the CelebA and Animal Face datasets which are
used in 128×128 resolutions. We do not experiment with
1024×1024 resolution of FFHQ as it takes 9 days to train
StyleGAN2 base model. Instead, we run extensive experi-
ments on the mentioned various datasets. If not otherwise
noted, we use the whole dataset.

Evaluation. FID [29] is regarded as the golden standard
to quantitatively evaluate generation quality. We follow the
protocol in StyleGAN2 [43] to report the FID between 50K
generated images and 50K real testing images. The smaller
the more desirable. In the supplementary material, we report
various other metrics that are proposed in StyelGAN [42] or
StyleGAN2 [43] but are less benchmarked in other literature,
Perceptual Path Length, Precision, Recall, and Separability.

Comparisons. Besides StyleGAN2 [43], we also com-
pare to a parallel state-of-the-art study, U-Net GAN [69],
which was build upon and improved on BigGAN [5]. We
train U-Net by adapting it to the better backbone of Style-
GAN2 [43] for fair comparison, and obtain better results
than their official release on non-FFHQ datasets. As shown
in Table 6, our self-attention generator improves on four out
of five large-scale datasets, up to 13.3% relative improve-
ment on Bedroom dataset. This highlights the benefits of
attention to details and to long-range dependencies on com-
plex scenes. However, self-attention does not improve on the
extensively studied FFHQ dataset. We reason that the image
pre-processing of facial landmark alignment compensates
for the lack of attention schemes, which makes previous
works also overlook them on other datasets.

Our dual contrastive loss improves effectively on all the
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Figure 7. Uncurated generated samples. To align the comparisons, we use the same real query images for pre-trained generators to reconstruct.
Artifacts from StyleGAN2 are highlighted with red boxes. Zoom in for details. In particular, our generation significantly outperforms
the baselines on CLEVR images which strongly rely on long-range dependencies (occlusions, shadows, reflections, etc) and consistency
(consistent shadow directions, consistent specularity, regular shapes, uniform colors, etc). See more samples in the supplementary material.

Method Loss FFHQ Bedroom Church Horse CLEVR

BigGAN [5] Adv 11.4 - - - -
U-Net GAN [69] Adv 7.48 17.6 11.7 20.2 33.3
StyleGAN2 [43] Adv 4.86 4.01 4.54 3.91 9.62

StyleGAN2 w/ attn Adv 5.13 3.48 4.38 3.59 8.96
StyleGAN2 Contr 3.98 3.86 3.73 3.70 6.06
StyleGAN2 w/ attn Contr 4.63 3.31 3.39 2.97 5.05

Table 6. Comparisons in FID to the state-of-the-art GANs on the
large-scale datasets. We highlight the best in bold and second best
with underline. “w/ attn” indicates using the self-attention in the
generator. “Contr” indicates using our dual contrastive loss instead
of conventional GAN loss.

datasets, up to 37% improvement on CLEVR dataset. This
highlights the benefits of contrastive learning on generalized
representation, especially on aligned datasets, e.g. FFHQ
and CLEVR, that can easily make a traditional discriminator
overfit. The synergy effective between self-attention and
contrastive learning is significant and consistent, resulting
in at least 17.5% and up to 47.5% relative improvement on
CLEVR. Especially for CLEVR, our generator handles more
realistically for occlusions, shadows, reflections, and mirror
surfaces. As shown in Fig. 7, our method suppresses artifacts
that were previously visible in StyleGAN2 baseline outputs,
with red boxes, e.g., the artifacts on the wall in Bedroom

images, discontinuities in the structure in Church images, as
well as color leakage between objects in CLEVR images.

5. Conclusion

The advancements in attention schemes and contrastive
learning generate opportunities for new designs of GANs.
Our attention schemes serve as a beneficial replacement for
local and stationary convolutions, so as to equip generation
and discriminator representation with long-range adaptive
dependencies. In particular, our reference-attention discrimi-
nator cooperates between real reference images and primary
images, mitigates discriminator overfitting, and leads to fur-
ther boost on limited-scale datasets. Additionally, our novel
contrastive loss generalizes discriminator representations,
makes them more distinguishable between real and fake, and
in turn incentivizes better generation quality.
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[2] Martin Arjovsky and Léon Bottou. Towards principled meth-
ods for training generative adversarial networks. In ICLR,
2017. 3

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
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