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Abstract

End-to-end discriminative trackers improve the state of
the art significantly, yet the improvement in robustness and
efficiency is restricted by the conventional discriminative
model, i.e., least-squares based regression. In this paper, we
present DTT, a novel single-object discriminative tracker,
based on an encoder-decoder Transformer architecture. By
self- and encoder-decoder attention mechanisms, our ap-
proach is able to exploit the rich scene information in an
end-to-end manner, effectively removing the need for hand-
designed discriminative models. In online tracking, given a
new test frame, dense prediction is performed at all spatial
positions. Not only location, but also bounding box of the
target object is obtained in a robust fashion, streamlining
the discriminative tracking pipeline. DTT is conceptual-
ly simple and easy to implement. It yields state-of-the-art
performance on four popular benchmarks including GOT-
10k, LaSOT, NfS, and TrackingNet while running at over 50
FPS, confirming its effectiveness and efficiency. We hope
DTT may provide a new perspective for single-object visual
tracking.

1. Introduction

Generic visual tracking is a long-standing topic in the
field of computer vision and has attracted increasing atten-
tion over the last decades. Despite significant progress in
recent years [2,6,7,19,23,26,33,34,41,42], visual tracking
remains challenging due to numerous factors such as very
limited online training samples, large appearance variation,
and heavy background clutters.

In recent years, Siamese network based trackers [1,5,11–
13, 19, 20, 36, 37] have attracted great attention because of
their balanced speed and accuracy. These methods formu-
late the visual tracking task as a target matching problem

and aim to learn a general similarity metric between the tar-
get template and the search region (see Fig. 1(a)). Power-
ful backbone networks [19] and effective proposal network-
s [11] are proposed to achieve promising results. However,
the Siamese learning framework cannot exploit the back-
ground information effectively to improve the discrimina-
tion.

On the contrary, modern discriminative trackers [2,3,42]
are able to exploit the background information and typical-
ly learn an adaptive discriminative model by minimizing the
regression loss (see Fig. 1(b)). Although they have achieved
leading performance on serval benchmarks [15, 16, 35], we
point out that such tracking scheme has the following three
limitations. 1) The discrimination of the applied regression
models (i.e., least-squares based regression) is rough and in-
sufficient for robust tracking because the conventional mod-
els often fail to reserve the detailed scene information and
encode the relationships among the distractors in the back-
ground. 2) Modern discriminative models can only con-
tribute to localization, and thus have to rely on other meth-
ods like ATOM [6] for final predicted bounding box, result-
ing in a separated tracking pipeline. 3) In online tracking,
iterative solution is needed in both the model predictor [2]
and the bounding box refinement module [6], which is not
friendly to most embedded devices and may negatively af-
fect the efficiency.

To this end, we present a novel discriminative tracker
with Transformers, termed as DTT, which is a conceptual-
ly simple, efficient and robust tracking architecture. The
core advantage of DTT is that it can effectively and ef-
ficiently exploit the rich scene information for both clas-
sification and bounding box regression. Specifically, DT-
T is built upon an encoder-decoder Transformer architec-
ture [32] where the features of training image obtained by
convolutional neural networks (CNNs) are fed to the en-
coder, as shown in Fig. 1(c). Due to the self-attention
mechanism in the encoder, its outputs, called discrimina-
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(a) A simple Siamese tracking pipeline.
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(b) A discriminative tracking pipeline.
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(c) The simplified architecture of the proposed DTT.

Figure 1: The simplified framework of our method along with two
dominant tracking schemes. Different from the previous methods,
DTT is a brand new tracking architecture. It enables utilizing the
rich scene information in the features effectively for both localiza-
tion and bounding box regression, simplifying the discriminative
tracking pipeline.

tive feature embeddings, contain a wealth of global and lo-
cal information about the scene, which are beneficial to dis-
criminative tracking. Through end-to-end training on large-
scale tracking datasets, the discriminative feature embed-
dings can highlight the most discriminative representation
for visual tracking task, effectively removing the need for a
hand-designed discriminative model predictor.

The decoder receives the test image features as one of
the three input (see Fig. 2). Through the self-attention mod-
ule, the local and global information about the test image is
extracted and contained in the feature embeddings of each
pixel, enabling dense prediction at all spatial positions for
more accurate and robust tracking. Then in the following
cross-attention module, the discriminative embeddings are
utilized to produce the fused feature embeddings for predic-

tion. Finally, similar to Siamese trackers [5,13], our predic-
tion head consists of a classification branch and a bound-
ing box regression branch for robust and accurate tracking.
Besides, considering the importance of model update along
with its efficiency in visual tracking, we employ a simple
yet effective update method to fit our DTT to the variation
of the scene and the target in online tracking. Without bells
and whistles, the overall pipeline is neat, straightforward,
and easy to implement. Extensive experiments on four pop-
ular benchmarks, GOT-10k [15], LaSOT [10], NfS [16], and
TrackingNet [24], show that DTT achieves the state-of-the-
art results on all datasets, while running at over 50 FPS.
Code shall be released.

In summary, our contributions are in four folds.

1. We propose a novel and conceptually simple discrim-
inative tracker, called DTT, which is based on an
encoder-decoder transformer architecture.

2. DTT is able to exploit rich scene information and gen-
erate discriminative feature embeddings in an end-to-
end learning pipeline, removing the need of integrating
conventional discriminative models.

3. DTT allows dense prediction to obtain both the loca-
tion and bounding box of the target object in an robust
way, simplifying the pipeline of discriminative track-
ing framework.

4. Experimental results show that DTT is comparable
with state-of-the-art trackers without bells and whis-
tles. We hope this effective and efficient method could
provide a new perspective for visual tracking.

2. Related Work
Siamese Network Based Trackers Recently, Siamese
network based trackers have attracted great attention from
the visual tracking community due to their end-to-end train-
ing capabilities and high efficiency [1, 5, 12, 13, 19, 20, 36,
37,39]. SiamFC [1] employs a fully-convolutional Siamese
network to extract the feature maps of target. It can run at
high speed because of its light-weight structure and no need
to update. In order to get a more accurate target bound-
ing box, SiamRPN [20] introduces the region proposal sub-
network into the SiamFC instead of the multi-levels scale
search strategy. SiamRPN++ [19] and SiamDW [37] al-
leviate the negative influence such as padding by differ-
ent methods, and introduce modern deep neural networks
like ResNet [14] into the Siamese network based trackers.
More recently, SiamBAN [5] and SiamCAR [13] employ
fully convolutional network to directly classify objects and
regress their bounding boxes at each spatial location, re-
moving the tricky hyper-parameter tuning of anchors. How-
ever, Siamese network based trackers are typically limit-
ed to the mechanism of cross correlation and thus cannot
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exploit background information effectively to discriminate
target from distractors or cluttered scenes. Differently, our
tracker is able to encode rich scene information to generate
the discriminative feature embeddings.
Online Discriminative Trackers Online discriminative
trackers [2, 6, 7, 23, 28, 29, 31, 40, 42] are prevalent over
the last decades, because they can effectively exploit the
background information and achieve the state-of-the-art re-
sults on multiple challenging benchmarks [15, 17, 18, 35].
Recently, DiMP [2] and DCFST [42] present two end-
to-end trainable architectures which integrate the discrim-
inative model predictor into the offline training to learn
optimal features for the discriminative model. Our ap-
proach follows the ideas of utilizing the background in-
formation and the end-to-end framework. However, we
do not assume the discriminative embeddings learned vi-
a least-squares based regression is ideal and discriminative
enough for visual tracking task. Differently, we propose
to directly generate discriminative feature embeddings and
make them adapt to the visual tracking task in an end-to-end
learning pipeline. Moreover, our discriminative feature em-
beddings can not only contribute to robust localization but
also be used for bounding box regression. More related to
our work, KYS [3] also exploits the scene information by
building state vectors and its encoding is also trained end-
to-end by minimizing a tracking loss. However, the recep-
tive field of each state vector and the computation of dense
correspondence are local and limited, causing that the ac-
curacy drops severely without an extra appearance model.
Different from KYS, our DTT is neat, straightforward and
efficiency.
Attention for Image Recognition. The self-attention
mechanism used in Transformers [32] correlates informa-
tion for each element of the input with respect to the other-
s. Recently, Transformer based architectures have been ap-
plied to various tasks such as object detection [4]. We suc-
cessfully adapt the transformer architecture to single-object
visual tracking scheme and use it to learn strong discrimina-
tive feature embeddings for both classification and bound-
ing box regression .

3. Proposed Method

3.1. Transformer Encoder for Discriminative
Tracking

Given training samples and their corresponding labels,
conventional discriminative methods such as least-squares-
based regression aim to learn a discriminative model which
can be used to discriminate between target and background
appearance in the feature space, by means of minimiz-
ing a discriminative loss. However, due to the limitation
of conventional discriminative methods, the solved model-
s may not capture all discriminative representations of data

that may be beneficial to visual tracking, e.g., detailed tex-
ture features and relationships among the distractors in the
scene. Differently, in this work, we point out that the dis-
criminative tracking task can be accomplished in a straight-
forward way without optimizing a discriminative model, if
the feature embeddings of training image themselves con-
tain enough discriminative representations for robust track-
ing and can be utilized effectively in online tracking. To im-
plement this, we utilize the Transformer architecture [32].

To be specific, we employ multi-head self-attention
mechanism to refine the feature embeddings of each ele-
ment with consideration to all the other elements. The pow-
erful relation modeling capability of Transformers enables
the output feature embeddings to contain much more and
stronger discriminative representations compared with the
original convolutional features. Formally, we let query Q ∈
RHW×C , key K ∈ RHW×C , and value V ∈ RHW×C de-
note the input triplets of the self-attention module, whereH ,
W and C denote height, width and channel number of the
input convolutional features, respectively. We additionally
introduce the fixed positional embeddings Y ∈ RHW×C

as done in DETR [4] to disambiguate different spatial po-
sitions. Then, as shown in Fig. 2, given the reshaped train-
ing image features X ∈ RHW×C , we have Q = X + Y,
K = X +Y, and V = X. Finally, the discriminative fea-
ture embeddings F ∈ RHW×C are obtained through the s-
tandard multi-head self-attention layer and the feed-forward
networks (FFNs) in the encoder, with the whole process
defined as F = Enc(X). Through end-to-end training on
large-scale tracking datasets, the discriminative feature em-
beddings are tightly coupled with the tracking task and able
to highlight the most discriminative representation for visu-
al tracking. Note that all the training images are cropped
and centered at the target object to make the networks rec-
ognize the location of target object and benefit the training
process.

3.2. Transformer Decoder for Discriminative
Tracking

The decoder in DTT also has a standard Transformer ar-
chitecture. Each layer consists of a multi-head self-attention
module, a multi-head cross-attention one and FFNs. Differ-
ent from the common settings in detection task [4], our ap-
proach receives the test image features Z ∈ RHW×C as one
input instead of the learned query embeddings [4]. In order
for the Transformer model to make use of the positional
information of the test image, as done in the encoder, fixed
positional encodings are added to the test image features for
the input key and query elements of the self-attention mod-
ule. As such, through the self-attention module, the local
and global information about the test image is learned and
contained in the feature embeddings of each pixel, enabling
dense prediction at all spatial positions of the test image
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Figure 2: The detailed architecture of the proposed DTT. Features of training image and test image are fed to the encoder and the decoder,
respectively. The prediction head consists of a classification branch and a bounding box regression branch.

features for more accurate and robust tracking. Note that in
the dense prediction of previous trackers [5, 13], the global
scene information about the test image can not contribute
to each prediction, resulting in inferior generalization, es-
pecially in cluttered scenes.

The following cross-attention module provides an ef-
fective manner to utilize the discriminative embeddings F,
where key and query are F and the output of the ahead self-
attention module, respectively, and supplemented with the
positional embeddings as well (see Fig. 2). Formally, the
output of the decoder, called cross-attention feature embed-
dings R ∈ RHW×C , is obtained by Dec(Z,F). Compared
with the response map with only one channel in previous
discriminative methods [2, 6, 31], the cross-attention fea-
ture embeddings contain more discriminative representation
about the training and test images and can be used for both
target localization and bounding box regression.

3.3. Bounding Box Prediction

Since the cross-attention feature embeddings have the
same spatial size as the test image features, each spatial lo-
cation (i, j) in R can be mapped to the corresponding loca-
tion (m,n) in test image by (m,n) = (i × s − bs/2c, j ×
s − bs/2c) directly, where s denotes the stride of the net-
works. Similar to previous works [13, 30], our prediction
head consists of a classification branch to predict the cat-
egory (foreground or background) for each location, and a

regression branch to compute the target bounding box at this
location. Formally, the final prediction is obtained by

Pcls
W×H×2 = ϕcls(R),

Preg
W×H×4 = ϕreg(R),

(1)

where ϕcls(·) and ϕreg(·) denote the FFNs for classification
and bounding box regression, respectively. The 2-D vec-
tor at each spatial position, i.e., Pcls

i,j = (pf , pb), represents
the foreground and background scores of the corresponding
location in the test image. The 4-D vector at each spatial po-
sition, i.e., Preg

i,j = (l, t, r, b), represents the distances from
the corresponding location to the four sides of the bounding
box in the test image. Then, the predicted bounding box
b̂(i,j) = (x̂, ŷ, ŵ, ĥ) is given by

x̂ = m+ (r − l)/2, ŷ = n+ (b− t)/2,

ŵ = l + r, ĥ = t+ b,
(2)

where (x̂, ŷ), ŵ and ĥ denote the center, the width and the
height of the predicted bounding box.

3.4. Training Loss

The training loss consists of the bounding box regression
loss and the classification loss. For the regression branch,
since the locations far away from the center of the target
object tend to produce low-quality predicted bounding box-
es [13], the corresponding predictions do not contribute to
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Table 1: Comparisons with the state-of-the-art trackers on GOT-10k [15].

Tracker Venue Backbone AO SR0.5 SR0.75 FPS Hardware
MDNet [25] CVPR’16 VGG-m 0.299 0.303 0.099 1.52 Titan X
CCOT [8] ECCV’16 VGG-m 0.325 0.328 0.107 0.68 CPU

SiamFC [1] CVPR’16 AlexNet 0.374 0.404 0.144 25.81 Titan X
CFNet [31] CVPR’17 AlexNet 0.293 0.265 0.087 35.62 Titan X

ECO [7] CVPR’17 VGG-m 0.316 0.309 0.111 2.62 CPU
ATOM [6] CVPR’19 ResNet-18 0.556 0.634 0.402 20.71 GTX-1050

SiamRPN++ [19] CVPR’19 ResNet-50 0.517 0.616 0.325 49.83 RTX-2080
DiMP [2] ICCV’19 ResNet-50 0.611 0.717 0.492 34.05 GTX-1050
D3S [22] CVPR’20 ResNet-50 0.597 0.676 0.462 25 GTX-1080

SiamCAR [13] CVPR’20 ResNet-50 0.579 0.677 0.437 52.27 RTX-2080
Ocean [38] ECCV’20 ResNet-50 0.611 0.721 - 25 V100

KYS [3] ECCV’20 ResNet-50 0.636 0.751 0.515 20 RTX-2080
DCFST [42] ECCV’20 ResNet-50 0.638 0.753 0.498 25 Titan Xp

DTT ours ResNet-50 0.634 0.749 0.514 54.5 Titan Xp
DTT* ours ResNet-50 0.689 0.798 0.622 54.5 Titan Xp

the regression loss if the locations fall outside the ellip-
tic area centered at the target object, that is the location-
s fall inside/outside the elliptic area are regarded as fore-
ground/background. Formally, similar to [13], we compute
the regression loss by using

Lreg =
1∑

I(b(i,j))

∑
i,j

I(b(i,j))(1− IoU(b(i,j), b̂(i,j))),

(3)
where b(i,j) = (x, y, w, h) denotes the center, width and
height of the ground-truth bounding box and IoU(·) is a
function which computes the area ratio of intersection to
union of the predicted bounding box and the ground-truth
bounding box. The function I(·) is defined by

I(b(i,j)) =

 1,
4(x− x̂)2

w2
+

4(y − ŷ)2

h2
< 1

0, otherwise.

, (4)

For another branch, we apply the cross-entropy loss [13,
30] Lcls for classification. The overall training loss of DTT
is

L = λ1Lcls + λ2Lreg, (5)

where λ1 and λ2 are the tradeoff hyper-parameter. During
training, we empirically set λ1 = λ2 = 1 in our experi-
ments.

3.5. Online Tracking

Initialization Given the first frame with annotation, the
image patch is cropped and centered at the ground-truth tar-
get, with an area of 42 times the target area, and then fed to
the encoder to obtain the initial discriminative embeddings
F0.
Prediction Given a new test image, we first calculate the
predictions Pcls and Preg by Eq. (1). Then, the location with

the highest foreground score is selected as (i∗, j∗). Finally,
the predicted bounding box b̂(i∗,j∗) is computed by Eq. (2).
Updating In online tracking, to make our tracking mod-
el robust to the variations of the target and the background,
we update the discriminative feature embeddings every 10
frames in a moving average method. First, we crop the im-
age patch centered at the predicted target and obtain the new
discriminative embeddings in the current frame Ft by the
encoder. Then, we empirically update the discriminative
feature embeddings F̃ as follows,

F̃ = (1− γ)F̃+ γFt, (6)

where γ is a weight parameter.

4. Experiments
4.1. Implementation Details

Feature Extraction The search regions of our tracker is
set experientially 4 times larger than the object bounding
box [13, 19]. The cropped training images and test ones are
both first resized to 255 × 255, and then fed to the feature
extraction network where ImageNet [9] pre-trained ResNet-
50 [14] is adopted as the backbone network. To obtain de-
tailed spatial information, we use atrous convolution with
the stride of 1 and the atrous rate of 2 in the conv4 block.
Then, for efficiency, we only use the conv4 block features
and add a 1 × 1 convolution to reduce the output features
channel to 256 without utilizing the conv3 block and conv5
block features which may improve the performance further.
Finally, to fit the format of input for the encoder and de-
coder, both training image features and test image features
are reshaped to the size of HW × C and then denoted as X
and Z, respectively.
Training Details The layers of the encoder and decoder
are set to 2, i.e., M = N = 2. Other hyper-parameter
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Figure 3: Success plots on GOT-10k [15]. Our DTT outperforms
the other state-of-the-art methods.

settings follow DETR [4]. For efficiency, we train DTT on-
ly with the training splits of the GOT-10k [15] dataset for
20 epochs. DTT is trained with stochastic gradient descen-
t (SGD) with a minibatch of 20 image pairs following the
settings in [13]. Without considering the training efficien-
cy too much, we also train DTT with large-scale training
datasets (GOT-10k [15], TrackingNet [24], LaSOT [10] and
COCO [21]) for much larger epochs (400), denoted as DT-
T*. Both DTT and DTT* are implemented in Python using
PyTorch on TITAN X (Pascal) GPUs. Code will be released
soon.
Tracking Details The weight parameter γ in Eq. (6) is set
as 0.01. The running speed of DTT is over 50 FPS, tested
on a single TITAN X (Pascal) on GOT-10k test dataset.

4.2. Results on GOT-10K

GOT-10K [15] is a large-scale and high-diversity bench-
mark for generic object tracking in the wild. Fair compar-
isons are ensured with the protocol because all approach-
es use the same training and testing data provided by the
dataset. The evaluation metrics include success plots, aver-
age overlap (AO), success rate exceeding 0.5 (SR0.75) and
success rate exceeding 0.75 (SR0.75).

We compare DTT and DTT* with state-of-the-art track-
ers. All the results are provided by the official website of
GOT-10K. The quantitative results on different metrics are
listed in Table 1 and the success plots are shown in Fig. 3. It
can be seen that DTT outperforms all the Siamese Network
based trackers in terms of all metrics. Note that though DT-
T has a similar prediction head to that of SiamCAR [13], it
surpasses SiamCAR significantly by 5.5%, 7.2% and 7.7%
in terms of AO, SR0.5 and SR0.75, respectively, which con-
firms that DTT is able to exploit scene information effec-

Table 2: Comparisons with the state-of-the-art trackers on La-
SOT [10].

MDNet ATOM Ocean DiMP50 SiamCAR DTT DTT*
[25] [6] [38] [2] [13] ours ours

AUC 0.422 0.537 0.560 0.568 0.516 0.538 0.601

Table 3: Comparisons with the state-of-the-art trackers on Nf-
S [16].

KYS SiamRCNN DCFST DiMP SiamBAN DTT DTT*
[3] [33] [42] [2] [5] ours ours

AUC 0.635 0.639 0.641 0.620 0.594 0.608 0.659

tively for visual tracking. Compared with DiMP, DTT im-
proves the scores by 2.3%, 3.2%, and 2.2%, respectively for
AO, SR0.5 and SR0.75, showing the stronger discrimination
of our method. Note that KYS outperforms DTT because
KYS employs an extra appearance model. Compared with
DTT, DTT* improves the scores by 5.5%, 4.9%, and 10.8%
respectively for AO, SR0.5 and SR0.75 with the help of more
training data and epochs. Moreover, both DTT and DTT*
can run at the highest speed of 54.5 FPS among these track-
ers, 2× the speed of DCFST and KYS.

4.3. Results on LaSOT

LaSOT [10] is a large-scale benchmark for long-term
single-object tracking. The test set consists of 280 high-
quality sequences. The results are presented in Table 2. DT-
T and DTT* obtain AUC scores of 0.538 and 0.601, respec-
tively. DTT* outperforms the previous trackers by over 3%,
showing effectiveness of our way to utilize the rich scene
information with a brand new approach.

4.4. Results on NfS

We evaluate our approach on the 30 FPS version of N-
fS dataset [16] which consists of 100 challenging videos.
We compare DTT and DTT* with other five state-of-the-
art trackers, including KYS [3], SiamRCNN [33], DCF-
ST [42], DiMP [2], and SiamBAN [5]. Area-under-the-
curve (AUC) scores are shown in Table 4. It can be seen
that DTT achieves an AUC score of 0.608, outperforming
the recent Siamese Network based tracker SiamBAN [5] by
1.4%. With multiple training datasets and more training e-
pochs, DTT* obtains the highest AUC score of 0.659, lead-
ing KYS by 2.4%.

4.5. Results on TrackingNet

TrackingNet is another large-scale dataset for training
and testing trackers, where the the test set contains 511 se-
quences. We compare DTT and DTT* against recent state-
of-the-art trackers, including KYS [25], SiamRCNN [33],
DCFST [42], DiMP [2], and SiamRPN++ [19] on the test
set of TrackingNet. Though DTT is only trained on GOT-
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Table 4: Comparisons with the state-of-the-art trackers on Track-
ingNet [24]. Trackers are evaluated by using the area under the
success rate curve (AUC), precision and normalized precision
(Norm. Prec).

KYS SiamRCNN DCFST DiMP SiamRPN++ DTT DTT*
[3] [33] [42] [2] [19] ours ours

Precision 0.688 0.800 0.700 0.687 0.694 0.688 0.789
Norm. Prec 0.800 0.854 0.809 0.801 0.800 0.803 0.850

AUC 0.740 0.812 0.752 0.740 0.733 0.740 0.796

Table 5: Analysis of different architectures for integrating Trans-
formers into the tracking scheme on GOT-10k test dataset.

Baseline Concatenation Siamese Query-key DTT
AO 0.362 0.498 0.582 0.556 0.634

SR0.50 0.393 0.598 0.689 0.678 0.749
SR0.75 0.065 0.236 0.433 0.376 0.514

10k [15], it achieves the best normalized precision of 0.803
and the AUC score of 0.740, similar to those of DiMP, KYS
and SiamRPN++. DTT* obtains the second best results,
only inferior to SiamRCNN because the re-detection mod-
ule of SiamRCNN, which is not employed in other methods
including ours, can work better when the class number is
small, e.g., 27 on TrackingNet..

4.6. Analysis of Integration of Transformers

Aiming at finding out an effective way to integrate trans-
formers into online discriminative tracking, we investigate
different network architectures for integrating Transformer-
s in single-object visual tracking. All the experiments are
based on their respective retrained networks (including the
ResNet backbone) and the training strategy is the same as
DTT. The results of this investigation are shown in table 5.
The simplified architectures of the other four architectures
are presented in Fig. 4.
Baseline Motivated by the original structure in DE-
TR [4], the baseline structure only uses the test image which
is fed to the encoder. The decoder in this baseline receives
100 learned object queries as input as done in DETR [4].
Since the target to be tracked is arbitrary, such architecture
cannot determine what object is the target, and thus the re-
sults are poor, confirming that the detection framework can-
not be employed in visual tracking directly.
Concatenation We naively add the training image to the
architecture by concatenating the features of training image
and test image along the channel dimension in the baseline
architecture. This leads to better results, with an improve-
ment of 13.6% and 17.1% in terms of AO and SR0.75, re-
spectively, showing the importance of scene information in
the training image.
Siamese In this architecture, the features of training im-
age and test image are fed to the same encoder, respective-
ly. Then the two output embeddings are fed to the cross-

Baseline Concatenation

Siamese Query-key

Encoder Decoder

Test 
image

features

Learned 
object 
queries

Encoder Decoder

Test 
image 

features Learned 
object 
queriesTraining

image 
features

Encoder Decoder

Test 
image 

features

EncoderTraining
image 

features

Encoder Decoder

Test 
image 

features Target
features

Figure 4: The four different simplified architectures for integrating
Transformers in single-object visual tracking. Details can be found
in Sec. 4.6.

Table 6: Comparisons of the effectiveness of training datasets and
training epochs on GOT-10k test dataset.

DTT DTT-L DTT*
Multiple training datasets X

Training epochs 20 400 400
AO 0.634 0.659 0.689

Table 7: Component-wise analysis of DTT on GOT-10k test
dataset. The results prove that each component is important in
our method. (BI: background information. PE: positional embed-
dings. OU: online update.)

w/o OU w/o BI w/o PE in encoder w/o PE in decoder DTT
AO 0.621 0.559 0.576 0.616 0.634

SR0.50 0.735 0.657 0.696 0.728 0.749
SR0.75 0.495 0.402 0.398 0.490 0.514

attention module in the decoder which does not contain self-
attention module. The results are further improved by 8.4%
and 9.1% in terms of AO and SR0.75, respectively. Com-
pared with DTT, the Siamese architecture cannot exploit the
discriminative representation in the scene thoroughly due to
shared parameters in the encoder.
Query-key This architecture is also mentioned in [27],
where the test image features are fed to the encoder and the
target features are regarded as the input object query of the
decoder. The results are worse than the Siamese method
and DTT, verifying that only the target information cannot
help achieve satisfactory results during online tracking.

Different from the above heuristic ways, inspired by the
modern discriminative tracking pipeline, DTT is able to ex-
ploit rich scene information effectively and highlight the
discriminative representation in the training image, achiev-
ing the best results among these architectures.
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4.7. Component-wise Analysis

To verify the effectiveness of the proposed method, we
perform a component-wise analysis on the GOT-10k test
dataset.
Training Strategy To verify the effectiveness of multiple
training datasets and more training epochs respectively, we
also train DTT which is only trained on GOT-10k with 400
epochs, denoted as DTT-L. The comparisons are shown in
Table 6. Trained with more epochs, DTT-L obtains a gain of
2.5% in AO. Compared with DTT-L, DTT* is trained with
more training datasets including GOT-10k, LaSOT, Track-
ingNet and COCO, and obtains a significant gain of 3% in
AO.
Online Update We investigate the impact of the online
update (detailed in Sec. 3.5). It can be seen from Table 7
that AO, SR0.5 and SR0.75 drop by 1.3%, 1.4% and 1.9%
respectively without employing online update. This veri-
fies the effectiveness of our simple updating method. More
complex updating way has the potential ability to exploit
the temporal information for more robust performance but
is not the focus of this work.
Background Information We remove the background
information by cropping the target image patch with an area
of 22 times the target area in the training image, as done in
Siamese Network based trackers [1, 13, 19]. Table 7 shows
the results drop severely since only the target appearance
cannot help discriminative between target and distractors.
Positional Embeddings In this work, we use the fixed
positional embeddings following the settings in DETR [4]
and it is well-known that positional embeddings can dis-
ambiguate different spatial positions in Transformers. The
representation features of training image and test image
are added by the same positional embeddings for the input
query and key element in Transformers. We can see from
Table 7 that removing those in encoder yields drop of 5.8%
in AO while removing those in decoder yields drop of on-
ly 1.8% in AO, showing that the positional embeddings in
encoder are more important than those in decoder. We con-
sider this is because the positional embeddings in encoder
also contribute to recognizing the localization of the target
object in the training image during the training phase.

4.8. Qualitative Results

To visualize the localization and bounding box regres-
sion quality of DTT in online tracking, we show the track-
ing results of DTT, DiMP [2] and SiamCAR [13] on the
challenging sequences from GOT-10k [15] in Fig. 5. Three
frames of GOT-Test-004, GOT-Test-018, GOT-Test-037, and
GOT-Test-063 sequences are shown in the figures. It can be
seen that the target objects are able to be predicted robust-
ly by DTT when undergoing radical variations, e.g., rota-
tion in GOT-Test-004 and GOT-Test-018. Note that in clut-
tered scenes such as GOT-Test-037 and GOT-Test-063, DTT

DTT DiMP SiamCAR

Figure 5: Visualization tracking results of DTT, DiMP [2] and
SiamCAR [13] on the challenging sequences from GOT-10k [15].
We can see that DTT shows stronger generalization ability and
better accuracy throughout tracking. Best viewed with zooming
in.

will not be impacted negatively by the distractors with the
help of scene information while the other two representa-
tive tracking methods, DiMP and SiamCAR, tend to drift in
these scenes.

5. Conclusion and Future Work
In this work, we depart from the two popular track-

ing schemes, and present a brand new discriminative track-
ing approach, namely DTT, which is based on an encoder-
decoder Transformer architecture. DTT is able to exploit
the rich scene information for robust tracking. We use a
learning pipeline of achieving the discriminative embed-
dings which are able to highlight the most discriminative
representation for visual tracking, removing the need for
conventional discriminative models. Besides, the discrim-
inative embeddings can be used for both localization and
bounding box regression, simplifying the previous discrim-
inative tracking pipeline. Without any tricks, our method
achieves state-of-the-art performance on four benchmarks
at a high speed of over 50 FPS, showing the potential abil-
ity of this novel tracking approach. Moreover, we believe
that our approach is complementary to more sophisticated
online updating methodologies, and expect future work to
explore spatio-temporal scene information more thorough-
ly.
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