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Abstract

Point clouds captured in real-world applications are of-
ten incomplete due to the limited sensor resolution, single
viewpoint, and occlusion. Therefore, recovering the com-
plete point clouds from partial ones becomes an indispens-
able task in many practical applications. In this paper, we
present a new method that reformulates point cloud com-
pletion as a set-to-set translation problem and design a new
model, called PoinTr that adopts a transformer encoder-
decoder architecture for point cloud completion. By rep-
resenting the point cloud as a set of unordered groups of
points with position embeddings, we convert the point cloud
to a sequence of point proxies and employ the transform-
ers for point cloud generation. To facilitate transformers
to better leverage the inductive bias about 3D geometric
structures of point clouds, we further devise a geometry-
aware block that models the local geometric relationships
explicitly. The migration of transformers enables our model
to better learn structural knowledge and preserve detailed
information for point cloud completion. Furthermore, we
propose two more challenging benchmarks with more di-
verse incomplete point clouds that can better reflect the
real-world scenarios to promote future research. Experi-
mental results show that our method outperforms state-of-
the-art methods by a large margin on both the new bench-
marks and the existing ones. Code is available at https:
//github.com/yuxumin/PoinTr.

1. Introduction
Recent developments in 3D sensors largely boost re-

searches in 3D computer vision. One of the most com-
monly used 3D data format is the point cloud, which re-
quires less memory to store but convey detailed 3D shape

*Equal contribution.
†Corresponding author.

Figure 1: PoinTr is designed for point cloud completion task. It
takes the downsampled partial point clouds as inputs (gray points),
and predicts the missing parts and upsamples the known parts si-
multaneously (blue points). We propose to formulate the point
cloud completion task as a set-to-set translation task and use a
transformer encoder-decoder architecture to learn the complex de-
pendencies among the point groups. Furthermore, we design two
new benchmarks with more diverse tasks (i.e., upsampling and
completion of point cloud), more diverse categories (i.e., from 8
categories to 55 categories), more diverse viewpoints (i.e., from 8
viewpoints to all possible viewpoints) and more diverse levels of
incompleteness (i.e., missing 25% to 75% points of the ground-
truth point clouds) to better reflect the real-world scenarios and
promote future research.

information. However, point cloud data from existing 3D
sensors are not always complete and satisfactory because
of inevitable self-occlusion, light reflection, limited sensor
resolution, etc. Therefore, recovering complete point clouds
from partial and sparse raw data becomes an indispensable
task with ever-growing significance.

Over the years, researchers have tried many approaches
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to tackle this problem in the realm of deep learning. Early
attempts on point cloud completion [6, 15, 30, 31, 23, 36,
20, 19, 51, 47, 40] try to migrate mature methods from 2D
completion tasks to 3D point clouds by voxelization and
3D convolutions. However, these methods suffer from a
heavy computational cost that grows cubically as the spa-
tial resolution increases. With the success of PointNet and
PointNet++ [25, 26], directly processing 3D coordinates
becomes the mainstream of point cloud based 3D anal-
ysis. The technique is further applied to many pioneer
works [1, 49, 35, 16, 22, 14, 29] in point cloud comple-
tion task, in which an encoder-decoder based architecture is
designed to generate complete point clouds. However, the
bottleneck of such methods lies in the max-pooling opera-
tion in the encoding phase, where fine-grained information
is lost and can hardly be recovered in the decoding phase.

Reconstructing complete point cloud is a challenging
problem since the structural information required in the
completion task runs counter to the unordered and un-
structured nature of point cloud data. Therefore, learning
structural features and long-range correlations among lo-
cal parts of the point cloud becomes the key ingredient to-
wards better point cloud completion. In this paper, we pro-
pose to adopt Transformers [37], one of the most success-
ful architecture in Natural Language Processing (NLP), to
learn the structural information of pairwise interactions and
global correlations for point cloud completion. Our model,
named PoinTr, is characterized by five key components:
1) Encoder-Decoder Architecture: We adopt the encoder-
decoder architecture to convert point cloud completion as
a set-to-set translation problem. The self-attention mech-
anism of transformers models all pairwise interactions be-
tween elements in the encoder, while the decoder reasons
about the missing elements based on the learnable pairwise
interactions among features of the input point cloud and
queries; 2) Point Proxy: We represent the set of point clouds
in a local region as a feature vector called Point Proxy. The
input point cloud is convert to a sequence of Point Prox-
ies, which are used as the inputs of our transformer model;
3) Geometry-aware Transformer Block: To facilitate trans-
formers to better leverage the inductive bias about 3D ge-
ometric structures of point clouds, we design a geometry-
aware block that models the geometric relations explicitly;
4) Query Generator: We use dynamic queries instead of
fixed queirs in the decoder, which are generated by a query
generation module that summarizes the features produced
by the encoder and represents the initial sketch of the miss-
ing points; 5) Multi-Scale Point Cloud Generation: We de-
vise a multi-scale point generation module to recover the
missing point cloud in a coarse-to-fine manner.

As another contribution, we argue that existing bench-
marks are not representative enough to cover real-world sce-
narios of incompleted point clouds. Therefore, we intro-

duce two more challenging benchmarks that contain more
diverse tasks (i.e., joint upsampling and completion of point
cloud), more object categories (i.e., from 8 categories to 55
categories), more diverse views points (i.e., from 8 view-
points to all possible viewpoints) and more diverse level
of incompleteness (i.e., missing 25% to 75% points of the
ground-truth point clouds). We evaluate our method on both
the new benchmarks and the widely used PCN dataset [49]
and KITTI benchmark [10]. Experiments demonstrate that
PointTr outperforms previous state-of-the-art methods on
all benchmarks by a large margin. The main contributions
of this paper are summarized in Figure 1.

2. Related Work

3D Shape Completion. Traditional methods for 3D shape
completion tasks often adopt voxel grids or distance fields
to describe 3D objects [6, 15, 31]. Based on such structured
3D representations, the powerful 3D convolutions are used
and achieve a great success in the tasks of 3D reconstruc-
tion [4, 11] and shape completion [6, 15, 44]. However, this
group of methods suffers from heavy memory consump-
tion and computational burden. Although these issues are
further alleviated by methods based on sparse representa-
tions [32, 39, 12], the quantization operation in these meth-
ods still cause a significant loss in detailed information. Dif-
ferent from the above methods, researchers gradually start
to use unstructured point clouds as the representation of 3D
objects, given the small memory consumption and strong
ability to represent fine-grained details. Nevertheless, the
migration from structured 3D data understanding to point
clouds analysis is non-trivial, since the commonly used con-
volution operator is no longer suitable for unordered points
clouds. PointNet and its variants [25, 26] are the pioneer
work to directly process 3D coordinates and inspire the re-
searches in many downstream tasks. In the realm of point
cloud completion, PCN [49] is the first learning-based ar-
chitecture, which proposes an Encoder-Decoder framework
and adopts a FoldingNet to map the 2D points onto a 3D
surface by mimicking the deformation of a 2D plane. After
PCN, many other methods [35, 16, 46, 18] spring up, pursu-
ing point clouds completion in higher resolution with better
robustness.

Transformers. Transformers [37] are first introduced as
an attention-based framework in Natural Language Process-
ing (NLP). Transformer models often utilize the encoder-
decoder architecture and are characterized by both self-
attention and cross-attention mechanisms. Transformer
models have proven to be very helpful to the tasks that
involve long sequences thanks to the self-attention mecha-
nism. The cross-attention mechanism in the decoder exploit
the encoder information to learn the attention map of query
features, which making transformers powerful in generation
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Figure 2: The Pipeline of PoinTr. We first downsample the input partial point cloud to obtain the center points. Then, we use a lightweight
DGCNN [42] to extract the local features around the center points. After adding the position embedding to the local feature, we use a
transformer encoder-decoder architecture to predict the point proxies for the missing parts. A simple MLP and FoldingNet are used to
complete the point cloud based on the predicted point proxies in a coarse-to-fine manner.

tasks. By taking the advantages of both self-attention and
cross-attention mechanisms, transformers have a strong ca-
pability to handle long sequence input and enhance infor-
mation communications between the encoder and the de-
coder. In the past few years, transformers have dominated
the tasks that take long sequences as input and gradually re-
placed RNNs [38] in many domains. Now they begin their
journey in computer vision [7, 21, 33, 27, 24, 28].

3. Approach
The overall framework of PoinTr is illustrated in Fig-

ure 2. We will introduce our method in detail as follows.

3.1. Set-to-Set Translation with Transformers

The primary goal of our method is to leverage the im-
pressive sequence-to-sequence generation ability of trans-
former architecture for point cloud completion tasks. We
propose to first convert the point cloud to a set of feature
vectors, point proxies, that represent the local regions in the
point clouds (we will describe in Section 3.2). By anal-
ogy to the language translation pipeline, we model point
cloud completion as a set-to-set translation task, where
the transformers take the point proxies of the partial point
clouds as the inputs and produce the point proxies of the
missing parts. Specifically, given the set of point prox-
ies F = {F1, F2, ..., FN} that represents the partial point
cloud, we model the process of point cloud completion as a
set-to-set translation problem:

V = ME(F), H = MD(Q,V), (1)

where ME and MD are the encoder and decoder mod-
els, V = {V1, V2, ..., VN} are the output features of the
encoder, Q = {Q1, Q2, ..., QM} are the dynamic queries
for the decoder, H = {H1, H2, ...,HM} are the predicted
point proxies of the missing point cloud, and M is the num-
ber of the predicted point proxies. The recent success in

NLP tasks like text translation and question answering [8]
have clearly demonstrated the effectiveness of transformers
to solve this kind of problem. Therefore, we propose to
adopt a transformer-based encoder-decoder architecture to
solve the point cloud completion problem.

The encoder-decoder architecture consists of LE and
LD multi-head self-attention layers [37] in the encoder
and decoder, respectively. The self-attention layer in the
encoder first updates proxy features with both long-range
and short-range information. Then a feed forward network
(FFN) further updates the proxy features with an MLP ar-
chitecture. The decoder utilizes self-attention and cross-
attention mechanisms to learn structural knowledge. The
self-attention layer enhances the local features with global
information, while the cross-attention layer explores the re-
lationship between queries and outputs of the encoder. To
predict the point proxies of the missing parts, we propose to
use dynamic query embeddings, which makes our decoder
more flexible and adjustable for different types of objects
and their missing information. More details about the trans-
former architecture can be found in the supplementary ma-
terial and [8, 37].

Note that benefiting from the self-attention mechanism
in transformers, the features learned by the transformer net-
work are invariant to the order of point proxies, which is
also the basis of using transformers to process point clouds.
Considering the strong ability to capture data relationships,
we expect the transformer architecture to be a promising al-
ternative for deep learning on point clouds.

3.2. Point Proxy

The Transformers in NLP take as input a 1D sequence of
word embeddings [37]. To make 3D point clouds suitable
for transformers, the first step is to convert the point cloud
to a sequence of vectors. A trivial solution is directly feed-
ing the sequence of xyz coordinates to the transformers.
However, since the computational complexity of the trans-
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Figure 3: Comparisons of the vanilla transformer block and the
proposed geometry-aware transformer block.

formers is quadratic to the sequence length, this solution
will lead to an unacceptable cost. Therefore, we propose to
represent the original point cloud as a set of point proxies.
A point proxy represents a local region of the point clouds.
Inspired by the set abstraction operation in [26], we first
conduct furthest point sample (FPS) to locate a fixed num-
ber N of point centers {q1, q2, ..., qN} in the partial point
cloud. Then, we use a light-weight DGCNN [42] with hi-
erarchical downsampling to extract the feature of the point
centers from the input point cloud. The point proxy Fi is
a feature vector that captures the local structure around qi,
which can be computed as:

Fi = F ′
i + φ(qi), (2)

where F ′
i is the feature of point qi that is extracted using

the DGCNN model, and φ is another MLP to capture the
location information of the point proxy. The first term rep-
resents the semantic patterns of the local region, and the
second term is inspired by the position embedding [3] oper-
ation in transformers, which explicitly encodes the global
location of the point proxy. The detailed architecture of
the feature extraction model can be found in Supplementary
Material.

3.3. Geometry-aware Transformer Block

One of the key challenges of applying transformers for
vision tasks is the self-attention mechanism in transformers
lacks some inductive biases inherent to conventional vision
models like CNNs and point cloud networks which explic-
itly model the structures of vision data. To facilitate trans-
formers to better leverage the inductive bias about 3D ge-
ometric structures of point clouds, we design a geometry-
aware block that models the geometric relations, which can
be a plug-and-play module to incorporate with the attention
blocks in any transformer architectures. The details of the
proposed block are shown in Figure 3. Different from the
self-attention module that uses the feature similarity to cap-
ture the semantic relation, we propose to use kNN model
to capture the geometric relation in the point cloud. Given
the query coordinates pQ, we query the features of the near-
est keys according to the key coordinates pk. Then we fol-

low the practice of DGCNN [42] to learn the local geomet-
ric structures by feature aggregation with a linear layer fol-
lowed by the max pooing operation. The geometric feature
and semantic feature are then concatenated and mapped to
the original dimensions to form the output.

3.4. Query Generator

The queries Q serve as the initial state of the predicted
proxies. To make sure the queries correctly reflect the
sketch of the completed point cloud, we propose a query
generator module to generate the query embeddings dy-
namically conditioned on the encoder outputs. Specifically,
we first summarize V with a linear projection to higher di-
mensions followed by the max pooing operation. Similar
to [49], we use a linear projection layer to directly gener-
ate M × 3 dimension features that can be reshaped as the
M coordinates {c1, c2, ..., cM}. Lastly, we concatenate the
global feature of the encoder and the coordinates, and use
an MLP to produce the query embeddings.

3.5. Multi-Scale Point Cloud Generation

The goal of our encoder-decoder network is to predict
the missing parts of incomplete point clouds. However, we
can only get predictions for missing proxies from the trans-
former decoder. Therefore, we propose a multi-scale point
cloud generation framework to recover missing point clouds
at full resolution. To reduce redundant computations, we
reuse the M coordinates produced by the query generator
as the local centers of the missing point cloud. Then, we
utilize a FoldingNet [48] f to recover detailed local shapes
centered at the predicted proxies:

Pi = f(Hi) + ci, i = 1, 2, ...,M. (3)

where Pi is the set of neighboring points centered at ci.
Following previous work [16], we only predict the missing
parts of the point cloud and concatenate them with the input
point cloud to obtain the complete objects. Both predicted
proxies and recovered point clouds are supervised during
the training process, and the detailed loss function will be
introduced in the following section.

3.6. Optimization
The loss function for point cloud completion should pro-

vide a quantitative measurement for the quality of output.
However, since the point clouds are unordered, many loss
functions that directly measure the distance between two
points (i.e. ℓ2 distance) are unsuitable. Fan et al. [9] in-
troduce two metrics that are invariant to the permutation
of points, which are Chamfer Distance (CD) and Earth
Mover’s Distance (EMD). We adopt Chamfer Distance as
our loss function for its O(N logN) complexity. We use
C to represent the nC local centers and P to represent nP
points of the completed point cloud. Give the ground-truth
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completed point cloud G, the loss functions for these two
predictions can be written as:

J0 =
1

nC

∑
c∈C

min
g∈G

∥c− g∥+ 1

nG

∑
g∈G

min
c∈C

∥g − c∥,

J1 =
1

nP

∑
p∈P

min
g∈G

∥p− g∥+ 1

nG

∑
g∈G

min
p∈P

∥g − p∥.

Note that we also concatenate the predicted local centers
and the centers of the input point cloud to form the local
centers of the whole object C. We directly use the high-
resolution point cloud G to supervise the sparse point cloud
C to encourage them to have similar distributions. Our final
objective function is the sum of these two objectives J =
J0 + J1.

4. Experiments
In this section, we first introduce the new benchmarks

for diverse point cloud completion and the evaluation met-
ric. Then, we show the results of both our method and sev-
eral baseline methods on our new benchmarks. Lastly, we
demonstrate the effectiveness of our model on the widely
used PCN dataset and KITTI benchmark. We also provide
ablation study and visual analysis of our method.

4.1. Benchmarks for Diverse Point Completion

We choose to generate the samples in our benchmarks
based on the synthetic dataset, ShapeNet [45], because it
contains the complete object models that cannot be obtained
from real-world datasets like ScanNet [5] and S3DIS [2].
What makes our benchmarks distinct is that our benchmarks
contain more object categories, more incomplete patterns
and more viewpoints. Besides, we pay more attention to
the ability of networks to deal with the objects from novel
categories that do not appear in the training set.
ShapeNet-55 Benchmark: In this benchmark, we use all
the objects in ShapeNet from 55 categories. Most ex-
isting datasets for point cloud completion like PCN [49]
only consider a relatively small number of categories (e.g.,
8 categories in PCN). However, the incompleted point
clouds from the real-world scenarios are much more di-
verse. Therefore, we propose to evaluate the point cloud
completion models on all 55 categories in ShapeNet to more
comprehensively test the ability of models with a more di-
verse dataset. We split the original ShapeNet using the 80-
20 strategy: we randomly sample 80% objects from each
category to form the training set and use the rest for eval-
uation. As a result, we get 41,952 models for training and
10,518 models for testing. For each object, we randomly
sample 8,192 points from the surface to obtain the point
cloud.
ShapeNet-34 Benchmark: In this benchmark, we want to
explore another important issue in point cloud completion:

the performance on novel categories. We believe it is nec-
essary to build a benchmark for this task to better evaluate
the generalization performance of models. We first split the
origin ShapeNet into two parts: 21 unseen categories and 34
seen categories. In the seen categories, we randomly sample
100 objects from each category to construct a test set of the
seen categories (3,400 objects in total) and leave the rest as
the training set, resulting in 46,765 object models for train-
ing. We also construct another test set consisting of 2,305
objects from 21 novel categories. We evaluate the perfor-
mance on both the seen and unseen categories to show the
generalization ability of models.

Training and Evaluation: In both benchmarks, the partial
point clouds for training are generated online. We sample
2048 points from the object as the input and 8192 points as
the ground truth. In order to mimic the real-world situation,
we first randomly select a viewpoint and then remove the n
furthest points from the viewpoint to obtain a training par-
tial point cloud. Although the projection method proposed
in [49] is a better approximation to real scans, our strategy is
more flexible and efficient. Our experiments on KITTI also
show the model learned on our dataset works well when
finetuning to real-world scans. Besides, our strategy also
ensures the diversity of our training samples in the aspect
of viewpoints. During training, n is randomly chosen from
2048 to 6144 (25% to 75% of the complete point cloud), re-
sulting in different level of incompleteness. We then down-
sample the remaining point clouds to 2048 points as the in-
put data for models.

During evaluation, we fix 8 view points and n is set to
2048, 4096 or 6144 (25%, 50% or 75% of the whole point
cloud) for convenience. According to the value of n, we
divide the test samples into three difficulty degrees, simple,
moderate and hard in our experiments. In the following ex-
periments, we will report the performance for each method
in simple, moderate and hard to show the ability of each
network to deal with tasks at difficulty levels. In addition,
we use the average performance under three difficulty de-
grees to report the overall performance (Avg).

4.2. Evaluation Metric
We follow the existing works [49, 35, 16, 46] to use the

mean Chamfer Distance as the evaluation metric, which can
measure distance between the prediction point cloud and
ground-truth in set-level. For each prediction, the Chamfer
Distance between the prediction point set P and the ground-
truth point set G is calculated by:

dCD(P,G) = 1

|P|
∑
p∈P

min
g∈G

∥p− g∥+ 1

|G|
∑
g∈G

min
p∈P

∥g − p∥

Following the previous methods, we use two versions of
Chamfer distance as the evaluation metric to compare the
performance with existing works. CD-ℓ1 uses L1-norm to
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Table 1: Results of our methods and state-of-the-art methods on ShapeNet-55. We report the detailed results for each method on 10
categories and the overall results on 55 categories for three difficulty degrees. We use CD-S, CD-M and CD-H to represent the CD results
under the Simple, Moderate and Hard settings. We also provide results under the F-Score@1% metric.

Table Chair Airplane Car Sofa
Bird

house
Bag Remote

Key
board

Rocket CD-S CD-M CD-H CD-Avg F1

FoldingNet [48] 2.53 2.81 1.43 1.98 2.48 4.71 2.79 1.44 1.24 1.48 2.67 2.66 4.05 3.12 0.082
PCN [49] 2.13 2.29 1.02 1.85 2.06 4.50 2.86 1.33 0.89 1.32 1.94 1.96 4.08 2.66 0.133
TopNet [35] 2.21 2.53 1.14 2.18 2.36 4.83 2.93 1.49 0.95 1.32 2.26 2.16 4.3 2.91 0.126
PFNet [16] 3.95 4.24 1.81 2.53 3.34 6.21 4.96 2.91 1.29 2.36 3.83 3.87 7.97 5.22 0.339
GRNet [46] 1.63 1.88 1.02 1.64 1.72 2.97 2.06 1.09 0.89 1.03 1.35 1.71 2.85 1.97 0.238
PoinTr 0.81 0.95 0.44 0.91 0.79 1.86 0.93 0.53 0.38 0.57 0.58 0.88 1.79 1.09 0.464

Table 2: Results of our methods and state-of-the-art methods on ShapeNet-34. We report the results of 34 seen categories and 21 unseen
categories in three difficulty degrees. We use CD-S, CD-M and CD-H to represent the CD results under the Simple, Moderate and Hard
settings. We also provide results under the F-Score@1% metric.

34 seen categories 21 unseen categories

CD-S CD-M CD-H CD-Avg F1 CD-S CD-M CD-H CD-Avg F1
FoldingNet [48] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN [49] 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
TopNet [35] 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.50 0.121
PFNet [16] 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322
GRNet [46] 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384

calculate the distance between two points, while CD-ℓ2 uses
L2-norm instead. We also follow [34] to adopt F-Score as
another evaluation metric.

4.3. Results on ShapeNet-55

We first conduct experiments on ShapeNet-55, which
consists of objects from 55 categories. To compare with ex-
isting methods, We implement FoldingNet [48], PCN [49],
TopNet [35], PFNet [16] and GRNet [46] on our bench-
mark according to their open-source code and use the best
hyper-parameters in their papers for fair comparisons. We
first investigate how the existing methods and our method
perform when there are objects from more categories. The
last four columns in Table 1 show that our PoinTr can better
cope with different situations with diverse viewpoints, di-
verse object categories, diverse incomplete patterns and di-
verse incompleteness levels. We achieve 0.58, 0.6 and 0.69
improvement in CD-ℓ2 (multiplied by 1000) under three
settings (simple, moderate and hard) comparing with the
SOTA method GRNet [46]. PFNet [16], which proposes
to directly predict the missing parts of objects, fail in our
benchmarks due to the high diversity. We further report the
performance on categories with sufficient and insufficient
samples. We only sample 10 categories out from 55 cate-
gories to show the results due to the limited space, in which
Table, chair, Airplane,Car and Sofa contain more than 2500
samples in the training set while Birdhouse, Bag, Remote,

Keyboard and Rocket contain less than 80 samples. We also
provide the detailed results for all 55 categories in our sup-
plementary material. We place the categories with suffi-
cient samples at the first five columns and the categories
with insufficient samples in the following five columns in
Table 1. The average CD results for three difficulty de-
grees are also reported. Surprisingly, there is no obvious
difference between the results on these two kinds of cate-
gories. However, except for our PoinTr and SOTA method
GRNet, the imbalance in the number of training samples
lead to a relatively high CD in the categories with insuffi-
cient samples. Besides, our model achieves 0.46 F-Score on
ShapeNet-55, while the state-of-the-art GRNet only obtain
0.24 F-Score. These results clearly demonstrate the effec-
tiveness of PoinTr under the more diverse setting.

4.4. Results on ShapeNet-34

On ShapeNet-34, we also conduct experiments for our
method and other five state-of-the-art methods. The results
are shown in Table 2. For the 34 seen categories, we can
see our method outperforms all the other methods. For the
21 unseen categories, we using the networks that are trained
on the 34 seen categories to evaluate the performance on the
novel objects from the other 21 categories that do not appear
in the training phase. We see our method also achieves the
best performance in this more challenging setting. Compar-
ing with the results of seen categories, we see in the simple
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Figure 4: Point cloud completion results on some objects from
novel categories. We show the input point cloud and the ground
truth as well as the predictions of GRNet and our model.
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Figure 5: Qualitative results on the KITTI dataset. In order to
better show the shape of the car, we provide two views of the same
point cloud in each case. Our method can recover the complete
point cloud of a car with more accurate boundaries and details
(e.g. tires of cars).

setting (25% of point cloud will be removed), the perfor-
mance drop of our method is less than 0.3. But when the
difficulty level increases, the performance gap between seen
categories and unseen categories significantly increases. We
also visualize the results in Figure 4 to show the effective-
ness of our method on the unseen categories.

4.5. Results on the Existing Benchmarks

Apart from the experiments on the two newly proposed
challenging benchmarks, we also conduct the experiments
on the existing benchmarks including the PCN dataset [49]

Table 3: Results on the PCN dataset. We use the L1 Chamfer
Distance to compare with other methods.

CD-ℓ1 (× 1000) Avg Air Cab Car Cha Lam Sof Tab Wat
FoldingNet [48] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
AtlasNet [13] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN [49] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
TopNet [35] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
MSN [17] 10.0 5.6 11.9 10.3 10.2 10.7 11.6 9.6 9.9
GRNet [46] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PMP-Net [43] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25
CRN [41] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
PoinTr 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29

Table 4: Ablation study on the PCN dataset. We investigate dif-
ferent designs including query generator (Query), DGCNN feature
extractor (DGCNN) and Geometry-aware Blocks (Geometry).

Model Query DGCNN Geometry CD-ℓ1 F-Score@1%

A 9.43 67.82
B ✓ 9.09 0.713
C ✓ ✓ 8.69 0.736
D ✓ ✓ all 8.44 0.741
E ✓ ✓ 1st 8.38 0.745

and KITTI benchmark [10].

Results on the PCN Dataset. The PCN dataset [49] is one
of the most widely used benchmark datasets for the point
cloud completion task. To verify the effectiveness of our
method on existing benchmarks and compare it with more
state-of-the-art methods, we conducted experiments on this
dataset following the standard protocol and evaluation met-
ric used in previous work [49, 17, 46, 43, 41]. The results
are shown in Table 3. We see our method largely improves
the previous methods and establishes the new state-of-the-
art on this dataset.

Results on KITTI Benchmark. To show the performance
of our method in real-world scenarios, we follow [46] to
finetune our trained model on ShapeNetCars [49] and eval-
uate the performance of our model on KITTI dataset, which
contains the incomplete point clouds of cars in the real-
world scenes from LiDAR scans. We report the Fidelity
and MMD metrics in Table 5 and show some reconstruction
results in Figure 5. Our method achieves better qualitative
and quantitative performance.

4.6. Model Design Analysis

To examine the effectiveness of our designs, we conduct
a detailed ablation study on the key components of PoinTr.
The results are summarized in Table 4. The baseline model
A is the vanilla transformer model for point cloud comple-
tion, which uses the encoder-decoder architecture with the
standard transformer blocks. In this model, we form the
point proxies directly from the point cloud using a single-
layer DGCNN model. We then add the query generator
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Table 5: Results on LiDAR scans from KITTI dataset under the Fidelity and MMD metrics.

CD-ℓ2 (× 1000) AtlasNet [13] PCN [49] FoldingNet [48] TopNet [35] MSN [17] NSFA [50] PFNet [16] CRN [41] GRNet [46] PoinTr

Fidelity ↓ 1.759 2.235 7.467 5.354 0.434 1.281 1.137 1.023 0.816 0.000
MMD ↓ 2.108 1.366 0.537 0.636 2.259 0.891 0.792 0.872 0.568 0.526
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Figure 6: Qualitative results on ShapeNet-55. All methods
above takes the point clouds in the first line as inputs and
generate complete point clouds. Our methods can complete
the point clouds with higher fidelity, which clearly shows
the effectiveness of our method.

between the encoder and decoder (model B). We see the
query generator improve the baseline by 0.34 in Chamfer
distance. When using DGCNN to extract features from the
input point cloud (model C), we observe a significant im-

provement to 8.69. By adding the geometric block to all the
transformer blocks (model D), we see the performance can
be further improved, which clearly demonstrates the effec-
tiveness of the geometric structures learned by the block.
We find that only adding the geometric block to the first
transformer block in both encoder and decoder can lead to a
slightly better performance (model E), which indicates the
role of geometric block is to introduce the inductive bias and
a single layer is sufficient while adding more blocks may re-
sult in over-fitting. Besides, we see our method can achieve
over 0.74 F-Score on the PCN dataset while obtaining only
0.46 F-Score on our ShapeNet-55, which also suggests our
new datatset is much more challenging.

4.7. Qualitative Results

In Figure 6, we show some completion results for all
methods and find our method perform better. For example,
the input data in (a) nearly lose all the geometric informa-
tion and can be hardly recognized as an airplane. In this
case, other methods can only roughly complete the shape
with unsatisfactory geometry details, while our method can
still complete the point cloud with higher fidelity. These
results show our method has a stronger ability to recover
details and is more robust to various incomplete patterns.
More results can be found in the supplementary material.

5. Conclusion

In this paper, we have proposed a new architecture,
PoinTr, to convert the point cloud completion task into a
set to set translation tasks. With several technical innova-
tions, we successfully applied the transformer model to this
task and achieved state-of-the-art performance. Moreover,
we proposed two more challenging benchmarks for more
diverse point cloud completion. Extending our transformer
architecture to other 3D tasks can an interesting future di-
rection.
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